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Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of Alzheimer’s

disease (AD). However, the functions and regulatory mechanisms of lncRNA are

largely unclear. Herein, we obtained 3,158 lncRNAs by microarray re-annotation. A

global network of competing endogenous RNAs (ceRNAs) was developed for AD

and normal samples were based on the gene expressions profiles. A total of 255

AD-deficient messenger RNA (mRNA)-lncRNAs were identified by the expression

correlation analysis. Genes in the dysregulated ceRNAs were found to bemainly enriched

in transcription factors and micro RNAs (miRNAs). Analysis of the disordered miRNA

in the lncRNA-mRNA network revealed that 40 pairs of lncRNA shared more than

one disordered miRNA. Among them, nine lncRNAs were closely associated with AD,

Parkinson’s disease, and other neurodegenerative diseases. Of note, five lncRNAs were

found to be potential biomarkers for AD. Real-time quantitative reverse transcription

PCR (qRT-PCR) assay revealed that PART1 was downregulated, while SNHG14 was

upregulated in AD serum samples when compared to normal samples. This study

elucidates the role of lncRNAs in the pathogenesis of AD and presents new lncRNAs

that can be exploited to design diagnostic and therapeutic agents for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by
age-dependent memory loss and impairment of multiple cognitive functions (Burns and Iliffe,
2009; Braak and Del Trecidi, 2015; Roy et al., 2016). It is the fifth leading cause of mortalities
among Americans over 65 years of age (Alzheimer’s Association, 2015). Genetic heterogeneity,
lifestyle, and environmental factors are crucial to the development of AD. One of the hallmarks
of AD pathology is the formation of amyloid β (Aβ) plaques (Hardy and Selkoe, 2002; Mattson,
2004; Karch et al., 2014). However, the pathogenesis of AD in human has not been fully established
(Zadori et al., 2018).Many non-coding genes coordinate the development and progression of AD in
human (Okazaki et al., 2002; Guttman et al., 2009; Tay et al., 2014). Despite the efforts to design new
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drugs for AD, there are currently no effective drugs to stop or
delay the progression of this disease (Cummings et al., 2017).
It is, therefore, imperative to further explore the underlying
mechanisms in order to identify potential targets for the
development of effective treatments for AD.

MicroRNAs (miRNAs) are small, endogenous, non-coding
RNA (ncRNA) molecules that play important regulatory roles
in AD (Cheng et al., 2015; Reddy et al., 2017). They bind
miRNA response elements (MRE) in the target messenger RNAs
(mRNAs). One miRNA may target dozens of mRNA transcripts,
whereas one mRNA may contain multiple MREs, which, thus,
can be regulated by multiple miRNAs (Bartel, 2009). Studies
have shown that specific mRNA transcripts compete for common
miRNA binding sites to form competing endogenous RNAs
(ceRNAs; Salmena et al., 2011). Therefore, identification of the
endogenous competition mechanisms, designing of a framework
for prediction, and validation of ceRNAs could reveal new
functions of many important transcripts (Thomson and Dinger,
2016).

Several studies have shown that long non-coding RNAs
(lncRNAs) are a major type of ncRNAs that can regulate
genes at the transcriptional, post-transcriptional, and epigenetic
levels (Mercer et al., 2009). Therefore, the imbalance of
lncRNA expression is associated with a variety of diseases
(Chen et al., 2013), including cancer (Hong et al., 2017) and
neurodegenerative diseases (Riva et al., 2016). It has been
documented that knockdown of lncRNA NEAT1 in the AD cell
model attenuated the degree of Aβ-induced inhibition of the
extraction, promoted myocardial cell apoptosis, and weakened
the p-tau level (Ke et al., 2019; Zhao et al., 2019). However,
little is known about the role of lncRNAs in AD. Theoretical
and experimental studies have shown that a large number of
miRNA-binding sites exist on different types of RNA transcripts,
suggesting that different RNA transcripts with miRNA-binding
sites can regulate each other by competing for shared miRNAs,
thus becoming ceRNAs; (Tay et al., 2014). Importantly, lncRNAs
competing with miRNA target mRNA for miRNA molecules,
thereby, regulatingmiRNA-mediated target repression (Tay et al.,
2014). Wang et al. (2018) used microarray analysis to identify
circRNA-related ceRNA networks in the hippocampus of Aβ1-
42 induced AD rat models. Elsewhere, Cai et al. (2017) found
that Rpph1 upregulates the expression of CDC42 and promotes
the formation of dendritic spine in hippocampal neurons by
competing with miR-330-5p (Cai et al., 2017). It was reported
that ciRS-7 acts as a competitive endogenous miRNA sponge that
inhibits the function of miRNA-7 in AD-affected brains (Lukiw,
2013). However, the mechanisms by which ceRNA associates
with AD have not been established.

In this study, we obtained the expression profile data of 629
patients with AD and control samples from eight datasets in the
gene expression omnibus (GEO) database. The mRNA, miRNA,
and lncRNA expression profiles were obtained through chip re-
annotation, data integration, and standardization. The miRNA-
mRNA andmiRNA-lncRNA interaction data were obtained from
starBase database. The hypergeometric distribution approach
was used to establish a background ceRNA regulation network.
Expression correlation was used for pruning after which

functional module mining was performed through a co-
expression network to identify candidate diagnostic biomarkers
or potential therapeutic targets.

MATERIALS AND METHODS

Data Collection and Processing
We searched the GEO database and the Affymetrix Human
Genome U133 Plus 2.0 Array chip platform to identify gene
expression profile data using the keyword “Alzheimer’s disease.”
Samples sizes with ≥30 datasets and 7 datasets were obtained. In
addition, the dataset GSE16759, which simultaneously detected
the expression profiles of miRNA and mRNA, included eight sets
of 629 samples. Forty samples of undefined AD were excluded,
and finally 589 samples were included as shown in Table 1. For
the expression profile data, the raw expression level data (.CEL
files), for each sample was downloaded and normalized using the
robust multi-array (RMA) of the R package affy (Gautier et al.,
2004). Next, the batch effect was removed using the combat of
the R package SVA (Leek et al., 2012). The microarray data were
derived from the GEO (accession GSE133349). We matched the
probes with their corresponding genes. In cases where multiple
probes corresponded to one gene, the median was expressed.
Where one probe corresponded to multiple genes, such a probe
was excluded.

Re-Annotation of Expression Data
To obtain the latest lncRNA expression profile, lncRNA re-
annotation was performed using the HG-U133 2.0 array.
First, the GENCODE Release 21 version of lncRNA transcript
sequences was downloaded from GENCODE. Then, probe
clusters sequences were aligned to lncRNA sequences using
seqmap (Hawkins et al., 2011), and mismatch was set to 0. At
least 11 clusters were selected and compared to probes on the
same lncRNA to confirm the success of re-annotation. Finally,
3,943 Affymetrix probe sets (3,158 lncRNA) were included in
subsequent analyses.

miRNA Interaction Data
StarBase V3.0 database (Li et al., 2014) is designed to
integrate large-scale CLIP-Seq (HITS-CLIP, PAR-CLIP, iCLIP,
and CLASH) data to decode interactive networks. Five predictive
algorithms were used to predict miRNA target genes, including
TargetScan, miRanda, Pictar, PITA, and RNA22. Data of
1,055,319 miRNA-mRNA interactions for 484 miRNAs and
15,064 mRNAs and of 63,698 miRNA-lncRNA interactions for
642 miRNAs and 3,789 lncRNAs were downloaded from the
starBase V3.0 database.

Construction of ceRNA Network
As described by Fan et al. (2018), the hypergeometric model
was used to construct a ceRNA network. In summary, the
miRNAs shared by mRNA and lncRNA were used to calculate
the interactive probability of mRNA-lncRNA networks. The
threshold was FDR < 0.05. When more than three miRNAs
were found to be shared between mRNA and lncRNA, they
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TABLE 1 | Incorporated gene expression omnibus (GEO) dataset information.

No. of Samples No. of AD No. of Normal No. of removed Matched miRNA

GSE16759 8 4 4 0 Yes

GSE28146 30 22 8 0 NO

GSE48350 253 80 173 0 NO

GSE5281 161 87 74 0 NO

GSE53890 41 0 41 0 NO

GSE84422 102 34 28 40 NO

GSE9770 34 34 0 0 NO

were selected. The value of p was calculated using the
following formula:

p value = 1−

r−1
∑

k=0

(

t
k

) (

m− t
n− k

)

(

m
n

) (1)

where “m” represents the total number of miRNAs in starBase
database, “t” represents the number of miRNAs that interacted
with the mRNA, “n” represents the number of miRNAs that
interacted with the lncRNA, and “r” represents the number of
miRNAs shared between mRNA and lncRNA.

Correlations among mRNA-lncRNA pairs were calculated in
the expression profiles of normal and AD samples, and the
correlation coefficient > 0.25 and FDR < 0.05 were selected to
identify the ceRNA global network.

Identification of Dysregulated ceRNA
Networks
We compared the global networks of ceRNAs in normal and
AD samples and selected the intersection of two networks.
Furthermore, the difference between the Pearson’s correlation
coefficients of mRNA-lncRNA in two ceRNA networks was
calculated. With 1,000 random readings as the statistical
background, the probability (p ≤ 0.05) of Pearson’s correlation
coefficient difference was applied to identify dysregulatedmRNA-
lncRNA.

Identification of KEGG Pathways
Associated With lncRNA
Each sample was subjected to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis of ssGSEA using the R
package GSVA38 to identify pathways associated with lncRNA
expression, applying a correlation > 0.5.

Data and Code
To facilitate the reproduction of our results, the eight datasets
were uploaded to the GEO database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi), with the ID: GSE133349.

Real-Time Quantitative Reverse
Transcription PCR
TRIzol reagent (ThermoFisher Scientific, 15596026) was used
to extract total RNA from serum samples. The synthesis

of total RNA into cDNA was performed according to the
instructions of the Reverse Transcription Kit (TshermoFisher
Scientific, BTK1622). The ABI 7500 real-time PCR instrument
was used to perform the real-time PCR reaction using the
quant one-step real-time quantitative reverse transcription
PCR (qRT-PCR) Kit [FP303, Tiangen Biochemical Technology
(Beijing) Co., Ltd.]. The primers used were as follows: SNHG14
forward, ATGAGCTGACAACCTACTCC and reverse, AAGTC
ATCTTCTGCAAGGGT; PART1 forward, CCCTTTCACTATG
AAGGACC and reverse, ATTTACCCGTCCAGTTCTG; NNT-
AS1 forward, AGAAACAGGTCTAAAGACCCT and reverse,
TTCTTGGCATCTCTGAGCA; AC093010.3 forward, TGATG
TGTTTGCTATCTGCT and reverse, TGTTAACAGCTAGCC
ATTCAG; ARMCX5-GPRASP2 forward, AAGAGAAGGGA
TAGAGTGGTG and reverse, CTTCTGTCATAGAAATTTC
CCTCTC; GAPDH forward, TCAAGATCATCAGCAATGCC
and reverse, CGATACCAAAGTTGTCATGGA; GAPDH were
used as internal controls. 2−11CT was used to calculate the
relative expression.

Statistical Analysis
Statistical analyses were performed using R 3.4.3, and all
analyses (non-specific description) were performed with
default parameters. Group comparisons were performed
using the Student’s t-test, correlations were determined using
Pearson’s correlation coefficient, g:profiler (Reimand et al.,
2019) was used for gene enrichment analysis, and Cytoscape
(Shannon et al., 2003) (http://www.cytoscape.org/) was used for
network visualization.

RESULTS

ceRNA Network of miRNA-mRNA in AD
To investigate the potential role of miRNA-mediated ceRNA
networks in AD, we analyzed the ceRNA landscape in normal
samples and AD samples based on the expression profiles
(Figure 1A). Using the hypergeometry test, we identified 164,494
miRNA-mediated mRNA-lncRNA pairs with 7,484 genes. To
construct a sample-specific ceRNA network, the correlation of
these mRNA-lncRNA pairs in the expression profiles of normal
and AD samples was determined. The competitive endogenous
RNAs (ceRNAs) network was established using the correlation
coefficient > 0.25 and FDR < 0.05. A total of 2,571 mRNA-
lncRNA pairs and of 255 lncRNAs for 2,551 genes were identified
in normal samples (Figure 1B), while 3,353 mRNA-lncRNA
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FIGURE 1 | MicroRNA (miRNA)-mediated competing endogenous RNA (ceRNA) network associated with mRNA in Alzheimer’s disease (AD). (A) The construction

process of the ceRNA network. (B) The ceRNA network in normal samples, the light blue nodes in the figure represent genes and the dark yellow nodes represent long

non-coding RNA (lncRNA). (C) The ceRNA network in AD samples, the light blue nodes in the figure represent genes and the dark yellow nodes represent lncRNA. (D)

The degree distribution of ceRNA networks in normal and AD samples, the horizontal axis represents the degree of network nodes, the vertical axis represents the

number of genes, the blue dots represent the degree distribution in normal samples, and the purple dots represent the degree distribution in AD samples.

pairs and of 227 lncRNAs for 1,619 genes were identified in
AD samples (Figure 1C). The two ceRNA network distributions
exhibited a consistent law distribution (Figure 1D) and were
consistent with biological network characteristics, indicating that
ceRNA plays an important role in AD that is similar to other
biological regulatory networks.

Co-expression Characteristics of
mRNA-lncRNA in ceRNA Network and
Dysfunctional ceRNA Network
To explore the co-expression relationship of the mRNA-
lncRNAs in the ceRNA network, we analyzed the relationship
between network degree and mRNA-lncRNA co-expression.
The network degree was significantly positively correlated with
mRNA-lncRNA co-expression (Figures 2A,B). Genes with a high
network degree showed higher co-expression relationships, and
manymiRNAs were found to be shared bymRNA and lncRNA. A
high correlation coefficient was found between the corresponding

mRNA and lncRNA (Figures 2C,D). Studies have shown that
the expression levels of miRNA determine the activity of ceRNA
networks (Ala et al., 2013). We, therefore, studied the effect
of miRNA expression on ceRNA networks in AD. Dicer is a
key enzyme that regulates miRNA processing and maturation.
Herein, samples were divided into two groups based on the
expression level of Dicer: Dicer-low and Dicer-high. In normal
samples, the co-expression pattern in the Dicer-high group was
higher than that in the Dicer-low group, while opposite results
were obtained in AD samples (Figures 2E,F), suggesting that
moderate expression of miRNAs in AD is necessary to maintain
the ceRNA network, but high expression of miRNAs may lead to
degradation of many genes.

Comparison of the ceRNA networks in normal and AD
samples showed that the number of ceRNAs in AD is only
53.5% to that of normal samples, suggesting a large number of
ceRNA regulation abnormalities in AD samples, compared to
normal samples. Notably, 2,575 (41.1%) ceRNAs were unchanged
while 3,696 (58.9%) ceRNAs disappeared from the AD samples
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FIGURE 2 | Co-expression characteristics of mRNA-lncRNA in ceRNA network and dysfunctional ceRNA network. (A) Degree of correlation between the ceRNA

network and co-expression of mRNA-lncRNA in normal samples, the horizontal axis represents the degree of the gene and the vertical axis represents the correlation

coefficient. (B) Degree of correlation between ceRNA network and co-expression of mRNA-lncRNA in AD samples, the horizontal axis represents the degree of the

gene and the vertical axis represents the correlation coefficient. (C) Correlation between the number of miRNA shared by mRNA-lncRNA and the co-expression of

mRNA-lncRNA in ceRNA networks in AD samples, the horizontal axis represents the number of miRNA and the vertical axis represents the correlation coefficient. (D)

Correlation between the number of miRNAs shared by mRNA-lncRNA and the co-expression of mRNA-lncRNA in ceRNA networks in AD samples, the horizontal axis

represents the number of miRNA and the vertical axis represents the correlation coefficient. (E) Co-expression pattern of Dicer-low and Dicer-high groups in normal

samples, the vertical axis represents the correlation coefficient. (F) Co-expression pattern of Dicer-low and Dicer-high groups in AD samples, the vertical axis

represents the correlation coefficient. (G) Venn diagram of the intersection of ceRNA networks in normal samples and AD samples. (H) Intersection of genes and

lncRNA in ceRNA networks in normal and AD samples.

(Figure 2G). Analysis of genes and lncRNAs showed that 1,489
(58.4%) genes were shared between the two networks while
1,062 (41.6%) genes disappeared from the ceRNA network of
AD (Figure 2H). These findings imply a high dysregulation of
ceRNA in AD. Furthermore, we randomly divided the samples
into two queues, the training queue and the verification queue,
to determine the dysregulation of ceRNA networks. In the
training queue, Pearson’s correlation coefficients of mRNAs in
two ceRNA networks were calculated, and those with p ≤

0.05 were selected as the background of the random network.
A total of 294 dysregulated mRNAs-lncRNAs were identified
in training queue, and a total of 333 dysregulated mRNA-
lncRNAs were identified in the verification cohort by the same
method. In addition, 258 dysregulated mRNA-lncRNAs were
selected from all samples by the same method. By comparing the
dysregulated mRNA-lncRNAs in the three cohorts, a high degree
of overlap was found between them (Supplementary Figure 1A).
This showed the stability of dysregulated mRNA-lncRNAs in
different samples. Finally, in all samples, we identified 255
dysregulated mRNA-lncRNAs. Among them, 103 pairs were
downregulated in AD, including 96 genes and 30 lncRNAs, while
152 pairs were upregulated in AD, including 146 genes and 53
lncRNAs (Supplementary Figure 1B). Notably, 71 lncRNAs in
the statistical network were co-expressed with other mRNAs,

with an average proportion of the same type accounting for
95.1%. The co-expression of lncRNA and other mRNAs tended
to be the same type of aggregation, suggesting that lncRNA
expression levels play a key role in the dysregulation of ceRNA
networks in AD.

Functional Enrichment Analysis of the
Dysregulated ceRNA Networks in AD
To elucidate on the functional implications of the ceRNA
network, functional enrichment analysis was performed on all
231 genes in the ceRNA network. Results showed that these
genes were enriched in two gene ontology (GO) terms and
were not associated with any pathway (Figure 3A), implying that
the dysfunctional ceRNA network lacked specific functions to
be considered a large module. These genes were enriched in
24 transcription factors and 17 miRNAs, indicating that they
were highly shared between transcription factors and miRNAs.
The most significantly enriched miRNA, hsa-miR-106b-5p,
was found to be associated with AD susceptibility and is a
potential peripheral blood biomarker for AD (Yilmaz et al., 2016;
Figure 3B). The most significantly enriched transcription factor,
M038071 (SP2), is an important marker in cancer chemotherapy
(Vizcaino et al., 2015; Figure 3C). Thus, ceRNA is used as a small
module in AD instead of a single or large module.
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FIGURE 3 | Functional enrichment analysis of dysregulated ceRNA network in AD. (A) Enrichment analysis for the 231 genes in ceRNA network, the horizontal axis

represents different databases and the vertical axis represents enrichment significance FDR. (B) miRNA enriched by 231 genes in the ceRNA network, the horizontal

axis represents enriched significance FDR and the vertical axis represents miRNA. (C) Transcription factors enriched from 231 genes of the ceRNA network, the

horizontal axis represents enriched significance FDR and the vertical axis represents transcription factors.

Identification of Potentially Dysregulated
miRNA-Target Pairs in the Dysregulated
ceRNA Network
We further used the paired samples of miRNA, mRNA,
and lncRNA expression profiles from the GSE16759 dataset
to identify dysregulated mRNA-miRNA and miRNA-
lncRNA pairs in AD samples. Using p < 0.05 as the cut-off
value for selection, 86 pairs of miRNA-lncRNA and 111
pairs of mRNA-miRNA, including 19 miRNAs, 131 genes,
and 37 lncRNAs, were identified. Interestingly, unlike
mRNA-lncRNA, these dysregulated miRNA-target pairs
were downregulated in AD samples (Figure 4A), and this
phenomenon is consistent with negative regulation for
miRNA and mRNA. The number of miRNAs shared by
mRNA-lncRNA in the ternary network revealed that 71.4%
of mRNA-lncRNA pairs contain only one dysregulated
miRNA (Figure 4B). We constructed a ternary interaction
network in which more than one mRNA-lncRNA pair of
dysregulated miRNAs was shared for 40 pairs of mRNA-
lncRNA, which contained 39 genes, 18 lncRNAs, and 17
miRNAs (Figure 4C). Notably, three of the four miRNAs
in ENSG00000162437 (RAVER2) and ENSG00000212978

(LOC339803) pairs that shared the highest number of
dysregulated miRNAs were significantly downregulated in
AD (p < 0.05; Supplementary Figure 2), indicating that the
shared dysregulated miRNAs were more likely to be related to
ceRNAs of mRNA-lncRNA.

Identification of AD-Related lncRNAs
Based on ceRNAs
To identify AD-related lncRNAs, we analyzed the differential
expression of 18 lncRNAs in AD from more than one mRNA-
lncRNA pair sharing dysregulated miRNAs. We found nine
(52.9%) lncRNAs to be significantly differentially expressed
(Supplementary Figure 3). Similarly, we examined the
differential expression of 39 genes in AD and found that
32 (82.1%) genes were significantly differentially expressed
(Supplementary Figure 4), suggesting that the constructed
dysregulated ceRNA network could effectively screen for disease
markers. There were 24 differential pairs with simultaneous
differential differences of mRNA and lncRNA. These 24 pairs had
significant correlations. Among them, the average correlation
coefficients of ENSG00000117242 and ENSG00000224078 and
their corresponding five genes ranged between 0.48 and 0.27,
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FIGURE 4 | Identification of potential dysregulated miRNA-target pairs in a dysregulated ceRNA network. (A) Dysregulated mRNA-miRNA-lncRNA ternary relationship

network in AD samples, the green line indicates downregulated genes in AD samples while the red line indicates upregulated genes in AD samples, the yellow dot

represents lncRNA, the blue dot represents mRNA, and the red dot represents miRNA. (B) mRNA-lncRNA-shared dysregulated miRNAs number distribution, the

horizontal axis represents the number of miRNA and the vertical axis represents the number of mRNA-lncRNA pairs. (C) mRNA-lncRNA shared dysregulated miRNA

number >1 mRNA-miRNA-lncRNA ternary relationship network, the green line indicates downregulation in AD samples, the red line indicates upregulation in AD

samples, the yellow dots represent lncRNA, the blue dots represent mRNA, and the red dots represent miRNA.

while the average correlation coefficient of ENSG00000248092
and ENSG00000259976 and their respective four genes was
between 0.3 and 0.28 (Figure 5A). In summary, the lncRNA-
mRNA pairs that were found to be dysregulated in AD were
significantly co-expressed, while 9 lncRNAs and 24 mRNAs
may be potential biomarkers in AD. Most of these 24 genes
have been reported to be associated with AD, such as low-
density lipoprotein receptor (LDLR) overexpression which
increases β-amyloid clearance and decreases amyloid deposition
(Krishnan et al., 2020), HSPA8 is downregulated in multiple
brain regions in AD (Silva et al., 2014), and SLC9A6 mutation
causes intellectual disability (Garbern et al., 2010). These
nine lncRNAs have not been reported to be associated with
AD, and based on this, we further analyzed them. Moreover,
KEGG pathway analysis was performed on the samples using
ssGSEA to determine the pathways associated with the nine
lncRNAs. KEGG pathways with a correlation exceeding 0.5
were selected and enriched in 43 pathways. These pathways
were divided into two categories, one of which is positively
correlated with the highly expressed lncRNAs in AD, the other

category is positively related to lncRNAs, which are lowly
expressed in AD. Pathways associated with downregulated
lncRNAs were mainly those related to senile disease-related
pathways and tumor, as well as immune-related pathways. These
pathways include AD, Parkinson’s disease, and type II diabetes
mellitus (Figure 5B). These pathways play important roles in
the development of AD, and the nine lncRNAs regulate the
pathogenesis of AD.

Diagnostic Power of Dysregulated
lncRNAs in AD
To investigate the diagnostic value of lncRNA in AD, a
receiver operating characteristic (ROC) curve classification
was performed for the nine lncRNAs in AD samples and
normal samples. Results showed that each of the nine lncRNAs
could diagnose AD with an average area under the curve
(AUC) of 0.6 (Figure 6A). However, the diagnostic value
of single molecules may be limited. Thus, we randomly
combined nine genes to obtain 502 combinations and used
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FIGURE 5 | Expression and functional analysis for 24 pairs of simultaneous differences of mRNA and lncRNA. (A) Correlation among 24 pairs of mRNA-lncRNA

expression. The horizontal axis shows the genes, the vertical axis represents lncRNAs, the green represents normal samples, and the red represents AD samples. (B)

Pearson’s correlation clustering heat map of nine lncRNA expressions and KEGG pathway enrichment scores. The red axis represents lncRNAs that were upregulated

in AD, and the green axis represents the lncRNAs that were downregulated in AD.
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FIGURE 6 | Diagnostic value of lncRNA in AD. (A) The area under the curve (AUC) of nine gene expression profiles for classification of AD samples. (B) The accuracy

distribution of different number of lncRNA combinations among 502 combinations of nine genes for predicting AD. (C) The predicted classification models of the

signature of five lncRNAs in the training set and the validation set.

these combined expression profiles to establish support vector
machine (SVM) models for the diagnosis of AD. We found
that the accuracy of the lncRNA combinations gradually
increased as the number of lncRNAs increased (Figure 6B).
The combination with the highest accuracy contained five
lncRNAs: ENSG00000224078 (SNHG14), ENSG00000152931
(PART1), ENSG00000248092 (NNT-AS1), ENSG00000259976
(AC093010.3), and ENSG00000271147 (ARMCX5-GPRASP2).
The SVM was used to establish a diagnostic model, which was
tested using a 10-fold cross-validation method. This test showed
that the classification accuracy of the diagnostic model was 69%;
409 of the 589 samples were correctly classified. The sensitivity of
the diagnostic model for AD was 71.3% while its specificity was
68%. We further used the GSE5281 dataset to verify the accuracy
of the diagnostic model, with results showing a classification
accuracy rate of 78.3%; 126 of the 161 samples were correctly
classified. The sensitivity of the model for AD was 77% while the
specificity was 79.7% (Figure 6C). These results indicate that the
diagnostic model could effectively distinguish between patients
with AD and normal control populations. Five lncRNAs showed
a good potential to be reliable biomarkers for the diagnosis of
AD. To confirm the role of five lncRNAs, qRT-PCR was used to
detect the expression levels of lncRNA in the serum samples of

patients with AD. PART1 and ARMCX5-GPRASP2 expressions
were found to have similar trend expressions with bioinformatics
analysis (Supplementary Figure 3). However, only PART1 was
downregulated while SNHG14 was upregulated in the serum
samples of patients with AD when compared to normal samples
(Figure 7).

DISCUSSION

Advances in high-throughput experimental techniques have
enabled a comprehensive analysis of ceRNA interactions using
the gene expression correlation approach. In addition, public
databases and computational methods such as starBase provide
platforms for the analysis of CLIP-seq-supported miRNA-
mRNA interactions (Li et al., 2014), thereby promoting ceRNA
research. Previous studies have explored functional lncRNAs
involved in AD using ceRNA and lncRNA-mRNA networks
(Wang et al., 2017). A novel computational approach has
recently been proposed to identify sponge interactions by
integrating gene co-expression information in breast cancer
(Paci et al., 2014). Research on gene co-expressions in the
ceRNA network has mainly focused on cancer (Shao et al.,
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FIGURE 7 | Differential expression analysis of five lncRNAs in AD patient

serum using real-time quantitative reverse transcription PCR (qRT-PCR) assay.

2015; Li et al., 2018; Gao et al., 2019). Unlike AD, for
which no database system has been established to store gene
expression data generated from studies in the AD field,
cancer datasets are available from The Cancer Genome Atlas
(TCGA) database. This limits research into the pathogenesis
and progression of AD. In this study, we obtained the gene
expression data of AD from the GEO database, which stores
a large amount of mRNA and miRNA-related expression
profiles. Compared to the TCGA database, GEO’s data are
decentralized; therefore, can only be retrieved manually. A
total of 589 samples and 3,943 lncRNA probes were obtained
by microarray re-annotation to study the ceRNA regulatory
mechanism of miRNA-mediated mRNA-lncRNA in AD. Given
the large sample size and numerous lncRNAs in AD that were
analyzed in this study, our results are reliable (Mendoza et al.,
2000).

Competitive endogenous RNA regulatory networks
comprising mRNA, miRNA, and lncRNA play important
roles in the pathogenesis of human diseases (Zhao et al., 2016;
Chen et al., 2017). The ceRNA network provides a platform
for studying interactions between lncRNAs and mRNAs. For
example, in an AD mouse model, the lncRNA-associated ceRNA
networks were found to be mainly involved in synaptic plasticity
as well as memory (Akap5), and the regulation of Aβ-induced
neuroinflammation (Klf4; Ma et al., 2020). By analyzing an
AD neurofibrillary tangles (NFTs) lncRNA-mRNA network
(NFTLMN), three lncRNAs (AP000265.1, KB-1460A1.5, and
RP11-145M9.4) which are highly associated with AD NFTs
were identified (Wang et al., 2017). In this study, we calculated
the Pearson’s correlation coefficients of all lncRNA-mRNA
interactions under normal and disease states. We found that
abnormal interactions of ceRNA function as a “switch” that

modulates the pathogenesis of AD. Systematic evaluation of the
dysregulated ceRNAs in AD revealed that mRNAs were enriched
in multiple transcription factors and miRNAs, which shared
regulatory patterns during gene expression.

In the past, the molecular mechanisms of the pathogenesis
of AD were mainly studied with a greater focus on coding
genes and miRNAs. Studies have shown that the aberrant
expression of lncRNA is closely associated with the occurrence
and development of many diseases (Khorkova et al., 2015).
Indeed, some lncRNAs have been found to be therapeutic
targets for the clinical treatment AD. Accumulating evidence
indicates that miRNA-lncRNA interactions play important
roles as ceRNAs (Zhou et al., 2016). lncRNAs, LINC00836,
and DCTN1-AS1 potentially contribute to AD immune-related
phenomena by regulating AD-related immune genes (Xu
and Jia, 2020). Knockdown of lncRNA SNHG1 was found
to exhibit neuronal protective effects through the repression
of KRENEN1 by acting as a ceRNA for miR-137 in an in
vitro cell model of AD (Wang et al., 2019). In AD, lncRNA-
related ceRNA networks have been found to regulate its
development. However, none have systematically analyzed the
function of lncRNA-related ceRNA networks in AD. In this
study, we identified ceRNAs that were deregulated in AD by
analyzing mRNA, miRNA, and lncRNA expression profiles.
As a result, nine key lncRNAs were identified. Functional
analysis revealed that these dysregulated lncRNAs were highly
correlated with aged dementia and Parkinson’s disease. In terms
of the diagnostic ability of the lncRNAs, we found that the
diagnostic accuracy of the lncRNA combinations increased
as the number of lncRNA in the combination increased.
Specifically, five lncRNAs, ENSG00000224078 (SNHG14),
ENSG00000152931 (PART1), ENSG00000248092 (NNT-AS1),
ENSG00000259976 (AC093010.3), and ENSG00000271147
(ARMCX5-GPRASP2), were found to have a good diagnostic
ability for AD. qRT-PCR results also revealed that these lncRNAs
were differentially expressed in serum samples of patients
with AD.

Although these results are based on bioinformatics analysis,
they elucidate the occurrence and development of AD. However,
we acknowledge some limitations in this study. First, we used
probe re-annotation pipelines to identify AD-related functions
of lncRNA, which are widely used by many bioinformatics
studies. However, this pipeline filters out many lncRNA that
do not match the probe sequence. Second, we integrated
gene expression and miRNA-target interactions to identify
dysregulated ceRNA interactions, and our results would be
more reliable if a more precise method was used. Third, this
work, as a study in the field of bioinformatics, was often
aimed at verifying the accuracy and reliability of the lncRNA-
mRNA network and lncRNA-related functional modules or the
diagnostic potential of the biomarker lncRNA by statistical
significance and scientific literature verification. In future studies,
we plan to conduct well-designed experiments to explore
detailed mechanisms in order to verify the results presented in
this study.

Moreover, we utilized a large sample cohort to screen for
ceRNA networks that were dysregulated in AD using the lncRNA
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re-annotation system. We showed that this novel method
is effective for studying the pathomechanisms of AD. Nine
AD-related lncRNAs were found in the dysregulated ceRNA
network, and these lncRNA expressions were closely associated
with neurodegenerative diseases such as AD and Parkinson’s
disease. Among them, five lncRNAs can be used as stable
biomarkers for AD.
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