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Damage to the fornix leads to significant memory impairment and executive dysfunction

and is associated with dementia risk. We sought to identify if fornix integrity and

fiber length are disrupted in mild cognitive impairment (MCI) and how they associate

with cognition. Data from 14 healthy older adult controls (HCs) and 17 subjects with

non-amnestic MCI (n-aMCI) were analyzed. Diffusion tensor imaging (DTI) at 1.5 Tesla

MRI was performed to enable manual tracing of the fornix and calculation of DTI

parameters. Higher fractional anisotropy of body and column of the fornix was associated

with better executive functioning andmemory, more strongly in the HC than in the n-aMCI

group. Fornix fiber tract length (FTL) was associated with better executive function, more

strongly in the n-aMCI than in the HC group, and with better memory, more strongly in

the HC than in the n-aMCI group. These results highlight a decline in the contributions of

the fornix to cognition in n-aMCI and suggest that maintenance of fornix FTL is essential

for sustaining executive functioning in people with n-aMCI.

Keywords: non-amnestic mild cognitive impairment (n-aMCI), fornix, diffusion tensor imaging (DTI), fractional

anisotropy (FA), fiber tract length (FTL), cognitive performance, executive function, vascular dementia (VaD)

INTRODUCTION

Approximately 60% of the world’s population lives in the Asia-Pacific region, where the prevalence
of dementia is expected to rise from 23 million in 2015 to 71 million in 2050 (Venketasubramanian
et al., 2010; Alzheimer’s Disease International, 2014, 2018, 2019), among which vascular dementia
(VaD) is more prevalent than in western populations.Mild cognitive impairment (MCI) is generally
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considered the transitional state between healthy aging
and dementia (Petersen et al., 2001; American Psychiatric
Association, 2013; Anderson, 2019). The criteria for MCI
(termed minor cognitive disorder by the American Psychiatric
Association) include concerns about changes in cognition,
impairment in one or more cognitive domains, preservation
of independence in functional abilities, and no dementia
(American Psychiatric Association, 2013). People with MCI can
be categorized as amnestic (aMCI) or non-amnestic (n-aMCI).
aMCI is likely to progress to Alzheimer’s disease (AD), whereas
n-aMCI most typically develops into other types of dementia,
prominently into VaD but also into frontotemporal dementia
(FTD) or Lewy body dementia (LBD), but can also progress to
AD (Petersen et al., 1995; Farlow et al., 2004; Petersen, 2004).
VaD is the second most common cause of dementia after AD,
causing 20–30% of global dementia cases (Alzheimer’s Disease
International, 2014), 15–20% in North America and Europe
(Plassman et al., 2007; Rizzi et al., 2014), and∼30% in Asia (Jhoo
et al., 2008; Chan et al., 2013).

VaD is usually caused by decreased blood flow to the brain,
with the risk of incident dementia within 5 years being 6.5
times higher after a stroke and 1.5 times higher after a transient
ischemic attack (TIA) (Pendlebury et al., 2019). In VaD, white
matter (WM) inflammation is associated with oxidative stress,
cerebral hypoperfusion, and thromboembolism (Venkat et al.,
2015). Clinical signs and symptoms of VaD depend on the cause
of VaD, affected areas, and size of infarction. A decrease in
cerebral blood flow (CBF) and hypoxia in the prefrontal cortex
(PFC), basal ganglia, and hippocampus is typically associated
with cognitive decline and behavioral changes in VaD (Iadecola,
2013; Venkat et al., 2015). In a recent study, patients with small-
and large-vessel VaD showed dysfunction in memory, executive
function, and attention domains (Sengupta et al., 2019).

A WM tract that plays a major role in supporting these
functional domains is the fornix, a discrete bidirectional tract
bundle that connects the hippocampus to other limbic structures
that is crucial for normal cognitive function and is a subcortical
component of the limbic system (Teipel et al., 2008; Christiansen
et al., 2016; Rabin et al., 2019). As a part of the fornix extends
from the hippocampal–diencephalic system, the fornix plays an
important role in the Papez circuit (Papez, 1937). It is the major
efferent pathway in the human memory circuit and is thought
to be especially key for maintaining episodic memory (EM)
(Thomas et al., 2011; Douet and Chang, 2015) and executive
function (EF) (Sasson et al., 2013).

Damage to the fornix has been shown to lead to significant
memory and cognitive impairment (Oishi et al., 2009; Thomas
et al., 2011; Mielke et al., 2012; Fletcher et al., 2013; Wang
et al., 2018; Metzler-Baddeley et al., 2019). Likewise, infarction
of the fornix can lead to neurodegeneration of the fornix,
cognitive function decline, and VaD or subcortical VaD (SVD)
(Cummings, 1994; Kalaria and Erkinjuntti, 2006; Zhuang et al.,
2013; Mugikura and Takahashi, 2015; Takano et al., 2018; Zhu
et al., 2018). Neuropsychological evaluation demonstrated the
existence of an amnesia syndrome with deficit of executive
functions in patients with bilateral infarction of the fornix,
especially in the anterior column of the fornix (Nestor et al., 2007;

Rizek et al., 2013; Salvalaggio et al., 2018). Given these findings,
we expected reduced fornix integrity in n-aMCI compared to
healthy older adults and for fornix integrity to be related to
memory and executive functioning performance.

Diffusion tensor imaging (DTI) has been used fruitfully to
study in vivo WM microstructure in the human brain via
voxelwise analysis, region-of-interest (ROI) analysis, or fiber
tractography (FT) (Liu et al., 2009). The majority of DTI studies
have revealed a reduction of fractional anisotropy (FA) and an
increase in mean diffusivity (MD), also known as the apparent
diffusion coefficient (ADC), with advancing age (Beaulieu, 2002;
Peters, 2002; DeBoy et al., 2007; Lebel et al., 2008; Mamere et al.,
2009; Klawiter et al., 2011; Aung et al., 2013). These findings
have been attributed to the breakdown of the myelin sheath
and axonal membrane degradation such as axonal disintegration,
oligodendrocytosis, astrocytosis, and Wallerian degeneration
(WD) (Werring et al., 2000; Pierpaoli et al., 2001; Kiuchi
et al., 2009; Kantarci et al., 2011; Dimitra et al., 2013). Indeed,
abnormal fornix tissue cytoarchitecture has been associated with
neuropathological abnormalities in those who are cognitively
normal and later progress to MCI (Chao et al., 2013). Patients
with MCI and/or AD show significant reductions of FA of the
fornix, which highlights the importance of this key structure as
an imaging marker to predict early disease progression (Liu et al.,
2011; Thomas et al., 2011; Mielke et al., 2012; Pelletier et al.,
2013; Yu et al., 2014; Metzler-Baddeley et al., 2019; da Rocha
et al., 2020). Moreover, pathology of the fornix affects several
brain networks with which it is interconnected (Nowrangi and
Rosenberg, 2015).

In this study, we used DTI to assess the WM microstructure
of the fornix in a cohort of Thai older adults. While the current
literature has focused more on DTI markers of aMCI and
AD and on whole-brain analyses, our aim was to specifically
target the fornix, as its unique connectivity can shed light on
the pathophysiology of n-aMCI, which is particularly prevalent
in the Asia-Pacific region. Importantly, we approached this
aim through both volumetric analysis and tractography. Our
hypothesis was that WM integrity and fiber tract length (FTL)
of the fornix would be sensitive to n-aMCI and would associate
with cognitive functioning.

MATERIALS AND METHODS

Participants and Study Design
Participants aged 60 years and older with no history of
dementia, no active depression disorders, and normal levels
of daily function were recruited through the Maharaj Nakorn
Chiang Mai Hospital and the local community. This study
received institutional ethical approval. All participants in this
study had voluntarily offered to undergo blood collection,
cognitive screening tests, neuropsychological battery testing by a
geriatric psychologist, and MRI scan by a well-trained radiologic
technologist. Participants provided written informed consent
before beginning the study. Participants were excluded from
enrollment if they had (1) a history of infection, infarction, or
other focal lesions in a brain structure critically associated with
memory; (2) alcohol or substance abuse or dependence within
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the past 2 years; (3) significant neurologic diseases within the past
1 year; active claustrophobia, hypothyroidism, hyperthyroidism,
vitamin B12 deficiency, neurosyphilis [rapid plasma reagin (RPR)
or Treponema pallidum hemagglutination (THPA) positive], or
the human immunodeficiency virus (HIV); (4) current use of
psychoactive medications; significant head trauma with post-
traumatic loss of consciousness for at least 30min at any
point in their life; (5) loss of senses (blindness, deafness) or
photosensitive epilepsy; presence of any metallic implants; and
(6) any significant systemic illness or unstable medical condition
that could lead to difficulty complying with the protocol.

Eighty participants were recruited, of which 39 were excluded
after screening due to (1) 10 cases of mild anemia, (2) three
cases of incomplete screening, (3) three cases of claustrophobia,
(4) two cases of depression, (5) two cases of abnormal thyroid
function, (6) two cases of obstructive sleep apnea, (7) two cases
where participants were taking medications that affect cognition
(i.e., prostatitis treatment), (8) one case of contracted syphilis, (9)
one case of color blindness, (10) one case of generalized anxiety
disorder, and (11) one case of low white blood cell count. Eleven
other participants were excluded due to an unclear diagnosis after
neuropsychological testing. Forty-one participants met the initial
inclusion criteria, consisting of 20 healthy controls (HCs) and
21 with MCI. All of the participants with MCI met the criteria
for non-amnestic MCI (n-aMCI), all presenting with executive
dysfunction. Ten participants were excluded from the imaging
analysis due to incomplete MRI acquisitions and/or atypical
projection of the fornix. Therefore, data from 31 participants
are presented. The resulting cohort consists of 14 HCs and
17 n-aMCI.

Clinical Evaluation
Each participant received multidisciplinary clinical evaluations
at the Geriatric Psychiatry Clinic, Maharaj Nakorn Chiang Mai
Hospital. Evaluations included (1) a detailed medical history;
(2) physical and neurological examinations; (3) medical blood
tests including fasting blood sugar (FBS), lipid profile (cholesterol
and triglyceride), complete blood count (CBC), blood–urea–
nitrogen (BUN) and creatinine (Cr), blood electrolytes (sodium,
potassium, chloride, bicarbonate, calcium, magnesium, and
phosphorus), triiodothyronine (T3), thyroxine (T4), thyroid-
stimulating hormone (TSH) levels, and vitamin B12 (cobalamin),
the RPR test, TPHA test, and HIV testing by a well-trained
HIV counselor; and (4) cognitive screening tests including
Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005; Hemrungrojn, 2011), Mini-Cog Test (Borson et al., 2000;
Trongsakul et al., 2015), Thai Geriatric Depression Scale-15
(TGDS-15) (Sheik, 1986; Wongpakaran and Wongpakaran,
2012), and The Barthel Index for Activities of Daily Living (ADL).
In order to proceed in the study, participants needed to pass the
Mini-Cog Test (score ≥3) and TGDS-15 (score < 6) and to have
no abnormal blood work results indicating conditions that could
affect cognition.

Neuropsychological Testing
Subtests of the Wechsler Memory Scale-Third Edition (WMS-
III) and the Wechsler Adult Intelligence Scale-Fourth Edition

(WAIS-IV) were used to measure three cognitive domains:
attention, executive function, and memory.

To correct for multiple comparisons, composite scores were
calculated. A z-score was calculated for each participant’s
performance on each cognitive test relative to the mean and
standard deviation across all participants. The z-scores were
multiplied by −1 in cases where higher scores indicated worse
performance and then averaged within the domain:

• Attention: Digit Span Test, Digit Symbol-Coding Test, and
Trail Making Test (TMT) Part.

• Executive function: TMT Part B, Block Design test, Verbal
Fluency test (Phonemic and Animal), and the Stroop Color
and Word Test (SCWT).

• Memory: Letter-Number Sequencing Test and Word List
Memory I and II.

Diagnosis of cognitively normal or MCI (minor neurocognitive
disorder) was made according to the American Psychiatric
Association’s (APA) Diagnostic and Statistical Manual of
Mental Disorders-Fifth Edition (DSM-5 R©) criteria (American
Psychiatric Association, 2013) by a consensus conference of a
geriatric psychiatrist and neuropsychologist.

MRI Acquisition
All participants were scanned on a 1.5 Tesla MR Philips Ingenia
system equipped with a 15-channel head/spine array coil at
the Associated Medical Science (AMS) Clinical Service Center,
Department of Radiologic Technology, Faculty of Associated
Medical Sciences, Chiang Mai University. The examination
protocol included: axial DTI, T2 weighted (T2W) imaging, fluid-
attenuated inversion recovery (FLAIR), and T1 weighted (T1W)
imaging. The DTI protocol used the following parameters:
repetition time (TR) = 5.0 s, echo time (TE) = 90ms, FOV =

224mm, matrix = 128 × 128, 49 directions, slice/gap 5.0/1mm,
b-value = 0 (1 volume per acquisition) and 1,000 s/mm2 applied
in 12 diffusion gradient orientations, and 75 slices. The total scan
time was 25 min.

Preprocessing
The DTI data were analyzed using the FMRIB (University of
Oxford’s Center for Functional Magnetic Resonance Imaging
of the Brain) Software Library (FSL) Diffusion Toolbox FSL
release 5.0.10 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). All DICOM
files were converted into NIFTI files using the MRICron utility
dcm2nii (http://www.nitrc.org/projects/mricron), and the first
volume (the b = 0 image) was used to generate a binary brain
mask with a threshold of 0.2 by using Brain Extraction Tool
(BET). Then, the DTI parameters FA, axial diffusivity (AxD),
mean diffusivity (MD), and radial diffusivity (RD) were derived
from each participant’s preprocessed DTI data.

Non-linear registration to the FMRIB58_FA space was applied
to align the individual FA maps into a Montreal Neurological
Institute (MNI) 152 standard space (http://imaging.mrc-cbu.
cam.ac.uk/imaging/MniTalairach). The mean FA image was
created from across all participants to generate a mean FA
skeleton, which represents the center of WM tracts shared by
all participants. To exclude voxels containing peripheral tracts,

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2020 | Volume 12 | Article 594002

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.nitrc.org/projects/mricron
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Srisaikaew et al. Fornix and Cognition

partial volume effects with gray matter (GM), and cerebrospinal
fluid (CSF), the mean FA skeleton voxel was thresholded at FA
≥ 0.2.

Given the small size and high intersubject variability of
fornix anatomy, in our group analyses, we used standard-space
binary masks to isolate specific anatomical substrates of the
fornix based on the JHU ICBM-DTI-81 WM Labels Atlas (Mori
et al., 2005, 2008) (Figure 1). Subsequently, FSL’s fslmeants
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils) was used to extract
the average time course of FA and ADC values over 2 JHU-
atlas masks for each participant: the whole tract of the fornix
(denoted by subscript “whole”) and the body and column (BC)
of the fornix.

Fiber Tract Length Measurement
We performed fornix tractography using the Phillips proprietary
software, FiberTrak, which is based on the Fiber Assignment
with Continuous Tracking (FACT) algorithm (Mukherjee et al.,
2008; Christidi et al., 2016). This deterministic DTI fiber
tracking technique was performed with an FA threshold of
0.2. The fornix was manually drawn on the axial plane based
on anatomical knowledge on the color-coded first eigenvector
FA (FEFA) map by an experienced radiologic technologist and
by three raters: (1) a professional rater with experience with
DTI of the brain and manual tracing, (2) an intermediate
rater who knew about DTI but had no experience with the
protocol or manual tracing, and (3) a novice rater who was
unfamiliar with DTI, the protocol, and manual tracing. Then,
the fornix FTL was computed using the FACT algorithm length
distributions across the fornix following the main direction
of its principal eigenvector in each individual using Euler’s
method (Yeh et al., 2013). Each completed the tracings three
times within 1-month interval to determine intra- and inter-
rater reliability of the manual tracings. The FEFA maps
were calculated based on a combination of direction and
anisotropic diffusion, represented in red, green, and blue.
Figure 2 shows the manually traced tract (red line) drawn on
the 2D FEFA map on the axial plane of the fornix (green color
diffusion direction).

Statistical Analysis
Statistical analyses were performed using IBM-SPSS version
26 (IBM Corp. Released 2019 from the manual tracing
IBM SPSS Statistics for Windows, Version 26.0; IBM Corp.,
Armonk, NY). Independent t-tests were used to compare age
and education level between the HC and n-aMCI groups.
ANOVAs were used to compare groups on MoCA, attention,
executive functioning, memory, and the DTI parameters; FTL
from the manual tracing (FiberTrak) and (FAwhole, ADCwhole,
FABC, FAST, ADCBC, and ADCST) extracted from the JHU-
atlas masks, all controlling for age and education level.
Pearson correlation coefficients were calculated to determine
the strength of the linear association among DTI parameters
and cognitive composites (Supplementary Table 4). Separate
hierarchical linear regressions for each DTI parameter were
performed to predict the cognitive composites, controlling for

age and education. To achieve this, the HC group was coded
as 1 and the n-aMCI group as 2, and age and education
were entered first. Because age and education correlated with
FTL (Supplementary Table 4), the interactions of FTL with
age and education were included as a second step to account
for these relationships. Next entered was a DTI parameter
(e.g., FA of the entire fornix) and then the group × DTI
parameter interactions. The group × DTI interaction term
allowed us to determine if the relationship between DTI
parameters and cognition differed between groups over and
above any effects of age or education. The alpha level was set at
0.05 throughout.

RESULTS

Demographic Data
Table 1 shows the descriptive statistics of the demographic data.
The HC group was significantly younger (64.36 ± 3.93 years)
than the n-aMCI group (71.24 ± 8.15 years), p = 0.005, and
significantly more educated (HC = 15.79 ± 2.61, n-aMCI =

12.18 ± 5.71), p = 0.029. Furthermore, age and education
were correlated with cognition and with FTL from the manual
tracing; Supplementary Table 4). Therefore, age and education
were controlled in all remaining group comparisons.

Qualitative Analysis
Although the anatomy of the fornix is well-established,
substantial intersubject anatomical variability is observed. The
3D reconstruction of the manually labeled fornix tracts was
classified into seven classes of projection based on a skilled
neuroanatomist’s knowledge of the typical complete projection
of the fornix consisting of fimbriae, crura, body, and column. The
seven classes identified included three types of typical projection,
two types of typical projection with missing features, and two
types of atypical projection (Figure 3). Six cases (14.6% of all
cases) of Type 6 and Type 7 were excluded due to the atypical
projection of the fornix tract.

Intra- and Inter-rater Reliability
Intra-rater consistency of the manual tracing in fornix FTL
ranged from acceptable to excellent, with Cronbach’s alpha of
0.733 to 0.972, as shown in Table 2. Inter-rater consistency was
excellent, with Cronbach’s alpha ranging from 0.950 to 0.990.
The inter-rater reliability of FTL in the HC group showed
the highest reproducibility among both groups. In addition,
the intra/inter-rater consistency averaged across all iterations
and raters was excellent, with the highest Cronbach’s alpha of
0.993. It was these latter averages that were brought forward
for analysis.

Group Differences in Diffusion Tensor
Imaging Parameters and Cognition
Descriptive statistics for cognitive screening scores, DTI
parameters, and the z-scores of attention, executive function,
and memory domains for each group are shown in Table 3.
The HC group outperformed the n-aMCI group in the executive
function and memory domains, but not in the attention domain,
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FIGURE 1 | The binary mask of the body and column of the fornix is represented in red, the 3D rendered by using MRIcroGL (https://www.mccauslandcenter.sc.edu/

mricrogl/) in the sagittal plane (A), coronal plane (B), and right oblique plane (C).

FIGURE 2 | The deterministic tractography of the complete projection of the fornix tract (yellow tract) consists of fimbriae, crura, body, and column. The manual

tracing region of interest (ROI) draws on the 2D first eigenvector fractional anisotropy (FEFA) map on the axial plane of the fornix (A). The fornix fiber tract in the axial

plane (B), sagittal plane (C), axial plane (D), and left oblique view (E). The conventional red-green-blue color-coding was used for display purposes (red for right–left,

blue for dorsal–ventral, and green for anterior–posterior) (Müller and Kassubek, 2007).

TABLE 1 | Descriptive statistics of participants’ demographics.

Variables Mean ± SD Group comparison

HC n-aMCI F p

Subjects (n) 14 17 – –

Age (years) 64.36 ± 3.93 71.24 ± 8.15 4.868 0.005

Education level (years) 15.79 ± 2.61 12.18 ± 5.71 1.713 0.029

Gender (M:F) 0:14 3:14 4.278 0.098

Age and education level were compared using an independent t-test and a chi-square

test, respectively. HCs, healthy older adult controls, n-aMCI, non-amnestic mild cognitive

impairment (MCI) group. Significant values are bolded.

after controlling for age and education. No significant difference
between groups was found in the age- and education-adjusted
DTI parameters.

Group Differences in the Relationship
Between Diffusion Tensor Imaging
Parameters and Cognition
Hierarchical linear regressions revealed no significant
relationship of the whole-fornix FA or ADC with cognition. The
same was true for the ADC of the BC of the fornix. However,

significant relationships with cognition were identified in FABC

and FTL, and these relationships furthermore differed between
groups after accounting for the influence of age and education.
FABC was positively associated with both executive function (p
= 0.003) and memory (p = 0.035) overall, but more strongly
in the HC than in the n-aMCI group (p < 0.001 and p =

0.028, respectively) (Table 4). While the association of FTL with
executive function and memory was not significant overall, these
relationships also differed between groups (p < 0.001 and p
= 0.011, respectively) (Table 5). The association of FTL with
memory was stronger in the HC group than that in the n-aMCI
group, but contrary to the case of FABC, the association of FTL
with executive functioning was stronger in the n-aMCI group
than that in the HC group. Importantly, these differences in
the relationship between FABC and FTL with cognition were
independent of any influence of age or education.

DISCUSSION

Demographics
All participants with MCI in our study were classified as n-aMCI
with deficits in executive functioning. This is consistent with the
high prevalence of cerebrovascular and cardiovascular conditions
in the Asia-Pacific region compared to other regions (Jhoo et al.,
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FIGURE 3 | Seven classes of the fornix projection are classified by using a single region of interest (ROI) (n = 41). Ten cases (24.4%) of Type 1, the complete typical

projection; four cases (9.8%) of Type 2, complete typical projection with short fimbria (one side, Lt/Rt); seven cases (17.1%) of Type 3, complete typical projection with

short fimbriae (both sides, Lt. and Rt.); four cases (9.7%) of Type 4, atypical projection with missing crus and/or fimbria (one side, Lt/Rt); 10 cases (24.4%) of Type 5,

atypical projection with missing both crura and fimbriae (both sides, Lt. and Rt.); four cases (9.8%) of Type 6, complete typical projection with addition atypical

projection; and two cases (4.9%) of Type 7, the atypical projection of fimbriae (both sides, Lt. and Rt.). Six cases (14.6%) of Type 6 and Type 7 were excluded due to

the atypical projection of the fornix tract. Note: Healthy control (HC) group is shown in blue, and non-amnestic mild cognitive impairment (MCI) group (n-aMCI) group is

shown in yellow.

2008; Chan et al., 2013), although it should be noted that n-
aMCI can progress to AD, and individuals with AD often have
mixed neuropathology that includes neurovascular events such
as WM hyperintensities (Alber et al., 2019). Earlier studies have
reported a higher prevalence of VaD than AD with an overall
ratio of 2:1 in the Asia-Pacific population due to lifestyle and
food preference (Narasimhalu et al., 2008). The HC group was
significantly younger and had higher education levels than the
n-aMCI group; therefore, all other group comparisons in this
study accounted for these differences. Our findings in this regard

are consistent with several studies that have demonstrated a
link between educational attainment and cognitive functioning
(Ardila et al., 2000; Le Carret et al., 2003; Narasimhalu et al., 2008;
Falch and Sandgren Massih, 2011; Guerra-Carrillo et al., 2017).

Fornix Projections and Integrity
DTI tractography was performed using the novel deterministic
FACT algorithm. In the FACT algorithm, the fornix fiber tract
is reconstructed voxel by voxel following the main direction
of its principal eigenvector. Hence, this algorithm provided
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TABLE 2 | The internal consistency (Cronbach’s alpha) of the manual tracing of

the fornix, both intra-observer and among three levels of inter-observer including

professional, intermediate, and novice levels.

DTI

parameters

Intra-rater

consistency (α)

Inter-rater

consistency (α)

Average of

intra/inter-rater

consistency (α)

HC

(n = 14)

n-aMCI

(n = 17)

HC

(n = 14)

n-aMCI

(n = 17)

HC

(n = 14)

n-aMCI

(n = 17)

FTL (mm) 0.972 0.733 0.990 0.950 0.993 0.966

HCs, healthy older adult controls; n-aMCI, non-amnestic mild cognitive impairment

(MCI) group; FA, fractional anisotropy; ADC, apparent diffusion coefficient; FTL, fiber

tract length.

a reliable estimate of fornix FTL (Mori and Van Zijl, 2002;
Hagler et al., 2009). Based on neuroanatomy knowledge, we
found 35 of the 41 participants (85.37%) to have successfully
represented the projection of fornix entirely and only six (9.76%)
to have unsuccessful tracking results (presenting with the unlikely
scenario of fiber projecting within subcorticalWM) (Bürgel et al.,
2009). For this reason, it was necessary to exclude these six
aberrant fiber cases. FornixWM integrity begins to decrease after
its maturation peak during late adolescence because it is one of
the earliest WM tracts to mature in the human brain (Douet and
Chang, 2015).With advancing age, totalWMfiber length in older
adults has been reported to be decreased by 27 to 45% compared
to younger adults (Tang et al., 1997; Marner et al., 2003). In our
study, 14 cases had shortened or missing crura and/or fimbriae
of the fornix including six cases (42.85%) of HC and eight cases
(57.15%) of the n-aMCI group (as you can see in Figure 3; Type
4 and Type 5). Aging, together with the WM lesions (WMLs), in
particular, specific frontal or medial temporal lobe (MTL) areas,
could lead to a higher prevalence of atypical or incomplete fornix
projection in n-aMCI than in the control group.

The Relationship Between Fornix Integrity
and Executive Function
Executive function (EF) encompasses higher-order cognitive
processes that generally refer to the coordinated operation of
organization, regulation, planning, working memory, problem-
solving, cognitive flexibility, and cognitive fluency (Denckla,
1994; Alvarez and Emory, 2006; Chan et al., 2008). It has
long been known that the PFC is a pivotal area for sustaining
executive functioning (Welsh et al., 1991; Moriguchi and Hiraki,
2013; Yuan and Raz, 2014). As the fornix connects the limbic
system with both prefrontal and subcortical regions, it is a
critical component of the Papez circuit and serves a major
efferent pathway from the hippocampus to the medial PFC.
Indeed, executive dysfunction was found to be related to cerebral
hypoperfusion in regions connected to the fornix, specifically the
middle frontal cortex and posterior cingulate gyrus in people with
n-aMCI and executive dysfunction (Chao et al., 2009). Moreover,
infarction of the fornix also leads to amnesia with executive
dysfunction (Rizek et al., 2013; Salvalaggio et al., 2018).

We found a significant relationship between executive
function and integrity in the BC (FABC) of the fornix as well
as with fornix FTL, independent of the influence of age and

TABLE 3 | Descriptive statistics of participants’ MoCA score, cognitive

composites, and diffusion tensor imaging (DTI) parameters.

Variables Mean ± SD Group comparison

HC n-aMCI F p

MoCA 26.07 ± 3.10 19.88 ± 4.06 7.804 0.009

Attention (z) 0.05 ± 0.46 −0.10 ± 0.44 0.000 0.988

Executive Function (z) 0.46 ± 0.39 −0.46 ± 0.44 19.703 <0.001

Memory (z) 0.24 ± 0.37 −0.19 ± 0.46 5.680 0.024

JHU-atlas

FAwhole 0.43 ± 0.03 0.42 ± 0.03 0.167 0.686

ADCwhole 1.11 ± 0.09 1.15 ± 0.12 0.683 0.416

FABC 0.33 ± 0.07 0.29 ± 0.08 2.366 0.136

ADCBC 1.71 ± 0.24 1.84 ± 0.30 1.722 0.200

Manual tracing: FiberTrak

FTL (mm) 44.25 ± 9.66 37.59 ± 10.89 0.326 0.573

The group comparisons were made using univariate ANOVA, controlling for age and

education. HCs, healthy older adult controls; n-aMCI, non-amnestic mild cognitive

impairment (MCI) group; MoCA, Montreal Cognitive Assessment; FA, fractional

anisotropy; ADC, apparent diffusion coefficient; FTL, fornix fiber tract length; FABC, FA

value of the body and column of the fornix; FAwhole, FA value of the whole fornix tract;

ADCBC, ADC value of the body and column of the fornix; ADCwhole, the ADC value of the

whole fornix tract. Significant values are bolded.

education. Our results suggest that FABC does not support
executive function as efficiently in n-aMCI compared to HC,
as FA is less strongly associated with EF in the former group
(Table 4). Interestingly, FTL was more strongly associated with
EF in n-aMCI than the control group, and FTL was significantly
positively related to EF over all participants (r = 0.60, p < 0.01;
Supplementary Table 4). In n-aMCI, we found that most cases
(57% of all n-aMCI cases) had missing crura and fimbriae, which
are extended from the hippocampus. On the other hand, the BC
of the fornix was intact in all cases. The column of the fornix
projects to septal nuclei and the PFC via the precommissural
fornix. As mentioned above, the PFC plays a critical role in
executive functioning. Those with longer fornix FTL had better
executive functioning, and this was particularly the case in the
n-aMCI group. Given that the precommissural fornix projects to
the PFC via the septal nuclei (Yeo et al., 2013; Cho et al., 2015;
Coad et al., 2020), this finding suggests that, particularly among
those with n-aMCI, executive functioning was sustained among
those with fornix FTL long enough to make these connections.

The Relationship Between Fornix Integrity
and Memory
Episodic memory involves the ability to learn, store, and retrieve
information (Dickerson and Eichenbaum, 2010). In our study,
FABC and FTL both showed a significant positive relationship
with memory performance, over and above the influences of
age and education. Moreover, this relationship was stronger
in the HC than in the n-aMCI group. These results replicate
previous findings showing that fornix integrity is supportive of
memory performance in healthy young and older adults (e.g.,
Rudebeck et al., 2009; Metzler-Baddeley et al., 2011) but also
highlight the breakdown of the contribution of the fornix to
episodic memory in individuals with n-aMCI. As is well known,
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TABLE 4 | Hierarchical linear regression analysis of fractional anisotropy (FA) of the body and column of the fornix and cognition among HC and non-amnestic mild

cognitive impairment (MCI) group (n-aMCI) groups, with attention, executive function, and memory domains as dependent variables, adjusted for age and education.

Model Unstandardized coefficient Standardized coefficient t p F R R2
1R2

B SE Beta

1. Attention domain

Age −0.005 0.013 −0.086 −0.413 0.683

Edu 0.031 0.019 0.343 1.685 0.104

FABC 0.615 1.214 0.107 0.507 0.617

FABC*Group 0.057 0.598 0.023 0.095 0.925 1.244 0.401 0.161 <0.001

2. Executive function domain

Age −0.013 0.010 −0.159 −1.299 0.205

Edu 0.042 0.015 0.330 2.770 0.010

FABC 3.199 0.990 0.401 3.230 0.003

FABC*Group −2.097 0.488 −0.596 −4.298 0.000 16.169 0.845 0.713 0.204

3. Memory domain

Age 0.013 0.012 0.210 1.136 0.266

Edu 0.029 0.017 0.299 1.663 0.108

FABC 2.513 1.131 0.416 2.221 0.035

FABC*Group −1.295 0.558 −0.487 −2.323 0.028 3.419 0.587 0.345 0.136

Edu, education level; FABC, the FA value in the body and column of the fornix; FABC*Group, group difference in FABC. Significant values are bolded.

TABLE 5 | Hierarchical linear regression analysis of fornix fiber length and cognition among HC and non-amnestic mild cognitive impairment (MCI) group (n-aMCI) groups,

with attention, executive function, and memory domains as dependent variables, adjusted for age and education.

Model Unstandardized coefficient Standardized coefficient t p F R R2
1R2

B SE Beta

1. Attention domain

Age −0.007 0.048 −0.108 −0.135 0.894

Edu −0.136 0.072 −1.495 −1.892 0.071

Age * FTL 0.000 0.001 −0.509 −0.335 0.741

Edu * FTL 0.005 0.002 3.052 2.443 0.022

FTL −0.53 0.100 −1.275 −0.530 0.601

FTL * Group 0.002 0.004 0.116 0.571 0.573 2.323 0.606 0.367 0.209

2. Executive function domain

Age −0.022 0.042 −2.55 −0.515 0.612

Edu 0.065 0.063 0.508 1.035 0.311

Age * FTL 0.001 0.001 0.703 0.744 0.464

Edu * FTL −0.001 0.002 −0.353 −0.455 0.653

FTL 0.005 0.086 0.086 0.057 0.955

FTL * Group −0.015 0.003 −0.569 −4.491 <0.001 12.374 0.869 0.756 0.695

3. Memory domain

Age 0.012 0.049 0.194 0.252 0.803

Edu 0.082 0.073 0.855 1.123 0.273

Age * FTL 0.001 0.001 0.704 0.480 0.636

Edu * FTL −0.02 0.002 −0.999 −0.830 0.415

FTL 0.020 0.101 0.465 0.200 0.843

FTL * Group −0.011 0.004 −0.540 −2.750 0.011 2.799 0.642 0.412 0.265

Edu, education level; FTL, fornix fiber tract length; Age * FTL, age by FTL interaction; Edu * FTL, education by FTL interaction; FTL * Group, group difference in FTL. Significant values

are bolded.
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the hippocampus–fornix–mammillary body system plays a role
in episodic memory (Gaffan, 1992). Similar to hippocampus
lesions, neurodegeneration of the fornix microstructure leads to
the inability to create and/or store new memories (Thomas et al.,
2011). This joint biological mechanism can potentially include
Wallerian-like degeneration (WD) of the fornix axons, which is
secondary to early injury of the neuronal degeneration in the
hippocampus (Fletcher et al., 2013; Chen et al., 2017). The earliest
study to our knowledge identifying WD in the fornix was after
transection of the fimbria–fornix during temporal lobe epilepsy
surgery for intractable epilepsy (Liu et al., 2013). More recently,
Wang et al. (2020) reported that poorer fornix WM integrity was
significantly correlated with reduced functional connectivity of
the hippocampus due to the WD of the fornix axons in patients
with MCI and AD (Wang et al., 2020). WD can be secondary
to some cerebrovascular diseases (Uchino et al., 2004; Thomalla
et al., 2005; Xie et al., 2012; Zhang et al., 2018), especially in the
first week after ischemic stroke. It has been reported that the FA
values of the affected tract begin to decrease 3 days after onset
of the stroke (Thomalla et al., 2005; Xie et al., 2012; Zhang et al.,
2018). Moreover, the fornix microstructure has been shown to
predict episodic memory performance in several MRI studies
(Vann et al., 2009; Sexton et al., 2010; Metzler-Baddeley et al.,
2011; Zhuang et al., 2012).

Infarction of the fornix can lead to VaD or SVD, which also
leads to a decline in memory performance (Cummings, 1994;
Kalaria and Erkinjuntti, 2006). Likewise, the MTL is commonly
affected by traumatic brain injury (TBI), which typically results
in a variety of cognitive deficits. The pathophysiology of TBI
is characterized by impaired regulation of cerebral blood flow
(Werner and Engelhard, 2007; Prins et al., 2013), tissue damage
involving the damage of limbic WM, and other factors such as
edema, excitotoxicity, and hemorrhage (Gale et al., 1993). WM
disruption in the fornix has been found to be associated with
memory performance in both TBI patients and control groups
(Kinnunen et al., 2011) and the reduction of FA of the fornix is
correlated with poorer memory performance (Tomaiuolo et al.,
2004), working memory (Palacios et al., 2011), and learning
(Kinnunen et al., 2011) in patients with TBI.

In addition, anterograde amnesia, the inability to create new
memories, is one of the earliest symptoms in patients with fornix
infarction or after TBI that damages limbic-related structures
including the fornix (Baweja et al., 2015; Gupta et al., 2015;
Turine et al., 2016; Kauppila et al., 2018; Takano et al., 2018;
Wang et al., 2018; Zhu et al., 2018). These results suggest that one
contributor to episodic memory deficits in n-aMCI is the subtle
degradation of fornix integrity.

The Relationship Between Fornix Integrity
and Attention
Attention refers to the ability to selectively attend or concentrate
on specific relevant information while ignoring irrelevant
information (McGuinness et al., 2010). The dorsolateral PFC
and anterior cingulate gyrus are two areas involved in attention
(Perry and Hodges, 1999). Because the fornix is one of the WM
tracts carrying signals from the MTL to the PFC, damage to

the fornix could lead to a decline in attention ability. Although
our participants with n-aMCI had intact attention and there
was no significant relationship between the DTI parameters
and attention in the present study, several studies have found
that patients with VaD have attentional deficits and more so
than patients with AD (Mendez and Ashla-Mendez, 1991; Barr
et al., 1992; Almkvist et al., 1993). Therefore, we might expect a
significant decline in attention ability and its relationship with
fornix integrity in the later stages of VaD in our sample. It is
also the case that our measures of attention did not assess higher-
order attention skills such as divided attention. Perhaps we would
have seen group differences had we administered more complex
attention tasks.

Fornix and Its Association With Vascular
Dementia
Changes in fornix diffusivity are common among patients with
VaD (Douaud et al., 2011; Mayo et al., 2017; Salvadores et al.,
2017), especially the reduction of FA and an increase of ADC,
which reflect its integrity. The higher the frequency of ischemic
heart disease, TIA, or stroke in a sample, the more WMLs are
found in n-aMCI compared to aMCI patients (Mariani et al.,
2007). Likewise, those with n-aMCI typically have increased
vascular burden and are more likely to have cardiovascular risk
factors as well as basal forebrain atrophy than those with aMCI
(He et al., 2009; Jak et al., 2009). These vascular burdens, such
as small ischemic and vascular lesions that involve subcortical
areas (where the fornix is situated) are commonly associated with
cognitive decline (Cummings, 1994). As is well known, n-aMCI
is more likely to develop into non-AD dementia, notably VaD
(Petersen et al., 2001).

Limitations and Future Directions
One limitation of this pilot study is the small sample size,
which may have limited the power of investigation. We initially
recruited 80 participants but were very conservative in excluding
conditions that might affect cognition, other than preclinical
neurodegeneration. Thus, although our sample is small, we are
highly confident in the clinical diagnosis of our sample. Another
limitation of our data is that age and education are strongly
associated with cognition; age and education differed between
the patient and control groups. However, we have shown that the
significance relationship between cognition and DTI parameters
in our study is independent of any influence of age or education.
Another limitation is the deterministic tractography, which can
only detect local diffusion that passes through the chosen ROI
and is unable to distinguish between afferent and efferent fibers
within the WM tract; hence, it cannot be assumed that the
detected projection reflects the true anatomical structure (Mori
et al., 1999; Bürgel et al., 2009).

Because the fornix is small and located between the lateral
ventricles beneath the corpus callosum along with septum
pellucidum, it is susceptible to partial volume effects by the
surrounding CSF, which can potentially affect the measurement
of the thinner parts of it (i.e., crura and fimbriae). By contrast, the
BC of the fornix is the most prominent structure, making it least
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susceptible to partial volume effects and thus a good candidate
for representing the WM integrity of the entire fornix.

CONCLUSION

The FA of the BC of the fornix and fornix FTL were positively
associated with executive function and memory among both
groups. These relationships were stronger in the healthy older
adults than those in the n-aMCI, with the exception of the
FTL–executive functioning association. This pilot study provides
the first evidence for a decline in the contributions of fornix
integrity to memory and executive functioning in n-aMCI
and suggests that maintenance of fornix FTL is critical for
sustaining executive functioning in people with presumptive
preclinical VaD.
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