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White matter lesions (WMLs) are a type of cerebrovascular disorder accompanied by

demyelination and cognitive decline. Dl-3-n-butylphthalide (D1-NBP) is a neuroprotective

drug used for the treatment of ischemic cerebrovascular diseases, although the function

of DI-NBP on WML is still not clear. This study aims to investigate whether DI-NBP

affects cognitive function and ameliorates demyelination in a model of WML. The bilateral

carotid artery stenosis (BCAS) mouse model and in vitro brain slice cultures with low

glucose and low oxygen (LGLO) treatment were adopted. The Dl-NBP was administered

intragastrically for 28 days after BCAS or added at a dose of 50µm for 48 h after LGLO.

Spatial learning and memory were evaluated by an eight-arm radial maze. Demyelination

was detected using a TEM. Mitochondrial dynamics were assessed by time-lapse

imaging in the cultured brain slices. The function of the synapse was evaluated by the

patch clamp technique. In BCAS mice, obvious demyelination and cognitive decline

were observed, while both were significantly relieved by a high-dose D1-NBP treatment

(100 mg/kg). Along with demyelination, mitochondrial accumulation in the axons was

significantly increased in the BCAS mice model, but with the treatment of a high-dose

D1-NBP, mitochondrial accumulation was mitigated, and the anterograde/retrograde

transport of mitochondria was increased. Following the improved anterograde/retrograde

transport of mitochondria, the synapse activity was significantly upregulated while the

reactive oxygen species (ROS) generation was remarkably decreased in the cultured

brain slices. In addition, we identified syntaphilin (SNPH) as the downstream target of

D1-NBP. The overexpression of SNPH mediated the effects of D1-NBP in mitigating

axonal mitochondrial accumulation. In conclusion, the D1-NBP treatment significantly

relieved demyelination and improved spatial learning and memory in the WML model

by promoting mitochondrial dynamics. These neuroprotective effects of D1-NBP were

mediated by inhibiting the mitochondrial arching protein, SNPH, which provided a

potential therapeutic target for WML.
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INTRODUCTION

White matter lesions (WMLs) are one of the major contributors
that lead to cognitive decline and vascular dementia (VaD),
especially among the elderly (Alber et al., 2019). The WML is
usually caused by a modest, but chronic, reduction of blood
flow, accompanied by a shortage of oxygen supply through small
vessels (Ben-Ari et al., 2019). Demyelination is a characteristic of
the pathological changes in WML, which accounts for the worse
clinical outcomes and impaired cognitive function in patients
(Datta et al., 2017). It is, therefore, urgent to figure out how to
alleviate the demyelination damage and mitigate the impaired
brain function.

In 2002, the FDA of China approved the use of Dl-3-n-
butylphthalide (Dl-NBP), a compound extracted from the seeds
of celery in treating ischemic stroke (Wang et al., 2018; Chen
et al., 2019; Yang et al., 2019). It is also undergoing a Phase II
trial for the treatment of ischemic stroke in the USA (Cui et al.,
2013; Xue et al., 2016). Previously, more attention was given
to the acute phase of stroke, and the neuroprotective effects of
Dl-NBP on stroke are supported widely by both clinical and
basic research (Chen et al., 2020). Mechanically, studies have
shown that the Dl-NBP could inhibit the apoptosis of neurons,
endoplasmic reticulum stress, and oxidative stress and improve
hemodynamics as well as neurogenesis (Sun et al., 2017; Wang
et al., 2018, 2019). However, as a promising molecular compound
in treating ischemic injuries of the brain, the function of Dl-
NBP in WML and demyelination is neither clear nor has it
been confirmed.

From the limited studies on WML, evidence shows that the
Dl-NBP could promote the cognitive function in VaD models
caused by chronic hypoperfusion (Li et al., 2019). The normal
cognitive function requires a relatively normal electronic signal
and a synaptic signal, which rely on intact myelin, as well as
cholinergic neurotransmission (Feng et al., 2020b). The beneficial
effects of Dl-NBP on VaD were demonstrated by improving
remyelination and enhancing the function of the cholinergic
system (Tian et al., 2020). Yet, remyelination happens at the late
stage ofWML injury and the function of the cholinergic system is
closely related to the electronic signal from the axons (Lema et al.,
2017).Whether the Dl-NBP can benefit the electronic function of
synapse or alleviate myelin breakdown at the early stage remains
to be determined.

Under hypoperfusion, mitochondria are the most sensitive
organisms in neurons that sense ischemia/hypoxia and quickly
change their dynamics and metabolism (Bargiela et al.,
2018). Axons suffer ischemic damage and display abnormal
mitochondrial dynamics, showing disturbed fission–fusion
transport in axons (Chen et al., 2018; Thomas and Ashcroft,
2019). The reduced retrograde transport of dysfunctional
mitochondria can block mitophagy and cause unfavorable
reactive oxygen species (ROS), which is harmful to myelin

Abbreviations: WMLs, white matter lesions; APs, action potentials; BCAS,

bilateral common carotid artery stenosis; LGLO, low glucose and low oxygen;

mEPSC, miniature excitatory postsynaptic current; MS, multiple sclerosis; SNPH,

syntaphilin; TEM, transmission electron microscopy; VaD, vascular dementia.

(Palikaras et al., 2015). The anterograde of mitochondria is vital
for the supply of energy to the synapse for neurotransmitter
release (Zheng et al., 2019). Therefore, we speculated that the
Dl-NBP might relive demyelination in WMLs by regulating
mitochondrial dynamics. In the present study, we investigated
the effects of Dl-NBP on mitochondrial dynamics and
demyelination using a WML model.

MATERIALS AND METHODS

Animals
C57BL/6J male mice (9–12 weeks, 25–30 g) were purchased from
Charles River Laboratories and housed in the Experimental
Animal Center of Fudan University, Shanghai, China in a
temperature- and humidity-controlled specific-pathogen-free
laboratory with a 12/12 h light/dark cycle. All procedures were
performed in accordance with the Guide for the National Science
Council of the People’s Republic of China, and the study was
approved by the Ethics Committee of Fudan University (IRB
approval number 20190972A259). This manuscript was written
in accordance with the Animal Research: Reporting of in vivo
Experiments (ARRIVE) guidelines.

The BCAS Model and DI-NBP Treatment
The bilateral carotid artery stenosis (BCAS) model was
performed as described previously (Feng et al., 2020b). Briefly,
the mice were anesthetized using 4% isoflurane in 28% O2 and
68% N2 and maintained on 2% isoflurane in 29% O2 and 69% N2

by a mask. After making a midline skin incision on the neck, the
bilateral common carotid arteries were isolated and subsequently
stenosed using 0.18mm steel micro coils (Wuxi Samini/Sawane
Spring Co., Ltd., Hamamatsu City, Japan). For sham-operated
mice, a similar procedure was followed, whereas micro-coils were
not used for the induction of BCAS. For the D1-NBP treatment,
a low-dose treatment of DI-NBP (L-NBP, 50 mg/kg/day) and a
high-dose treatment of D1-NBP (H-NBP, 100 mg/kg/day) were
intragastrically administrated 1 day after the BCAS surgery for
28 days.

All experimental groups were randomized, and all outcome
analyses were carried out by independent investigators blinded
to the treatment conditions and mouse types. Randomization
of each experimental group was performed before the surgical
procedure by using the random number generator in GraphPad.
The preliminary data from the TEM and the eight-arm maze
experiments indicated that 6 and 12 animals per group,
respectively, would be sufficient to obtain 80% power at a
significance level of < 0.05 with a two-sided test.

The Cerebellum Slice Culture and the
D1-NBP Treatment
For cerebellar organotypic slice culture, the postnatal day 8–9
(P8-9) mice were used. About 400µm P8-9 mouse cerebellum
parasagittal slices were obtained using a vibratome (ZQP-86,
Zhixin Co., Ltd., Shanghai, China). The slices were placed on cell
culture inserts (Millipore, Bedford, MA, USA) and were cultured
in 50% Dulbecco’s modified eagle’s medium (DMEM) with 25%
Hanks’ balanced salt solution (HBSS), 25% horse serum, and 5
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mg/ml glucose (Invitrogen, Carlsbad, CA, USA) in cell culture
chambers at 37◦C.

The low glucose and low oxygen (LGLO) (2%O2 and 1 mg/ml
glucose) treatment was used to give a chronic hypoperfusion
environment to the slices for 48 h. The D1-NBP, at a dose
of 50µm, was added to the cultured slices before the LGLO
treatment, which is a relatively high dose consistently used with
previous studies (Li et al., 2019). Experiments and data analyses
were performed in a double-blinded manner.

The Overexpression of Syntaphilin
The overexpression (OE) of syntaphilin (SNPH) plasmid and
adeno-associated virus (AAV) 2/9 or lentivirus was constructed
by Genomeditech (Genomeditech, Shanghai, China). For
culturing cerebellum slices, lentivirus was added to the
medium of the slice at 1∗1010 gene copies, 5 days before the
LGLO treatment.

For mice, AAV 2/9 SNPH-OE plasmid or AAV empty vector
was stereoscopically injected into lateral ventricles. The mice
were anesthetized using 4% isoflurane in 30% O2 and 70% N2

and maintained on 2% isoflurane in 30% O2 and 70% N2 by a
mask. The AAV vectors were infused into the left lateral ventricle
(coordinates from bregma: AP, −0.2mm; ML, +1.0mm; DV,
−2.3mm). The genome copies of size 5 × 1011 were infused at
a rate of 1 µl/min. After injection, the needle was left in place for
2min to prevent backflow before the withdrawl.

Time-Lapse Imaging Using Confocal
Microscopy
As described previously (Lin et al., 2017), the mitochondria were
labeled with MitoTracker Red CMXRos, M7512 (Thermofisher
Scientific, USA) for 3 h after the brain slices were treated with
LGLO. After an extensive wash, the slices were placed in an
airstream incubator at 37◦C and imaged by an Olympus inverted
confocal microscope using a 60× 1.3 NA oil immersion objective
with 512× 512-pixel resolution (FV1200, Olympus).

Upon imaging, a total of 5min with 15 s intervals were imaged
for each experiment. The total live imaging time was restricted
to 20min to minimize phototoxic damage. The length, area,
and diameter of the axonal mitochondria were measured by the
ImageJ program (NIH, USA). The number and mean velocity of
motile mitochondria were analyzed by kymographs. Stationary
sites in this study were defined as CMXRos-positive profiles that
were stationary during a 5-min period. To measure the size of
the stationary mitochondria, a pair of image stacks, including all
CMXRos-positive profiles of each axon, were obtained at the time
periods 0 and 5 min.

Immunofluorescence
Brain slices were fixed overnight in 4% paraformaldehyde (PFA)
and then in 30% sucrose for 2 days at 4◦C. Subsequently, the
slices were blocked with 5% bovine serum albumin (BSA) for 1 h
and permeabilized with 0.1% Triton X-100 in phosphate buffered
saline (PBS) for 15min. Primary antibodies, diluted in a blocking
buffer, were added to the slices and were incubated overnight
at 4◦C. The primary antibodies used in this experiment were
anti-NF (1:50, ab8135, Abcam, USA) and anti-maltose binding

protein (MBP) (1:200, ab40390, Abcam, USA). The slices were
washed three times with PBS and labeled with a fluorescence-
conjugated secondary antibody for 1 h at room temperature
(Alexa Fluor 488 and 594, 1:1,000, Life Technologies). Nuclei
were visualized by mounting with DAPI (28718-90-3; Sigma
Aldrich, USA).

For ROS staining in mitochondria, the MitoSOXTM Red
mitochondrial superoxide indicator (M36008, ThermoFisher,
USA) was used to label ROS in mitochondria. The MitoSOX
was diluted according to the manufacturer’s instruction and
incubated with the slices for 3 h. After an extensive wash
with PBS, the slices were replenished with the indicated
culture medium.

Western Blot
Brain slices were collected and lysed in the
radioimmunoprecipitation assay (RIPA) buffer [50mm
Tris-HCl, pH 7.5, 150mm NaCl, 1% Triton X-100, 0.1%
sodium dodecyl sulfate (SDS), 0.5% deoxycholate] with a
protease inhibitor. Equal amounts of proteins, measured by
the BCA method, were loaded on 15% Bris-Tris NuPAGE,
electrophoresed, and transferred into 0.22µm nitrocellulose
membranes. After blocking with 5% BSA in TBST for 1 h, the
membranes were incubated overnight at 4◦C with the following
primary antibodies: anti-SNPH (ab69992, Abcam, USA), anti-
Miro1 (ab188029, Abcam, USA), anti-Trak1 (ab28751, Abcam,
USA), anti-HSP60 (ab190828, Abcam, USA), and anti-β-actin
(ab115777, Abcam, USA) at a dilution of 1:1,000 (Tris-buffered
saline with 0.1% Tweenr 20 detergent).

Transmission Electron Microscope
The TEM was performed as described previously (Guo et al.,
2019). In short, the brain samples were perfused with PBS and 4%
paraformaldehyde (PFA). Dissected tissues (1mm in thickness)
were postfixed in buffered OsO4, dehydrated in graded alcohol
solutions and propylene, embedded in Epon, and examined by
light microscopy after staining with toluidine blue. Thin sections
cut on using formvar-coated slot grids and stained with uranyl
acetate and lead citrate were examined using a JEOL 1200
electron microscope. G-ratios were determined as the inner to
outer axonal circumference ratio using the ImageJ program.

The Eight-Arm Radial Maze Test
The eight-arm radial maze test was performed as described
previously (Xu et al., 2019). The maze consisted of a central
platform (24 cm in diameter) with eight arms that extended
radially. The mouse was allowed to visit each arm to eat eight
pellets in food cups placed near the end of each arm. Each test
animal was trained once per day to memorize the apparatus. The
performance of the test animals in each trial was assessed using
the two parameters, namely the number of correct choices in
the initial eight chosen arms and the number of errors (defined
as choosing arms that had already been visited). When the test
animals had made seven or eight correct choices with no more
than one error in three successive sessions, they were deemed to
have memorized the maze.

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2021 | Volume 13 | Article 632374

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Feng et al. Dl-3-n-Butylphthalide Alleviates Demyelination in WML

Whole-Cell Patch-Clamp Electrophysiology
As described previously (Feng et al., 2020a), the cultured brain
slices were transferred to the patch-clamp bath solution for
1 h prior to recording. The bath solution contained 126mm
NaCl, 2.5mm KCl, 26mm NaHCO3, 1.25mm NaH2PO4,
2mm CaCl2, 2mm MgCl2, and 11mm glucose bubbled
with 95% O2 + 5% CO2. The temperature of the bath
solution was maintained at 32◦C. For miniature excitatory
postsynaptic current (mEPSC) recordings, patch pipettes
containing 126mm K-gluconate, 4mm KCl, 4mm ATP-Mg,
0.3mm GTP-Na2, 10mm PO creatine, 10mm HEPES, and
0.2–0.5% biocytin (pH 7.3 adjusted using KOH, 300 mOsm
maintained using sucrose) with a tip resistance of 6–8 M�

were used. During mEPSC recording, tetrodotoxin (TTX)
(0.5µm) was administered to silence the network activity
through the inhibition of voltage-sensitive sodium channels, and
bicuculline (10µm) was given to block the GABA-A-mediated
inhibitory signaling.

For the recording of action potentials (APs), patch
pipettes containing 140mm K-gluconate, 5mm ethylene
glycol-bis(β-aminoethyl ether) (EGTA), 0.5mm CaCl2,
2mm ATP-Mg, 0.3mm guanosine-5′-triphosphate (GTP)-
Na2, 10mm sucrose, 10mm HEPES, and 0.2–0.5%

biocytin (pH 7.3 adjusted using KOH, 300 mOsm
maintained using sucrose) with a tip resistance of 6–8 M�

were used.
Series resistance was monitored at an interval of 2min,

and recordings were excluded if the series resistance and
leak current changed significantly and/or exceeded 40 M� or
200 pA, respectively.

Golgi Silver Staining
Golgi silver staining was performed as described previously
(Du, 2019). The mice were sacrificed and perfused with 4%
PFA. The brain was dissected, cut into half at the junction
between the cortex and midbrain, and further incubated
in the PFA solution for a further 10min, followed by the
immersion in the Golgi solution (FD Neurotechnologies,
Rapid Golgi Kit). The Golgi solution was changed after
6 h, and the brain was kept immersed as such for 2
weeks before development as per the instructions of
the manufacturer.

Statistical Analysis
Data were analyzed using SPSS Statistics 22 and graphed
with GraphPad Prism 8.0. The sample size was calculated

FIGURE 1 | (A) High-dose treatment of Dl-3-n-butylphthalide (D1-NBP) mitigated demyelination and improved the cognitive impairment in the bilateral carotid artery

stenosis (BCAS) model. (A–C) Representative TEM images (A) and quantitative analysis of the G-ratio (B,C) in Sham+Placebo, Sham+L-NBP, Sham+H-NBP,

BCAS+Placebo, BCAS+L-NBP, and BCAS+H-NBP groups. Scale bar, 2µm. A one-way ANOVA with Tukey’s correction. n = 80 myelinated axons (20 axons per

mouse, 4 mice per group). (D–F) Working and reference memory were assessed by the eight-arm radial maze. Impaired working memory in the BCAS mice was

remitted by a high-dose administration of DI-NBP, as evidenced by the less revisiting errors (D) and more different choices (E) in the BCAS+H-NBP group. There is no

significant difference in the spatial reference memory between different groups (F). A two-way ANOVA with the Dunnett’s post-hoc test, n = 11 mice in each group.

Data are represented as means ± SD (**p < 0.01; ***p < 0.001; ns: non-significant differences). L-NBP, low dose of DI-NBP; H-NBP, high dose of D1-NBP.
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based on the power as 0.95 and α as 0.05. All data from
the mice are represented as the mean ± SD and the
data from the brain slices are represented as mean ±

SEM. Different treatment groups were evaluated using
a one-way ANOVA with the Tukey’s test for multiple
comparisons. The null hypothesis was rejected when p-value
was <0.05.

RESULTS

DI-NBP Mitigates Demyelination and
Improved Cognitive Impairment in the
BCAS Model
To study the therapeutic potential of D1-NBP in mitigating
demyelination and cognitive impairment caused by whole-brain

FIGURE 2 | Alleviated demyelination and cognitive impairment by a high-dose treatment of D1-NBP was accompanied by decreased mitochondrial accumulation

among the axons. (A–D) Representative TEM images of mitochondrial load in axons (A) and quantitative analysis of mitochondrial number per area (/µm2 ) (B),

mitochondrial length (C) and mitochondrial diameter (D) in Sham+Placebo, Sham+L-NBP, Sham+H-NBP, BCAS+Placebo, BCAS+L-NBP, BCAS+H-NBP groups.

Scale bar, 2µm. A one-way ANOVA with Tukey’s correction. For mitochondrial load per area analysis, n = 20 visual fields (4 visual fields per mouse, 5 mice per group).

For mitochondrial length analysis, n = 50 (10 mitochondria per mouse, 5 mice per group). For mitochondrial diameter analysis, n = 50 (10 mitochondria per mouse, 5

mice per group). (E,F) Immunoblot (E) and quantitative analysis (F) of syntaphilin (SNPH), Miro1, and Milton in different groups. A one-way ANOVA with Tukey’s

correction, n = 8 mice per group. Data are represented as means ± SD (*p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant differences).
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FIGURE 3 | (A) High-dose treatment of D1-NBP alleviates mitochondrial accumulation by promoting mitochondrial dynamics. (A–D) Representative kymograph (A)

and quantitative analysis of the percentage of stationary, anterograde, and retrograde mitochondria in the axons (B), mitochondrial load per 50µm (C), and

mitochondrial size (D) in cerebellum slices subjected to Ctrl+ phosphate buffered saline (PBS), Ctrl+NBP, Ctrl+SNPH OE, Ctrl+SNPH OE+H-NBP, low glucose and

low oxygen (LGLO)+PBS, LGLO+NBP, LGLO+SNPH OE, LGLO+SNPH OE+H-NBP. The high-dose treatment of D1-NBP alleviated the LGLO-induced impairment

of retrograde and anterograde mitochondrial transport. A one-way ANOVA with Tukey’s correction. For the percentage stationary, anterograde, and retrograde

mitochondria analysis, n = 60 mitochondria per group. For mitochondrial load per 50µm analysis, n = 20 axons per group. For mitochondrial size analysis, n = 400

per group. Scale bar, 50µm and 5min, respectively. Data are represented as means ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant differences).
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FIGURE 4 | Enhanced retrograde transport of mitochondria by a high-dose treatment of D1-NBP alleviated demyelination by decreasing the ROS production among

the axons. (A–C) Representative confocal images (A) and quantitative analysis of the ROS expression (B) and the number of ROS positive axons (C). Scale bar,

(Continued)
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FIGURE 4 | 100µm. The high-dose treatment of D1-NBP mitigated LGLO-induced ROS generation. A one-way ANOVA with Tukey’s correction, n = 8 slices per

group. (D–G) Representative confocal images (D) and quantitative analysis of maltose binding protein (MBP) (green) expression (E), NF (red) expression (F), and the

MBP/NF ratio (G). High dose of DI-NBP treatment alleviated LGLO-induced demyelination. Scale bar, 50µm. A one-way ANOVA with Tukey’s correction. n = 8 slices

per group. Data are represented as means ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant differences).

hypoperfusion, we used the BCAS mouse model in which
coils were placed around the bilateral common carotid arteries.
After BCAS modeling, demyelination and cognitive impairment
were significant at day 28 after BCAS, indicating the successful
modeling of hypoperfusion-induced VaD (Figures 1A–F). For
the D1-NBP treatment group, the mice were given daily
intragastric administration of Dl-NBP or Placebo 1 day after
BCAS until sacrifice. The status of myelination of the different
treatment groups was evaluated by TEM. It could be observed
that the whole-brain hypoperfusion by BCAS changed the overall
axonal G-ratio distribution to a higher G-ratio rate, which is
accompanied by a significant increase of G-ratio in the BCAS
group. Although a low-dose treatment of D1-NBP (L-NBP, 50
mg/kg/day) did not retrieve demyelination, an increased dose
of D1-NBP treatment (H-NBP) to a 100 mg/kg/day robustly
alleviated the BCAS-induced demyelination (Figures 1A–C).

We further evaluated the therapeutic effect of D1-NBP on
BCAS-induced cognitive impairment, which is tested by the
eight-arm radial maze. In the BCAS treatment group, the mice
exhibited higher revisiting errors and a lower different arm choice
in the first eight entries, indicating a significant impairment of
working memory in the BCAS mice. Reference memory errors
showed that reference memory was not influenced by BCAS.
Consistent with the previous results, the high dose DI-NBP
treatment significantly mitigated the impaired working memory
by BCAS (Figures 1D–F). Altogether, we found that a high-dose
treatment of DI-NBP enabled the retrieval of demyelination and
cognitive impairment induced by whole-brain hypoperfusion.

Alleviated Demyelination and Cognitive
Impairment by DI-NBP Treatment Is
Accompanied With Decreased
Mitochondrial Accumulation Among the
Axons
Compared to myelin, the axons are more vulnerable to
the hypoxic-ischemic environment (Cui et al., 2020). Since
mitochondria and its related mitochondrial dynamics are the
major therapeutic targets of D1-NBP in various models of
diseases, we reasoned that the therapeutic targets of D1-NBP
on hypoxic-ischemic demyelination are done by regulating the
axonal mitochondrial dynamics in the BCAS mice. By detecting
the mitochondrial load among the axons using TEM, we found
that the mitochondrial load among the axons was significantly
increased in the BCAS group, which was accompanied with
abnormal mitochondrial morphology. However, a high-dose
treatment of DI-NBP significantly mitigated the mitochondrial
load and alleviated the abnormal mitochondrial morphology in
the BCAS mice (Figures 2A–D).

Mitochondrial load among the axons was further determined
by mitochondrial dynamics and motor proteins that underlie the

changes in the mitochondrial dynamics. We probed the protein
changes related to mitochondrial dynamics. Although motor
proteins, such as Miro and Milton, did not show significant
changes after BCAS, SNPH, which anchored the mitochondria
to the microtube, showed significant elevation after BCAS.
Interestingly, a high-dose treatment of D1-NBP significantly
mitigated the SNPH expression, indicating that a high-dose
treatment of DI-NBP mitigated mitochondrial accumulation
probably by inhibiting the expression of SNPH (Figures 2E,F).

DI-NBP Alleviates Mitochondrial
Accumulation by Promoting Mitochondrial
Dynamics
To further clarify the mechanisms underlying the mitigated
mitochondrial accumulation by D1-NBP, we established an
in vitro model of hypoperfusion by supplying chronic LGLO
conditions in the culture containing slices of cerebellum. We
used lentivirus to overexpress SNPH, and the slices of cerebellum
were transfected 72 h before the LGLO treatment. Right after the
LGLO treatment, D1-NBP, at a dose of 50µm, was added to the
culture medium and the mitochondrial dynamics were assessed
48 h later.

We found that the LGLO treatment significantly increased
the mitochondrial load, which was accompanied with decreased
mitochondrial dynamics, as evidenced by increased stationary
mitochondria after LGLO. Interestingly, the DI-NBP treatment
rescued the dynamic drop by LGLO and alleviated the
mitochondrial load among the axons. Since we found that a
high-dose treatment of DI-NBP mitigates mitochondrial load
by inhibiting the expression of SNPH in vivo, we further
overexpressed the SNPH on the cultured slices and found that
the alleviated mitochondrial load by a high dose of DI-NBP was
abolished by the SNPH OE (Figures 3A–D).

Enhanced Mitochondrial Dynamics by
DI-NBP Alleviates Demyelination by
Decreasing ROS Production Among the
Axons
Functional mitochondrial dynamics plays a critical role
in maintaining mitochondrial homeostasis. Impaired
transportation of mitochondria and mitochondrial overload
in the axons are harmful to neurons, especially in terms of
disrupted clearance of malfunctioning mitochondria through
retrograde transport (López-Doménech et al., 2018). Increased
ROS production has also been reported to damage myelination
in the model of multiple sclerosis (MS) (Su et al., 2013). We,
therefore, detected mitochondrial ROS production after LGLO.
We found that the production of ROS was elevated after
LGLO, but the D1-NBP treatment significantly decreased the
ROS among axons and mitigated the overall ROS production
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FIGURE 5 | Enhanced anterograde transport of mitochondria by a high-dose treatment of D1-NBP retrieved impaired neuronal synapse signaling. (A–C)

Representative firing responses (A) to depolarizing (175 pA) and hyperpolarizing (−50, −135, and −200pA) current injections and quantitative analysis percentage of

control firing rates and (B) firing rate responses to a series of linear current injections (−200 to −50pA) (C) in different treated cerebellum slices. A two-way ANOVA

with the Dunnett’s post-hoc test. For the percentage of the control firing rate analysis, n = 9 neurons per group (3 neurons per slices). For firing rate responses to a

series of linear current injection analysis, n = 9 neurons per group (3 neurons per slices). (D–H) Representative mEPSC traces (D) and quantitative analysis of

(Continued)
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FIGURE 5 | miniature excitatory postsynaptic current (mEPSC) frequency (E), amplitude (F), and cumulative distribution of inter-mEPSC interval (G) and

mEPSCamplitude (H). Under LGLO conditions, impaired intrinsic neuronal excitability and synapse function showed remarkable improvement by H-NBP treatment.

For mEPSC frequency and amplitude, one-way ANOVA with Tukey’s correction. For cumulative distribution of inter-mEPSC interval and mEPSC amplitude, the

Mann–Whitney test. For mEPSC frequency, n = 30 per group. For mEPSC amplitude, n = 30 per group. For cumulative distribution of inter-mEPSC interval, n =

4,291 per group. For cumulative distribution of mEPSC amplitude, n = 4,319 per group. Scale bar, 10 pA and 100ms, respectively. Data are represented as means ±

SEM (***p < 0.001; ns, non-significant differences).

(Figures 4A–C). Thus, the impaired mitochondrial dynamics
were responsible for the mitochondrial accumulation and it
significantly increased the production of ROS among the axons.
This is harmful for myelination, as evidenced by the significantly
decreased MBP expression, NF expression, and MBP/NF ratio in
the LGLO group. The DI-NBP mitigated myelination, which is
dependent on SNPH (Figures 4D–G).

Together, the DI-NBP treatment decreased the ROS
production among axons and rescued myelination, which is
related to the improved mitochondria retrograde transport
of mitochondria.

Enhanced Dynamics of Mitochondria by
DI-NBP Retrieves Impaired Neuronal
Synapse Signaling
Anterograde transport of mitochondria replenishes fresh
mitochondria necessary for synaptic function (Hollenbeck and
Saxton, 2005; Lovas and Wang, 2013). Since we detected an
increased anterograde mitochondrial transport, we then tested
the changes in the synapse signaling after DI-NBP treatment
and under LGLO by patch-clamp. The LGLO treatment resulted
in a remarkable drop in firing rate at all injection amplitudes
and the most significant drop in firing rate was observed
in relatively small current injections. However, the DI-NBP
treatment rescued the neuronal intrinsic excitability and SNPH
OE abolished the therapeutic effect of D1-NBP to some extent
(Figures 5A–C). We further tested the changes in the synaptic
signaling after LGLO. Both mEPSC amplitude and frequency
decreased dramatically after the LGLO treatment, whereas a
high dose of DI-NBP retrieved the drop of mEPSC amplitude
and frequency, and SNPH OE abolished these therapeutic
effects (Figures 5D–F). A cumulative mEPSC distribution
curve analysis showed that the D1-NBP treatment built up a
significantly more abundant mEPSC amplitude and smaller
inter-mEPSC intervals (Figures 5G,H). These results indicated
that D1-NBP promoted the neuronal intrinsic excitability
and synapse function, which is related to mitochondrial
anterograde transportation.

DI-NBP Mitigates Demyelination and
Cognitive Impairment by Inhibiting SNPH
in vivo
Based on our in vitro findings that SNPH OE abolished the
effects of DI-NBP in promoting mitochondrial dynamics, we
further validated whether SNPH underlies the effects of DI-
NBP in mitigating demyelination and cognitive impairment
in the BCAS model. An AAV 2/9 overexpressing SNPH was
stereoscopically injected into lateral ventricles in neonatal mice.

A BCAS surgery was performed at 2 months of age. We
found that SNPH OE significantly abolished the therapeutic
effect of D1-NBP on mitigating demyelination, as indicated
by the elevated G-ratio after SNPH OE in the high-dose DI-
NBP treatment group (Figures 6A,B). Meanwhile, decreased
mitochondrial load and recovered mitochondrial morphology in
the high-dose DI-NBP treatment group were also diminished by
SNPHOE (Figures 6C–E). Moreover, increased synapse through
a high-dose treatment of D1-NBPwas lost in the DI-NBP+SNPH
OE group, which was accompanied by fewer mushroom-shaped
synapses (Figures 6F–H). Improved working memory by DI-
NBP was abandoned by SNPH OE (Figures 6I–K).

From the above results, we could draw the conclusion that
the therapeutic potential of D1-NBP onmitigating demyelination
and cognitive impairment in hypoxic–ischemic demyelination
was done by abolishing SNPH elevation among the axons,
which retrieved the malfunctioned mitochondrial dynamics
and promoted the anterograde mitochondrial transport for
synapse signaling and retrograde mitochondrial transport for
ROS alleviation by mitophagy.

DISCUSSION

The results of the present study have demonstrated the effects
of Dl-NBP on mitigating demyelination as well as the effects
of Dl-NBP in promoting axonal mitochondrial dynamics in
WMLs using a BCAS mice model as well as an in vitro brain
slice culture treated with LGLO. Our results demonstrated
that the mitochondrial dynamics were suppressed while the
static mitochondria accumulated in the axons after an injury
to ischemia/hypoxia, which was mediated by the elevated
expression of SNPH, an axonal specific arching protein. A
high-dose treatment of Dl-NBP improved the anterograde and
retrograde transport of mitochondria and reducedmitochondrial
accumulation in axons, thus arresting myelin disruption and
improving the electrical function of the synapse. The high-dose
treatment of Dl-NBP also improved the number of synapses and
cognitive function. In addition, we investigated the mechanism
of Dl-NBP and revealed that a high-dose treatment of Dl-NBP
suppressed the expression of SNPH. SNPH OE abolished the
protective function of Dl-NBP in reducing demyelination and
improving the cognitive function.

White matter lesions, also termed leukoaraiosis, are very
common and are considered as an important contributor to
cognitive decline, especially in the elderly (Alber et al., 2019). The
primary cerebrovascular pathologies that cause WMLs include
multi-arteriolosclerosis, carotid stenosis, or occlusion, which lead
to cerebral hypoperfusion in deep white matter regions (van
Norden et al., 2011). White matter, composed of bundles of
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FIGURE 6 | (A) High-dose treatment of D1-NBP mitigated demyelination and cognitive impairment by rescuing mitochondrial dynamic in vivo. (A–E) Representative

TEM images depicting myelination status (Upper panel) and mitochondrial load in the axons (A) and quantitative analysis of the G-ratio (B), mitochondrial load per

(Continued)
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FIGURE 6 | area (C), mitochondrial length (D), and mitochondrial diameter (E) in BCAS+Placebo, BCAS+H-NBP, BCAS+SNPH OE, and BCAS+SNPH OE+H-NBP

groups. The therapeutic effects of H-NBP on mitigating demyelination and cognitive impairment were dependent on mitochondrial dynamics. Scale bar, 2µm. A

one-way ANOVA with Tukey’s correction. For G-ratio, n = 80 myelinated axons. For mitochondrial load per area analysis, n = 20 visual fields (4 visual fields per

mouse, 5 mice per group). For mitochondrial length analysis, n = 50 (10 mitochondria per mouse, 5 mice per group). For mitochondrial diameter analysis, n = 50 (10

mitochondria per mouse, 5 mice per group). (F–H) Representative silver staining images. (F) Quantitative analysis of the number of spines per 10µm. (G) Different

kinds of spine morphology in different groups (H). A one-way ANOVA with Tukey’s correction. For the number of spines per 10µm analysis, n = 10 axons per mouse,

5 mice per group. For different kinds of spine morphology analysis, n = 10 axons per mouse, 5 mice per group. Scale bar, 10µm. (I–K) Working and reference

memory were assessed by the eight-arm radial maze. The improvement of working memory by H-NBP in BCAS mice was abolished by SNPH OE, as evidenced by

the increased revisiting errors. (I) Less different choices (J) in the BCAS+H-NBP+SNPH OE group. There is no significant difference in the spatial reference memory

between different groups (K). A two-way ANOVA with the Dunnett’s post-hoc test, n = 11 mice in each group. Data are represented as means ± SD (*p < 0.05; **p <

0.01; ***p < 0.001; ns, non-significant differences).

myelinated axons, plays a vital role in signal transmission. It has
been reported that the Dl-NBP treatment improved the learning
and memory deficits induced by chronic cerebral hypoperfusion
in the animal model (Li et al., 2019). We speculate that Dl-
NBP improves cognitive function in hypoperfusion partly by
preventing the disruption of myelin and increasing the signal
transmission. In the present study, we also observed that the
Dl-NBP treatment improved the cognitive impairment in the
BCAS model. Next, we examined the effects of Dl-NBP on
demyelination because the intact and functional myelin is the
structural foundation of the electrical signal traveling from the
body of the cell down the synapse of the axon. Results showed
that a high-dose treatment of Dl-NBP significantly mitigated
demyelination compared with the BCAS model group. Further,
we evaluated the synapse signaling, which is related to the activity
of the central cholinergic system. Results indicated that a high
dose of Dl-NBP promoted neuronal intrinsic excitability and
synapse function compared with the BCAS model group. These
two neuroprotective aspects of Dl-NBP eventually benefited the
cognitive function recovery after BCAS.

White matter is more susceptible to chronic cerebral
hypoperfusion than gray matter, which involves both axonal
and myelin components (Wakita et al., 2002). Myelin is
produced by oligodendrocytes, which are attached to the axons
and, therefore, could interact with the axons in the central
nervous system. During the process of demyelination caused
by hypoperfusion, the axonal changes are non-ignorable. It
was reported recently that the degradation of axons was
accompanied by mitochondrial shortening in the in vitro
model of WML (Cui et al., 2020). While in our study, we
observed abnormal-shaped mitochondria in the BCAS mice
showed an increased length and a reduced diameter. After
a high-dose treatment of Dl-NBP, the morphological changes
of mitochondria recovered significantly. Mitochondria are the
most sensitive organisms to hypoxia and respond quickly
upon ischemial insult. Normally, mitochondria undergo massive
fusion and fission events, as well as transportation along the
axons, to continuously maintain their function and maintain
the energy supply to cells (Youle and van der Bliek, 2012;
Lee and Yoon, 2016; Meyer et al., 2017). An impaired
balance of mitochondrial dynamics occurs under hypoperfusion.
Meanwhile, we observed an increased number of abnormal
mitochondria accumulated in the axons of BCAS mice, but
a high-dose treatment of Dl-NBP reduced their accumulation.

These results indicated that Dl-NBP targets axonal mitochondria
in alleviating demyelination damage.

Syntaphilin is a major mitochondrial anchoring protein
targeting the axons (Joshi et al., 2019). The SNPH deletion
produces striking benefits in the MS demyelination model by
prolonging survival, reducing cerebellar damage, suppressing
oxidative stress, and improving mitochondrial health (Joshi
et al., 2015). Later, we examined the SNPH levels and found
a high expression of SNPH in BCAS mice, accompanied with
increased stationary mitochondria in the axons. A high-dose
treatment of Dl-NBP inhibited the SNPH levels, which then
promoted both the anterograde and retrograde transport of
mitochondria. Through SNPH OE, the protective effects of
Dl-NBP on mitigating demyelination disappeared. Further, the
protection of cognitive function was abolished as well. Thus, we
found SNPH to be a novel target of Dl-NBP in hypoperfusion-
induced WML.

One of the primary roles of mitochondria is to produce
ATP. The anterograde transport of mitochondria will increase
mitochondrial respiration and ATP production (Roger et al.,
2017; Rangaraju et al., 2019). The increased anterograde
transport of mitochondria might help the axons to maintain
energy stability, and this is likely to underlie the improved
synapse signaling function in a high-dose Dl-NBP treated group.
The retrograde transport of mitochondria causes mitophagy
of dysfunctional mitochondria, which alleviated the ROS
production. Since myelin is sensitive to ROS, the reduced ROS
production in Dl-NBP treated mice may explain the protection
of myelin and keep the structure of the synapses intact.

In conclusion, our results indicate that a high dose of Dl-NBP
inhibited the expression of SNPH, which is an axonal specific
mitochondrial arching protein. The SNPH inhibition by Dl-NBP
alleviates mitochondrial load among the axons and promotes
the anterograde and retrograde mitochondrial transport, which
then rescued demyelination and cognitive function in the WML
model. These findings of our study suggest that Dl-NBP is a
promising treatment for alleviating the cognitive dysfunction and
alleviating demyelination in WML.
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