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Alzheimer disease (AD) is an aging-related disorder linked to endoplasmic reticulum
(ER) stress. The main pathologic feature of AD is the presence of extracellular senile
plaques and intraneuronal neurofibrillary tangles (NFTs) in the brain. In neurodegenerative
diseases, the unfolded protein response (UPR) induced by ER stress ensures cell
survival. Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against
ER stress and has been implicated in the pathogenesis of AD. MANF is expressed
in neurons of the brain and spinal cord. However, there have been no investigations on
MANF expression in the brain of AD patients. This was addressed in the present study by
immunohistochemistry, western blotting, and quantitative analyses of postmortem brain
specimens. We examined the localization and expression levels of MANF in the inferior
temporal gyrus of the cortex (ITGC) in AD patients (n = 5), preclinical (pre-)AD patients
(n = 5), and age-matched non-dementia controls (n = 5) by double immunofluorescence
labeling with antibodies against the neuron-specific nuclear protein neuronal nuclei
(NeuN), ER chaperone protein 78-kDa glucose-regulated protein (GRP78), and MANF.
The results showed that MANF was mainly expressed in neurons of the ITGC in all
3 groups; However, the number of MANF-positive neurons was significantly higher in
pre-AD (Braak stage III/IV) and AD (Braak stage V/VI) patients than that in the control
group. Thus, MANF is overexpressed in AD and pre-AD, suggesting that it can serve as
a diagnostic marker for early stage disease.

Keywords: Alzheimer disease, cerebral cortex, endoplasmic reticulum stress, MANF, hyperphosphorylated tau,
senile plaque

INTRODUCTION

Alzheimer disease (AD) is a progressive neurodegenerative disease with insidious onset (Mathys
et al., 2019) that constitutes a major public health burden (Scheltens et al., 2016; Alzheimer’s
Association, 2020). The prevalence of AD among people over the age of 65 years is estimated to
be 10–30%, which is increasing with the aging of the global population (Masters et al., 2015). AD
is characterized by a progressive decline in cognitive function and neuronal loss (Pietronigro et al.,
2016). There are two types of brain lesion that are the pathologic hallmarks of AD: extracellular
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TABLE 1 | Demographic and clinicopathologic information of the samples.

NBB no. Autopsy Braak stage Group Age (years) Sex PMD (h) BW (g) CSF pH

NFT Amyloid

15033 S15/033 0 A CON 93 M 07:40 1155 6.20

14043 S14/043 0 O CON 60 F 08:10 1310 6.58

01045 S01/115 I B CON 83 M 04:35 1367 6.49

02018 S02/043 I B CON 92 F 07:00 1193 6.45

04026 S04/074 I B CON 91 F 07:45 1054 6.90

14014 S14/014 III B Pre-AD 90 F 06:05 1255 6.12

14020 S14/020 III O Pre-AD 92 F 06:35 1305 6.12

95059 S95/140 IV NA Pre-AD 86 F 03:20 995 7.14

08075 S08/241 IV C Pre-AD 88 M 05:00 1296 6.45

09096 S09/301 IV C Pre-AD 92 M 08:25 1117 6.14

97015 S97/045 V NA AD 85 F 03:10 1044 6.90

00054 S00/115 V C AD 59 M 07:45 1171 6.29

00119 S00/264 V C AD 85 F 06:10 1003 6.65

11121 S11/121 V NA AD 95 M 07:00 1143 6.18

02069 S02/203 VI C AD 70 F 08:15 876 6.30

AD, Alzheimer disease; BW, brain weight; CON, non-dementia control; CSF, cerebrospinal fluid; F, female; M, male; NA, not available; NBB, Netherlands Brain Bank; NFT,
neurofibrillary tangles; PMD, postmortem delay; pre-AD, preclinical Alzheimer disease.

senile plaques composed of amyloid β-peptide (Aβ), and
intraneuronal neurofibrillary tangles (NFTs) consisting of paired
helical filaments of hyperphosphorylated tau protein (Braak and
Del Tredici, 2018). AD patients exhibit different degrees of
nucleolar pyknosis in neurons or even the disappearance of
neurons. The pathogenesis of AD has been linked to dysfunction
of the endoplasmic reticulum (ER) (Mukherjee and Soto, 2011;
Cabral-Miranda and Hetz, 2018), which is the site of protein
folding and secretion in eukaryotic cells (Gerakis and Hetz, 2018).
ER stress, which is induced by the accumulation of unfolded
or misfolded proteins in the ER (Ghemrawi and Khair, 2020),
has been proposed as a mechanism underlying Aβ-induced
Alzheimer-like neuropathology (Goswami et al., 2020). Although
homeostatic mechanisms such as the unfolded protein response
(UPR) can restore normal ER function (Rahman et al., 2018),
prolonged ER stress can lead to cell dysfunction and death (Bravo
et al., 2013; Lu et al., 2014).

Mesencephalic astrocyte-derived neurotrophic factor
(MANF) – originally named arginine-rich protein (ARP)
or arginine-rich mutated in early tumors (ARMET) – is an
evolutionarily conserved secreted protein expressed in the
rodent brain that has been shown to play a protective role
in ER stress (Apostolou et al., 2008; Wang et al., 2014). Like
cerebral dopamine neurotrophic factor (CDNF), MANF is
classified as a neurotrophic factor (Lindholm and Saarma,
2010; Lindahl et al., 2017) that participates in the UPR
(Apostolou et al., 2008). MANF was shown to rescue neurons
from apoptosis and ER stress (Hellman et al., 2011), and
knocking down MANF expression induced the UPR and
increased the neurotoxic effects of Aβ (Xu et al., 2019).
Additionally, chronic activation of the UPR in the brain
has been reported in MANF-deficient mice (Pakarinen
et al., 2020). Glucose-regulated protein (GRP)78 is an ER
stress-associated marker (Sakono and Kidani, 2017) and

UPR-regulated chaperone that interacts with MANF (Yan
et al., 2019). In general, MANF is upregulated and plays a
protective role in the response to ER stress (Xu et al., 2019).
MANF exerted neuroprotective effects against ethanol-induced
neurodegeneration by alleviating ER stress, which may be
relevant to other ER stress-related neurodegenerative diseases
(Wang Y. et al., 2021).

MANF has shown protective effects in animal models of AD
(Xu et al., 2019), Parkinson disease (Voutilainen et al., 2009),
spinocerebellar ataxia (Yang et al., 2014), ischemic brain damage
(Airavaara et al., 2010), retinal degeneration (Lu et al., 2018),
cardiac ischemia (Arrieta et al., 2020), and liver injury (Sousa-
Victor et al., 2019). Given the diverse pathologies that MANF can
alleviate, its involvement in diseases related to the activation of
the UPR is expected. However, to date there have been no reports
on the expression of MANF in the brain of AD patients.

The inferior temporal gyrus of the cortex (ITGC) is a key brain
area involved in cognitive functions including memory, auditory
cognition, and semantics (Meunier and Barbeau, 2013). The
ITGC plays an important role in verbal fluency, which is affected
soon after the onset of AD (Scheff et al., 2011). The hippocampus,
a region severely affected in AD, is connected to the ITGC
(Mégevand et al., 2017). To address the above point, the present
study examined the subcellular localization and expression of
MANF in the ITGC of human brain specimens from pre-AD and
AD patients in order to clarify its role in AD pathogenesis.

MATERIALS AND METHODS

Brain Specimens
Paraffin-embedded postmortem human brain tissue specimens
were provided by the Netherlands Brain Bank (NBB)
(Amsterdam, Netherlands). The brains were donated to
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FIGURE 1 | p-tau and Aβ17-24 expressions in the ITGC detected by immunohistochemistry. (A–H) p-tau and Aβ17-24 immunoreactivity in control subjects (left) and
AD patients (right). Patients with AD showed extensive accumulation of Aβ plaques [arrowheads in panels (F,H)] and NFTs [arrowheads in panels (B,D)] in the ITGC.
Scale bar, 50 µm (A,B,E,F), 20 µm (C,D,G,H).

research after patients or their closest relatives provided written,
informed consent. AD pathology was evaluated according to
Braak stage (Braak and Braak, 1991). Ten AD cases (age range,
59–95 years; male-to-female ratio, 2:3) and 5 sex- and age-
matched control cases (age range, 60–93 years; male-to-female
ratio, 2:3) were included in the analysis. The AD cases were

further classified into pre-AD (Braak stages: III/IV) and AD
(Braak stages: V/VI) (n = 5 each). Non-dementia control cases
(Braak stage: 0/I) had no known clinical history of dementia, and
the cause of death was unrelated to the central nervous system.
Demographic and clinicopathologic data for the samples are
shown in Table 1.
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FIGURE 2 | Mesencephalic astrocyte-derived neurotrophic factor levels
detected by western blotting with a polyclonal antibody. Cell lysis solutions
and human brain temporal cortex protein extracts were probed with a
polyclonal anti-MANF antibody to evaluate specificity. The immunoblot shows
a clear single band of ∼18 kDa in all protein extracts and cell lysis solutions.

Tissue Preparation
Paraffin blocks containing the ITGC were stored at room
temperature under protection from light. Serial coronal sections
were cut on a microtome (RM2235; Leica, Wetzlar, Germany)
at a thickness of 6 µm and stored at room temperature. We
selected 1 section every 150 µm (or approximately every 25
sections) for a total of 45 sections from the ITGC, as well
as 1 section each from the anterior, middle, and posterior
cortices. Thus, 45 brain tissue sections were used for MANF
immunohistochemistry from pre-AD, AD, and non-dementia

control specimens for quantification of MANF-immunoreactive
neurons in the ITGC. Additionally, in order to detect pathologic
lesions (Aβ and tau) and determine whether MANF is primarily
expressed in neurons and determine its subcellular localization,
several adjacent sections were randomly selected from pre-AD,
AD, and non-dementia control.

Specific Assessment of MANF
Antibodies
To ensure that the rabbit polyclonal anti-MANF antibody used in
this study (ARMET/ARP; cat. no. Ab67271; Abcam, Cambridge,
United Kingdom) could detect MANF in human brain
specimens, we tested its specificity in cell lysates of HEK 293T
and SHSY5Y cell line and homogenates of human brain temporal
cortex tissue by western blotting under denaturing conditions as
previously described (Huang et al., 2020). The SHSY5Y (Catalog
number TCHu97), HEK293T (Catalog number GNHu17) cells
were purchased from the typical culture preservation committee
of Chinese academy of sciences. To further confirm the specificity
of the anti-MANF antibody, the levels of MANF expression
in hepatocellular tissues of hepatocyte-specific MANF-knockout
(HKO) control mice and wild-type (WT) control mice were
measured by immunohistochemistry. In previous studies, the
efficiency of MANF knockout from the HKO control mice have
been detected with the use of western blotting (Yang et al., 2021).
The hepatocellular tissue sections of the HKO control mice and
WT control mice were provided by Prof. Yuxian Shen of the
Anhui Medical University.

Immunohistochemistry
Brain sections were deparaffinized to water according to
standard procedures. After washing with phosphate-buffered
saline (PBS; pH value 7.2–7.4; 3 × 10 min), antigen retrieval
was performed by boiling the sections in citric acid buffer
and steaming for 1 min 15 s. The sections were left to
cool at room temperature for about 30 min, then flushed
with warm water (50◦C) for 5 min and washed with PBS
(3 × 10 min). Endogenous peroxidase activity was quenched
by incubating the sections in a solution of 3% H2O2 and
methanol for 10 min at 25◦C. The tissue was blocked in
10% sheep serum albumin solution at 37◦C for 1 h, followed
by overnight incubation at 4◦C with rabbit polyclonal anti-
MANF antibody at 1:400 dilution. The following day, the
sections were warmed at room temperature for 15 min in a
covered humid chamber, then washed in PBS (3 × 10 min)
before incubation with biotin-conjugated goat anti-rabbit IgG
for 15 min at room temperature (≥25◦C). After washing in PBS

TABLE 2 | Mesencephalic astrocyte-derived neurotrophic factor expression in the inferior temporal gyrus cortex in pre-AD and AD patients and non-dementia controls.

Variable AD Pre-AD Control

Diameter of nucleoli (µm) 3.68 ± 0.77** 3.70 ± 0.82** 4.16 ± 1.22

Cytoplasmic MANF-positive neurons/1 mm2 115.81 ± 21.24** 116.58 ± 21.99** 100.85 ± 19.91

Values represent mean ± standard deviation; **P < 0.05 vs. control group (two-way analysis of variance). AD, Alzheimer disease; MANF, mesencephalic astrocyte-derived
neurotrophic factor; pre-AD, preclinical Alzheimer disease.
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FIGURE 3 | Mesencephalic astrocyte-derived neurotrophic factor levels in the HKO control mice and WT control mice detected by immunohistochemistry with
polyclonal antibodies. No positive staining was detected in the hepatocellular tissues of the HKO control mice (A,B). MANF was detected in the hepatocellular
tissues of the WT control mice (C,D). Scale bar: 50 µm (A,C) and 20 µm (B,D).

(3 × 10 min), diaminobenzidine reagent was added dropwise,
and the colorimetric reaction was allowed to proceed for 1–
1.5 min. The sections were washed and then stained with
hematoxylin, dehydrated through a graded series of alcohol
and xylene, and mounted with neutral gum for observation
under a light microscope (CX43; Olympus, Tokyo, Japan).
Immunohistochemical detection of tau and Aβ was performed
using monoclonal antibodies against phosphorylated (p-)tau
(Ser202, Thr205) (AT8; Thermo Fisher Scientific, Waltham, MA,
United States; cat. no. MN1020) and Aβ17−24 (4G8; Biolegend,
San Diego, CA, United States; cat. no. 800701), both used at 1:200
dilution. Immunohistochemistry was performed on liver sections
as previous described (Wang P. et al., 2021).

To determine whether MANF is mainly expressed in neurons
and to determine its subcellular localization, we performed
double immunofluorescence labeling of MANF/neuronal nuclei
(NeuN) and MANF/GRP78 as previously described (Shen et al.,
2012; Gao et al., 2018; Herranen et al., 2020), with minor
modifications to the protocol. The following antibodies were
used: rabbit polyclonal anti-MANF (1:400 dilution); mouse
monoclonal anti-NeuN (clone A60, cat. no. MAB377; Abcam)
(1:400 dilution); and rabbit polyclonal anti-GRP78 (GRP78 BiP,
cat. no. ab21685; Abcam) (1:200 dilution). Nuclei were stained
with 4’,6-diamidino-2-phenylindole (cat. no. C1005; Beyotime,
Shanghai, China). The specificity of these antibodies has been
reported in previous studies (Zhu et al., 2007; Shen et al.,
2012; Braak and Del Tredici, 2018; Adaikkan et al., 2019;
Xu et al., 2019).

Measurements
Images of the brain sections were obtained with a digital slide
scanner (Pannoramic MIDI; 3DHISTECH, Budapest, Hungary)

and Case Viewer software (3DHISTECH). Quantitative analysis
of the density of neurons expressing MANF in the cytoplasm
was carried out using ImageJ software (Schneider et al., 2012).
The diameters of the region of interests (ROIs) in nucleoli were
measured with MetaMorph software (Molecular Devices, San
Jose, CA, United States). The methods used for region selection
and measurement have been described elsewhere (Hu et al., 2002,
2003; Thangavel et al., 2008). Briefly, the cortical selection in
each tissue section was defined in the 5 ROIs (size: 600 × 317
µm) on the digitized autoradiograms using Case Viewer software,
and the area was measured. Each selection was drawn from
the cortical surface extending perpendicularly to the gray and
white matter boundary. Up to 5 selections were defined for
each ROI but in some ROIs, the number of selections was
limited by loss of tissue integrity. In each image of the ITGC
acquired under high magnification (40× objective), the average
optical density of immunopositive areas was calculated for each
visual field; the density of neurons expressing MANF in the
cytoplasm was determined. Additionally, the diameter of nucleoli
of nucleolated neuronal profiles from 5 ROIs per ITGC tissue
section under high magnification (40× objective) was measured
by an investigator who was blinded to the clinicopathologic data
of the subjects.

Statistical Analysis
Statistical analyses were performed using SPSS v22.0 (SPSS
Inc., Chicago, IL, United States). Data are expressed as
mean ± standard deviation. Based on Shapiro–Wilk test, almost
all data were skewed, so non-parametric tests were used.
Differences between groups were evaluated with the Kruskal–
Wallis H test for multiple comparisons. Two-way analysis of
variance was used to compare MANF expression in the ITGC
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FIGURE 4 | Cytoarchitecture of the ITGC. (A–C) Organization of cortical laminae visualized in tissue sections immunolabeled with an antibody against MANF. Layers
are indicated by roman numerals. Scale bar, 200 µm (A) and 50 µm (B,C).

among pre-AD, AD, and non-dementia control cases. P < 0.05
was considered significant.

RESULTS

Clinicopathologic Information of pre-AD,
AD, and Control Cases
The clinicopathologic information for the study population
is summarized in Table 1. There were no differences in age
(P = 0.428), postmortem delay (P = 0.650), body weight
(P = 0.125), and cerebrospinal fluid pH (P = 0.404) among pre-
AD and AD patients and control subjects. Immunohistochemical
analysis revealed that p-tau immunoreactivity was

predominantly in the ITGC and was higher in AD patients
(NBB no. 00119; Autopsy S00/264) compared to control subjects
(NBB no. 01045; Autopsy S01/115). Aβ17−24 (4G8) expression
was also higher in AD cases (NBB no. 11121; Autopsy S11/121)
than in controls (NBB no. 15033; Autopsy S15/033) (Figure 1).

Specificity of the Anti-MANF Antibody
We evaluated the specificity of the polyclonal anti-MANF
antibody by western blotting using cell cultures and human
brain temporal cortex extracts. The antibody recognized a single
band at ∼18 kDa – which is the known molecular weight of
MANF protein (Figure 2). Furthermore, we have not detected
MANF expression in hepatocellular tissues of HKO control mice
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FIGURE 5 | Representative images of the expression of MANF and GRP78 in the ITGC. (A–H) The pictures above are representative images of immunofluorescence
labeling for MANF (red) and GRP78 (green). The nuclei were stained with DAPI (blue). Picture D is a merged image of panels (A–C). The magnified images show the
expression and cellular distribution of MANF and GRP78, respectively. Scale bar: 50 µm (A–D) and 10 µm (E–H).

by immunohistochemical staining, compared with WT control
mice (Figure 3).

Nucleoli of ITGC Neurons Are Reduced
in Size in Pre-AD and AD
The diameter of neuronal nucleoli of ITGC neurons was
significantly smaller in pre-AD and AD patients than in control
subjects (P < 0.05; Table 2).

Distribution of MANF-Positive Neurons in
the ITGC and Subcellular Localization of
MANF
MANF expression was detected in the ITGC of human brain
specimens (NBB no. 02018; Autopsy S02/043). Neurons in
layer IV and V had especially strong MANF immunoreactivity
(Figure 4). Double immunofluorescence labeling showed partial
superimposition of GRP78 and MANF, which were mainly
distributed throughout the ER (NBB no. 97015; Autopsy S97/045)
(Figure 5). A large number of neurons in the ITGC express
both MANF and NeuN, indicating that MANF is a protein
expressed primarily in neurons (NBB no. 00119; Autopsy
S00/264) (Figure 6).

Mesencephalic Astrocyte-Derived
Neurotrophic Factor Is Overexpressed in
the ITGC in Pre-AD and AD
Mesencephalic astrocyte-derived neurotrophic factor expression
in the ITGC of pre-AD, AD, and non-dementia control cases was
evaluated by immunohistochemistry. MANF immunoreactivity

was observed in all three groups, mainly in neurons (Figure 7).
The rank order of expression level was pre-AD > AD >>
control (Figure 8). Additionally, the number of neurons in
the ITGC with cytoplasmic MANF expression per unit area (1
mm2) was higher in pre-AD and AD patients than non-dementia
control cases. MANF was mainly expressed in the cytoplasm of
neurons (Table 2).

DISCUSSION

The results of this study demonstrate that proteins associated
with AD pathogenesis were more highly expressed in the ITGC
of patients with AD than in control subjects, which is consistent
with previous reports (Zhu et al., 2007; Lacosta et al., 2017).
These AD biomarkers include p-tau and Aβ17−24, which are
components of NFTs and amyloid plaques, respectively.

Mesencephalic astrocyte-derived neurotrophic factor is an
evolutionarily conserved protein with both cytoprotective and
immunomodulatory effects (Neves et al., 2016) that is highly
expressed in the developing mammalian cortex and is involved
in neurite extension and the regulation of ER homeostasis
in neurons (Adaikkan et al., 2019). MANF was shown to
play a protective role in cell survival by attenuating the
neurotoxicity resulting from ER stress (Xu et al., 2019). Moreover,
treatment with recombinant MANF or MANF overexpression
alleviated Aβ-induced UPR activation caused by ER stress,
while knocking down MANF promoted UPR activation and
enhanced the toxicity of Aβ (Xu et al., 2019). Exogenous
MANF stimulated nerve repair in dopaminergic neurons
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FIGURE 6 | Representative images of MANF and NeuN expression in the ITGC. (A–F) Representative micrographs of double immunolabeling with antibodies against
MANF (red) and NeuN (green). MANF was mainly detected in neurons. Scale bar: 100 µm (A–F).

(Petrova et al., 2003; Voutilainen et al., 2009; Hao et al., 2017;
Liu et al., 2018) and although it was not essential for neuron
survival in mouse embryo, the endogenous protein was shown
to be necessary for maintaining neuronal ER homeostasis both
in vitro and in vivo (Pakarinen et al., 2020). As an ER stress-
associated protein, MANF has been implicated in chronic
stress and multiple neurodegenerative diseases including AD
(Zhu et al., 2017).

In our study, we examined the expression of MANF in the
ITGC of human brain specimens from pre-AD and AD patients
and non-dementia control cases by immunohistochemistry.
A representative Western blot result shows that the MANF
protein was stably expressed in HEK 293T and SHSY5Y cells.
However, compared with the WT control mice, MANF did
not express in the hepatic cells of the HKO control mice.
The reported specificity of the anti-MANF antibody (Lindholm
et al., 2008; Yang et al., 2017) was confirmed by western
blotting with the detection of a single protein band at ∼18 kDa.
MANF was mainly present in neurons of the ITGC, consistent
with the known expression pattern of MANF in the aging
human cerebral cortex1 and adult mouse brain (Lindholm
et al., 2008; Tseng et al., 2017; Yang et al., 2017; Danilova

1https://www.proteinatlas.org/ENSG00000145050-MANF/tissue

et al., 2019). This was also confirmed by MANF/NeuN double
immunolabeling experiments.

The size of nucleoli of ITGC neurons was significantly
smaller in pre-AD and AD than in control brains, in
line with previous observations (Hu et al., 2003); however,
MANF immunoreactivity in neurons was higher in patients
than in controls. GRP78 and MANF interact as part of
a macromolecular complex in the ER (Glembotski et al.,
2012). AD is related to ER calcium deficiency (Trychta et al.,
2018); depletion of ER calcium leads to dissociation of the
MANF/GRP78 complex and MANF secretion (Apostolou et al.,
2008; Glembotski et al., 2012). ER calcium depletion also
causes ER stress, which further results in the upregulation
of MANF. In the present study, double immunolabeling of
MANF/GRP78 showed that the MANF seems localized within
ER. Based on these findings, we speculate that in pre-AD and
AD, calcium depletion and severe chronic ER stress leads to
the upregulation of MANF and activation of the apoptosis
signaling pathway, resulting in the shrinkage of neuronal nucleoli
and neuronal death.

A large number of neurons in the ITGC express both
MANF and NeuN, indicating that MANF is a protein
expressed primarily in neurons. MANF expressed by
adeno-associated virus (AAV) was predominantly detected
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FIGURE 7 | Mesencephalic astrocyte-derived neurotrophic factor expression in the ITGC of AD, pre-AD, and control cases detected by immunohistochemistry.
(A–F) MANF expression in non-dementia control (A,B), pre-AD (C,D), and AD (E,F) samples shown at low (20×) (A,C,E) and high (40×) (B,D,F) magnification.

in the cytoplasm of infected cells (Yang et al., 2017),
which is consistent with the localization of endogenous
MANF. AAV-induced MANF expression was also observed
in neurons and glia of the cerebral cortex following
ischemia (Airavaara et al., 2010). MANF is upregulated in
neurons under pathologic conditions such as focal cerebral
ischemia, and a larger infarct area was observed in MANF-
deficient brains (Shen et al., 2012), suggesting that MANF exerts
a protective effect against ischemic injury in cortical neurons
(Mätlik et al., 2018). However, a larger sample size and more
detailed cytologic analyses are needed to confirm our results and
to determine whether the increased level of MANF in the pre-AD
and AD brain is related to a perturbation of ER homeostasis.

There were some limitations to our study, we did not examine
the expression of ER stress or apoptosis markers to clarify the
function of MANF in AD. Nonetheless, our results demonstrate
that MANF is overexpressed in neurons in the brain of pre-AD
and AD patients, suggesting that it can serve as a diagnostic
marker for early stage disease.

FIGURE 8 | Increased MANF expression in the ITGC of pre-AD and AD
groups. Overall expression in both groups was higher than in the control
group, while the expression level was lower in the AD group than in the
pre-AD group, although the difference was non-significant. **P < 0.05 vs.
control group.
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