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Alzheimer’s disease (AD) is an irrevocable neurodegenerative condition characterized

by the presence of senile plaques comprising amassed β-amyloid peptides (Aβ)

and neurofibrillary tangles mainly comprising extremely phosphorylated Tau proteins.

Recent studies have emphasized the role of microRNAs (miRNAs) in the development

of AD. A number of miRNAs, namely, miR-200a-3p, miR-195, miR-338-5p,

miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p, miR-135b, miR-425-5p,

and miR-339-5p, have been shown to participate in the development of AD through

interacting with BACE1. Other miRNAs might affect the inflammatory responses in the

course of AD. Aberrant expression of several miRNAs in the plasma samples of AD

subjects has been shown to have the aptitude for differentiation of AD subjects from

healthy subjects. Finally, a number of AD-modifying agents affect miRNA profile in cell

cultures or animal models. We have performed a comprehensive search and summarized

the obtained data about the function of miRNAs in AD in the current review article.

Keywords: Alzheimer’s disease, miRNA, marker, expression, polymorphism

INTRODUCTION

Alzheimer’s disease (AD) is an irrevocable neurodegenerative condition with a progressive course,
and it is the chief reason for dementia in the elderly (Prince et al., 2013). AD is characterized by
pervasive cognitive defects and memory deficits, leading to the dependence of the majority of AD
patients on others for their routine activities. From a pathological point of view, AD is defined by
the presence of senile plaques comprising amassed β-amyloid peptides (Aβ) and neurofibrillary
tangles mainly comprising extremely phosphorylated Tau proteins (Ballard et al., 2011). The most
accepted hypotheses for the development of AD are based on these two main pathological events
[i.e., Aβ accumulation and Tau accumulation (Wang et al., 2019a)]. The amyloid precursor protein
is converted to Aβ through consecutive enzymatic reactions catalyzed by β-secretase (BACE1) and
γ-secretase (containing presenilin 1 and presenilin 2) (Querfurth and LaFerla, 2010). Recent studies
have emphasized the role of microRNAs (miRNAs) in the development of AD (Wang et al., 2019a).
These ∼22 nucleotide transcripts post-transcriptionally regulate the expression of several target
genes through binding with 3’ UTR and destructing the target transcript or reducing its translation
(O’Brien et al., 2018). Sequence complementarity mainly regulates the miRNA/mRNA interactions
leading to the ability of one miRNA to target several genes and the possible regulation of one
gene by multiple miRNAs. Therefore, miRNAs are potential means for investigating multifactorial
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disorders such as AD (Iqbal and Grundke-Iqbal, 2010). A
leading investigation in this regard has examined the number of
brain-associated miRNAs expressed in the human hippocampus
specimens obtained from fetal, adult, and AD patients, revealing
misregulation of certain miRNAs in the AD brain and their
possible contribution to the pathological processes of this
disorder (Lukiw, 2007). Dysregulation of other miRNAs has also
been verified in multiple studies, and the underlying mechanisms
of their contribution in AD have been identified in some cases.
We have performed a comprehensive search and summarized
the obtained data about the function of miRNAs in AD in this
review article.

DYSREGULATED MIRNAS IN AD

Dysregulation of miRNAs has been demonstrated in human
AD subjects or animal models of AD. Moreover, several
researchers have induced or suppressed the expression of
some miRNAs in the cell/animal models of AD to appraise
their function in the progression of AD. In a rat model of
AD caused by the administration of Aβ25−35 into the brain,
downregulation of SOX6 and over-expression of miR-129-5p
have shortened the dormant escape period and enhanced the
time of crossing platforms, repairing the pathological damage,
blocking neuronal apoptosis, and decreasing inflammation.
Based on the protective effects of miR-129-5p against nerve
damage and inflammation, miR-129-5p has been suggested
as a candidate for therapeutic options against AD, as it acts
to suppress SOX6 (Zeng et al., 2019). Expression of miR-
200a-3p has been shown to be repressed in animal and
cell models of AD. miR-200a-3p can suppress cell apoptosis,
inactivate Bax/caspase-3 axis, and decrease Aβ1−42 and tau
phosphorylation in cell experiments. Mechanistically, these
effects are mediated through the modulation of translocation
of BACE1 and PRKACB. Taken together, the neuroprotective
impact of miR-200a-3p is accomplished by inhibition of BACE1
expression and subsequent suppression of Aβ production as
well as reduction of PKA expression and Tau phosphorylation
(Wang et al., 2019b). miR-455-3p has been shown to bind with
3’ UTR of APP gene to decrease its expression and reduce
expression of mitochondrial fission proteins (Kumar et al., 2019).
Mutant APP cells that show expression of miR-455-3p exhibit
upregulation of synaptic genes. Over-expression of miR-455-3p
in mutant APP cells reduces the number of mitochondria and
increases the size of the mitochondria. Taken together, miR-455-
3p controls APP processing and protects against mutant APP-
associated mitochondrial dysfunction and synaptic anomalies in
AD (Kumar et al., 2019). Expression of miR-455-3p has been
shown to be increased in postmortem brain samples, fibroblasts,
and plasma samples of patients with AD compared with controls

Abbreviations: AD, Alzheimer’s disease; microRNA, miRNA; Aβ, β-amyloid
peptides; BACE1, β-secretase; EOAD, early-onset Alzheimer’s disease;
CNV, copy number variant; SNP, single nucleotide polymorphism; AChE,
Acetylcholinesterase; iNOS, Inducible nitric oxide synthase; ROS, reactive oxygen
species; MDA, Malondialdehyde; MAPK, mitogen-activated protein kinase; SOD,
Superoxide dismutase; GSH-Px, glutathione peroxidase.

(Kumar et al., 2017; Kumar and Reddy, 2018). As a primary
event, expression of miR-409-5p has been decreased in an
APP/PS1 double transgenic mice model of AD. Over-expression
experiments have shown that this miRNA has a harmful impact
on neurite outgrowth, reduces neuron survival, and quickens the
progression of Aβ1−42-associated pathologic events (Guo et al.,
2019). In line with the observed downregulation of miR-409-
5p in APP/PS1 AD model, Aβ1−42 peptide has been shown to
downregulate miR-409-5p levels. A luciferase study has shown
that Plek is a target of miR-409-5p (Guo et al., 2019). Ectopic
expression of miR-409-5p has induced neurotoxic effects and
interferes with neuron survival and differentiation, while Plek
upregulation could partly protect the neurite outgrowth from
these toxic effects. Taken together, reduction of miR-409-5p
expression in the early stages of AD might be a self-protective
response to lessen the synaptic injury induced by Aβ (Guo
et al., 2019). miR-132 is another downregulated miRNA in AD.
Experiments in a rat model of AD have shown upregulation
of AChE, iNOS, ROS, MDA, MAPK1, and p-MAPK1 and
downregulation of SOD, GSH-Px, and miR-132. Over-expression
of miR-132 has reversed these markers demonstrating the
role of this miRNA in the suppression of hippocampal iNOS
expression and oxidative stress through reduction of MAPK1
levels (Deng et al., 2020). However, expression of this miRNA has
been demonstrated to be reduced in neurally-originated plasma
exosomes of AD subjects (Cha et al., 2019). Table 1 shows the
summary of studies that reported decreased levels of miRNAs
in AD.

Although several studies have reported downregulation of
miR-132 in AD (Wong et al., 2013; El Fatimy et al., 2018; Cha
et al., 2019; Deng et al., 2020), Liu et al. have reported high levels
of miR-132 in patients with mild cognitive impairment and AD
vs. normal individuals. They have shown the impact of miR-132
upregulation in the induction of apoptosis in neurons through
increasing Bax/Bcl-2 ratio (Liu and Zhang, 2019). Moreover,
they have reported that miR-132 increases Tau phosphorylation
and expression levels of Rb, Histone H1, and CDK-5.
Collectively, they have suggested that miR-132 participates in
AD by controlling cell apoptosis and the GTDC-1/CDK-5/Tau
phosphorylation axis (Liu and Zhang, 2019). In addition to
GTDC-1, miR-132 is also known to regulate the expression
of synaptic proteins via complement C1q (Xu et al., 2019).
Similarly, expression of miR-132 has been shown to be decreased
in AD-derived plasma exosomes (Cha et al., 2019). miR-128 has
also been over-expressed in the brain samples of AD patients
(Liu et al., 2019). Experiments in AD mice have demonstrated
parallel upregulation of miR-128 and downregulation of PPARγ

in the cerebral cortex. The interaction between these two
transcripts has been validated through functional assays. miR-
128 silencing has suppressed AD-like features, amyloid plaque
creation, Aβ production, and inflammation in AD mice through
upregulating PPARγ (Liu et al., 2019). miR-425-5p is another
upregulated miRNA in patients with AD and the cellular
model of AD. Upregulation of miR-425-5p has induced cell
apoptosis, stimulated expression of GSK-3β, and enhanced tau
phosphorylation through targeting HSPB8 (Yuan et al., 2020).
miR-146a is also upregulated in AD and participates in the
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TABLE 1 | Downregulated miRNAs in AD subject, animal models of AD, and related cell lines and their functions in progression of AD.

microRNA Samples Assessed cell

line

Gene/protein

interaction

Signaling

pathway

Function References

miR-129-5p 90 male-specific pathogen-free (SPF)

Sprague-Dawley (SD) rats

Hippocampal

neuron cells of rat

SOX6 - Its upregulation represses apoptosis and inflammatory reactions

and attenuates neural injury by targeting SOX6.

Zeng et al., 2019

miR-200a-3p Plasma samples from 7 patients with

AD and 5 age-matched healthy

individual, APP/PS1 mice, SAMP8,

and SAMR1 mice

NB-1 BACE1, PRKACB - Has neuroprotective effects, suppresses apoptosis, and

decreases Aβ production through regulating expression of BACE1

and PRKACB

Wang et al., 2019b

miR-326 APPswe/PS1d E9 double transgenic

mouse

- VAV1 JNK signaling

pathway

Its overexpression decreased neuronal apoptosis and Aβ

accumulation and elevated viability of neuron cells by targeting

VAV1.

He et al., 2020

miR-98 70 Kunming mice Hippocampal

neuronal cells

HEY2 Notch signaling

pathway

Represses apoptosis of hippocampal neurons and shows

enhanced survival of these cells by targeting HEY2 and

inactivating the Notch signaling pathway

Chen et al., 2019

miR-196a 60 male Sprague-Dawley mice HEK-293T LRIG3 PI3/Akt pathway Its upregulation ameliorated cognitive decline, inhibited apoptosis,

and increased survival of neurons by targeting LRIG3.

Yang et al., 2019a

miR-195 Postmortem human brain tissues and

CSF samples from AD patients and

MCI subjects, Human ApoE4+/+ or

ApoE3+/+ knock-in (KI) mice

Mouse primary

neuron

synj1 - Its overexpression alleviated cognitive impairment and decreased

Aβ deposition and tau hyper-phosphorylation.

Cao et al., 2020

miR-195 SAMP8 and SAMR1 mice HEK293, N2a BACE1 - Its overexpression reduced Aβ production through targeting

BACE1.

Zhu et al., 2012

miR-338-5p Hippocampal tissue samples from

patients with AD and normal subjects,

5XFAD transgenic (TG) mice

- BACE1 NF-κB signaling

pathway

Its overexpression prevented Aβ formation, neuroinflammation,

cognitive deficit and impaired learning ability by targeting BACE1.

Qian et al., 2019

miR-338-5p Male C57BL/6 mice and male

APP/PS1 transgenic mice

Primary

hippocampal

neurons

BCL2L11 - Its overexpression prevented Aβ deposition, cognitive decline, and

reduced apoptosis rate of neurons by targeting BCL2L11.

Li et al., 2020a

miR-133b Serum samples from 105 AD patients

and 98 control individuals

SH-SY5Y EGFR - Its overexpression reduced apoptosis rate and improved cell

viability.

Wang et al., 2019c

miR-124 Male APP/PS1 transgenic mice - C1ql3 - Its overexpression increased angiogenesis and lowered the

accumulation of Aβ and prevented memory decline and learning

impairment.

Zhang et al., 2019

miR-124-3p - N2a/APP695swe

cells

Caveolin-1 PI3K/Akt/GSK3β

pathway

Its upregulation abated Tau hyperphosphorylation and cellular

apoptosis by targeting Caveolin-1 and modulation of

PI3K/Akt/GSK3β pathway.

Kang et al., 2017

miR-101a Plasma samples from 46 AD patients

60 healthy individuals, APPswe/

PS11E9 transgenic mice

SH-SY5Y MAPK1 MAPK pathway Regulates autophagy through targeting MAPK1 and modulating

the MAPK pathway

Xiao et al., 2019

miR-22 Serum samples from 33 patients with

AD and 30 healthy volunteers,

APP/PS1 double transgenic mice

MG cells GSDMD - Its overexpression suppressed secretion of inflammatory factors

and pyroptosis also decreased GSDMD expression.

Han et al., 2020

miR-34a - SH-SY5Y Caspase-2 - Its upregulation suppressed neurotoxicity induced by Aβ through

targeting Caspase-2.

Wang et al., 2019c

(Continued)
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TABLE 1 | Continued

microRNA Samples Assessed cell

line

Gene/protein

interaction

Signaling

pathway

Function References

miR-34a APP/PS1 transgenic mice SH-SY5Y, primary

cortical neuronal

cells

cyclin D1 - Regulates apoptosis rate and neuronal cell cycle by targeting

cyclin D1

Modi et al., 2016

miR-34a-5p

miR-125b-5p

Serum samples from 27 AD patients

and 27 age-matched control

individuals

N2a, MCN BACE1 - Their overexpression ameliorated oxidative stress and apoptosis

induced by Aβ through targeting BACE1.

Li et al., 2020b

miR-181a APP/PS1 transgenic mice and male

wild-type C67BL/6J mice

Murine brain

pericytes

FOXO1 - Its overexpression alleviated cognitive decline, reduced

accumulation of Aβ, and slowed pericyte loss by targeting FOXO1.

Wu et al., 2019

miR-31 Female AD triple-transgenic mice HT-22, HEK293,

SH-SY5Y

APP - Its overexpression reduced Aβ accumulation and alleviated

neuropathology of AD and memory impairment.

Barros-Viegas

et al., 2020

miR-409-5p APPswe/PS11E9 double transgenic

mice

PC12, Neuro2A,

HEK293T

Plek - Its overexpression expression aggravated cell survival and

differentiation and impaired neurite outgrowth by targeting Plek.

Guo et al., 2019

miR-107 CSF samples from 22 AD patients

and 10 healthy controls

SH-SY5Y FGF7 FGFR2/PI3K/Akt

pathway

Its upregulation reduced apoptosis and inflammation also elevated

proliferation of SH-SY5Y through regulation of

FGF7/FGFR2/PI3K/Akt Pathway induced by Aβ.

Chen et al., 2020a

miR-107 - hCMEC/D3, NHA,

HBVP

Endophilin-1 - Its overexpression inhibited disruption of the blood–brain barrier

induced by Aβ and alleviated impaired function of endothelial cells

by targeting Endophilin-1.

Liu et al., 2016a

miR-107

miR-103

Post-mortem brain tissues from 12

AD patients and 12 age- and

gender-matched control individuals

SK-N-BE,

HEK-293

CDK5R1 - Can be implicated in AD pathogenesis through regulation of

CDK5R1 expression and consequently influencing p53 levels

Moncini et al.,

2017

miR-212 Plasma sample from 31 AD patients

and 31 control subjects

SH-SY5Y, IMR-32 PDCD4 PI3K/AKT

signaling pathway

Reduces neurotoxicity of Aβ by targeting PDCD4 regulation of

PI3K/AKT signaling pathway

Chang, 2020

miR-433 Serum samples from 118 AD patients

and 62 healthy controls

SH-SY5Y,

SK-N-SH

JAK2 - Its overexpression improved the viability of neurons by targeting

JAK2. Its expression is associated with MMSE scores.

Wang and Zhang,

2020

miR-132 70 SPF Sprague-Dawley rats HEK 293T MAPK1 MAPK1 signal

pathway

Suppresses oxidative stress and alleviated cognitive performance

by targeting MAPK1

Deng et al., 2020

miR-132 P301S Tau transgenic mice Primary cortical

and hippocampal

neuron cultures

Rbfox1, GSK3β,

EP300, Calpain 2

- Has neuroprotective effects including reduces neurotoxicity of Aβ

and improves elongation of neurite and decreases neuronal death

through targeting Rbfox1, GSK3β, EP300, and Calpain 2

El Fatimy et al.,

2018

miR-132

miR-212

Human post-mortem brain tissues

from 10 AD patients and 6 control

subjects

Primary human

neurons, SH-SY5Y

NOS1 - Low expression of miR-132 and miR-212 disrupted the balance of

S-nitrosylation through modulation of NOS1 expression.

Wang et al., 2017

miR-132

miR-212

Brain tissues from 29 AD patients and

16 controls

PC12, primary

neurons

PTEN, FOXO3a,

P300

AKT signaling

pathway

Regulates survival and apoptosis of neuronal cells through

targeting PTEN, FOXO3a, and P300.

Wong et al., 2013

miR-132 Post-mortem brain tissues from AD

patients, 3xTg-AD mice lacking the

miR-132/212 cluster

Neuro2a, Neuro2a

APPSwe/19,

HEK293T,

HEK293-APPSwe

Sirt1 - Its deletion was associated with increased Aβ production and the

establishment of amyloid plaque.

Hernandez-Rapp

et al., 2016

miR-132 Brain tissues from AD patients and

normal controls, APPPS1 mice

HEK293-APPswe ITPKB - Regulates Aβ formation and TAU phosphorylation through

targeting ITPKB and modulation of ERK1/2 and BACE1 activity.

Salta et al., 2016

(Continued)
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TABLE 1 | Continued

microRNA Samples Assessed cell

line

Gene/protein

interaction

Signaling

pathway

Function References

miR-9-5p - HT22 GSK-3β Nrf2/Keap1

signaling

Its overexpression caused a reduction in the apoptosis rate,

oxidative stress, and prevention of mitochondrial malfunction by

targeting GSK-3β.

Liu et al., 2020

miR-377 - SH-SY5Y CDH13 - Its upregulation enhanced cell proliferation and prevented

occurrence apoptosis by targeting CDH13.

Liu et al., 2018

miR-221 Blood samples from 21 AD patients

and 17 controls

SH-SY5Y ADAM10 - Can be implicated in AD pathogenesis through regulation of

ADAM10 expression

Manzine et al.,

2018

miR-186 72 male Sprague–Dawley (SD) rats Hippocampal

neuronal cells

IL2 JAK-STAT

signaling pathway

Its upregulation inhibited apoptosis and enhanced cell proliferation

through targeting IL2 and regulation of the JAK-STAT signaling

pathway.

Wu et al., 2018a

miR-330 14 C57 mice Primary neuron

cells obtained from

mice

VAV1 MAPK signaling

pathway

Its overexpression reduced oxidative stress, ameliorated

mitochondrial dysfunction, and decreased the generation of Aβ by

targeting VAV1.

Han et al., 2018

let-7f-5p C57BL/6J-TgN (APP/PS1) ZLFILAS

mice

Bone marrow

mesenchymal

stem cells

Caspase-3 - Its overexpression inhibited apoptosis induced by Aβ through

targeting caspase-3. It also increased the survival rate of MSCs in

mouse brain.

Shu et al., 2018

miR-107 60 male C57 mice - - - Its overexpression alleviated spatial memory dysfunction,

hippocampal long-term potentiation and prevented the elimination

of pyramidal neurons induced resulted from neurotoxicity of Aβ.

Shu et al., 2018

miRNA-140-

5p

Post mortem brain tissues from 21

AD patients and 22 normal subjects

SHSY5Y, CHP212 ADAM10, SOX2 - Is implicated in AD pathogenesis through targeting ADAM10 and

its transcription factor SOX2

Akhter et al., 2018

miR-384 Serum and CSF samples from 32

MCI patients, 45 AD patients, and 50

control individuals

SH-SY5Y, HEK293 BACE-1, APP - Its overexpression decreased the expression of BACE-1 and APP

so it can contribute to AD pathogenesis.

Liu et al., 2014b

miR-188-5p Brain tissues from 5 AD patients and

3 controls, 5XFAD mice

Primary

hippocampal

neuron cells

- - Its overexpression alleviated cognitive dysfunction and memory

loss also restored synaptic activity.

Lee et al., 2016

miR-193b Plasma and CSF samples from AD

patients, MCI patients and control

subjects, APP/PS1 double-transgenic

SH-SY5Y, HEK293 APP - Its upregulation downregulated APP expression so it can be

implicated in AD pathogenesis.

Liu et al., 2014a

miR-153 APPswe/PS1E9 mice SH-SY5Y,

HEK-293T, M17

APP, APLP2 - Its overexpression downregulated expression APP and APLP2 so

can be an important factor in the pathogenesis of AD.

Liang et al., 2012

miR-153 Brain tissues from 15 AD patients and

5 normal controls

HeLa, primary

human fetal brain

cultures

APP - Can be implicated in AD pathogenesis through targeting APP and

reducing APP expression

Long et al., 2012

miR-16 SAMP8 mice, SAMR1 mice, and

BALb/c mice

Neuroblastoma2a

and NIH3T3

APP - Its upregulation downregulated the expression of APP and

consequently prevented APP accumulation.

Liu et al., 2012

miR-339-5p Frozen brain tissues from 20 AD

patients and 5 controls

HeLa, U373MG,

human primary

brain cultures

BACE1 - Can contribute to AD pathogenesis through targeting BACE1 Long et al., 2014

(Continued)
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pathogenesis of this condition via targeting Lrp2 and inhibiting
the Akt signaling pathway, modulating ROCK1 expression and
decreasing Tau phosphorylation, and influencing inflammatory
responses viamodulation of IRAK-1 (Cui et al., 2010;Wang et al.,
2016). Insulin and liver X receptor (LXR) activators have been
shown to increase the miR-7-1 levels. Expression of this miRNA
has changed within the brains of diet-induced obese animals as
well as AD patients, which is in parallel with the downregulation
of its target genes IRS-2 and IDE. Upregulation of miR-7 has
enhanced extracellular Aβ levels in neurons and interfered with
the eradication of Aβ by microglia. Collectively, insulin can act
via the HNRNPK-miR-7 cascade to post-transcriptionally affect
metabolic pathways in AD (Fernández-de Frutos et al., 2019).
Table 2 lists upregulated miRNAs in AD.

Figure 1 demonstrates the function of a number of miRNAs
in the pathogenesis of AD.

PROGNOSTIC AND DIAGNOSTIC ROLE OF
MIRNAS IN AD

The prognostic role of miRNAs in AD has been assessed in
a single study. Xie et al. have evaluated serum levels of miR-
206, miR-132, BDNF, and SIRT1 in a cohort of patients with
amnestic mild cognitive impairment at baseline and after 5-
year follow-up. Their results have shown higher levels of miR-
206 in patients who converted to AD both at the baseline
and after 5-year follow-up. However, miR-132 levels have been
statistically similar between the conversion and non-conversion
groups at both time points. Based on the Kaplan-Meier analysis,
AD conversion has been correlated with over-expression of
miR-206. In addition, multivariate Cox regression analysis has
shown the suitability of serum miR-206 and its target BDNF as
indicators of AD conversion (Xie et al., 2017). The diagnostic
role of several miRNAs has been appraised in AD. For instance,
downregulation of miR-433 and miR-133b in serum samples
could precisely differentiate between AD subjects and normal
persons (Yang et al., 2019b; Wang and Zhang, 2020). Moreover,
the expression profile of the former miRNA in the cerebrospinal
fluid (CSF) has appropriate diagnostic power for distinguishing
AD patients (Wang and Zhang, 2020). The most astonishing
results have been obtained for miR-34c. Expression of miR-34c
has been increased in both cellular and plasma constituents of
blood specimens of AD patients. The area under the receiver
operating characteristic curve has been estimated to be 0.99.
Moreover, expression of miR-34c has been inversely correlated
with mental performance, as described by the mini-mental
state examination. miR-34c has also been shown to affect the
expression of numerous genes being involved in neuron survival
and oxidative processes (Bhatnagar et al., 2014). Expression levels
of miR-132 and miR-212 in neural-derived extracellular vesicles
have been demonstrated to differentiate patients with AD from
healthy subjects, yet their aptitude in identifying both AD and
mild cognitive impairment as different from a healthy status
has not been suitable (Cha et al., 2019). Table 3 summarizes the
outlines of various studies that have reported on the diagnostic
value of miRNAs in AD.
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TABLE 2 | Upregulated miRNAs in AD subject, animal models of AD or related cell lines and their functions in progression of AD.

microRNA Samples Assessed cell

line

Gene/protein

interaction

Signaling

pathway

Function References

miR-132 Frozen human postmortem brain specimens

from 10 patients with mild cognitive

impairment, 10 patients with AD, and 10

controls

Human cortical

neuron culture

GTDC-1 - Enhances neuronal apoptosis and Tau phosphorylation by

targeting GTDC-1

Liu and Zhang,

2019

miR-30b Human hippocampal tissues, C57BL/6J mice,

and 5XFAD APP transgenic mice

NG108–15, HEK

293/293T

ephB2, sirt1,

GluA2

NF-κB signaling

pathway

Disrupts cognitive and synaptic functions and its knockdown

reverses this effect by targeting ephB2, sirt1, and GluA2

Song et al., 2019

miR-128 APP/PSA/Tau triple transgenic mice and

C57BL/6 mice

N2a cells PPARγ - Its knockout suppressed AD development, Aβ production, and

inflammatory reactions by targeting PPARγ.

Liu et al., 2019

miR-128 Plasma samples from 20 patients with AD and

age and education-matched normal subjects

MCN, Neuro2a PPAR-γ - Its inhibition abated neurotoxicity of Aβ through regulation of

PPAR-γ and deactivated NF-κB.

Geng et al., 2018

miR-7 Postmortem human brains from AD patients

and individuals without severe neurological and

psychological disorders male C57BL/6 mice

N2a cell, BV-2 INSR, IRS-2,

IDE

Insulin signaling Enhances extracellular Aβ and suppresses its clearance by

regulating Insulin signaling through targeting INSR, IRS-2, and IDE

Fernández-de

Frutos et al., 2019

miR-592 54 Sprague-Dawley (SD) male rats established

as an AD model

Astrocyte culture KIAA0319 Keap1/Nrf2/ARE

signaling pathway

Its downregulation attenuated oxidative stress and enhanced cell

survival through upregulation of KIAA0319.

Huang et al., 2020

miR-425-5p Postmortem brain tissue samples from HEK293/tau HSPB8 - Elevates apoptosis and tau phosphorylation through

downregulation of HSPB8

Yuan et al., 2020

miR-425-5p

miR-339-5p

Blood samples (for PBMC) from 45 AD patients

and 41 age- and gender-matched healthy

controls

N2a/APPswe BACE1 - Can be implicated in AD pathogenesis through modulating

expression of BACE1

Ren et al., 2016

miR-25 30 male Kunming mice Hippocampal

neuronal cells

KLF2 Nrf2 signaling

pathway

Represses proliferation of hippocampal neuron cells and induced

apoptosis in these cells by targeting KLF2

Duan and Si, 2019

miR-138 - SH-SY5Y DEK - Increases apoptosis rate in SH-SY5Y cells by targeting DEK and

downregulation of its expression

Miao et al., 2020

miR-138q - N2a/APP,

HEK293/tau

RARA - Can be implicated in the pathogenesis of AD through the

promotion of tau phosphorylation by targeting RARA

Wang et al., 2015b

miR-149-5p Plasma samples from 30 AD patients and 30

healthy controls

293/APPsw KAT8 - Can be implicated in AD pathology by targeting KAT8 to negatively

regulate H4K16ac

Zhou et al., 2020

miR-125b Cerebral tissues from nine AD patients, eight

patients with MCI, and 10 normal individuals

Neuronal cells

obtained from

human fatal

cortical tissues

FOXQ1 - Promotes phosphorylation of Tau and apoptosis of neuronal cells

by targeting FOXQ1

Ma et al., 2017

miR-125b CSF samples from 24 AD patients and 24

healthy controls

Neuro2a

APPSwe/19

- - Promotes cellular apoptosis, oxidative stress, and expression of

inflammatory factors and suppressed cell proliferation by

regulating SphK1

Jin et al., 2018

miR-125b Brain tissue specimens 10 AD patients and 5

healthy controls, C57BL/6 wild-type mice

Primary

hippocampal and

cortical neuron

obtained from

embryonic day 19

rat

Bcl-W,

DUSP6,

PPP1CA

MAPK signaling Its high expression resulted in increased tau phosphorylation

through targeting Bcl-W, DUSP6 and PPP1CA. also its

overexpression led to perished associative learning in mice.

Banzhaf-

Strathmann et al.,

2014

(Continued)
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TABLE 2 | Continued

microRNA Samples Assessed cell

line

Gene/protein

interaction

Signaling

pathway

Function References

miR-200b

miR-200c

Wild-type C57BL/6J mice and Tg2576 mice PMNCs, SH-SY5Y - - Transfection with miR-200b/miR-200c alleviated memory

impairment and improved spatial learning through regulation of

S6K1-mediated insulin signaling.

Higaki et al., 2018

miR-200c Plasma samples from 14 AD patients and 13

normal controls, APPswe/PS11E9

double-transgenic mice

PC12 PTEN - Its overexpression improved neuronal survival and neurite

outgrowth by targeting PTEN.

Wu et al., 2016

miR-10a 50 male Sprague-Dawley (SD) rats - BDNF BDNF-TrkB

signaling pathway

Promotes apoptosis and cell growth arrest by targeting BDNF and

inhibition of BDNF-TrkB signaling pathway

Wu et al., 2018b

miR-1908 Blood samples from 20 AD patients and 20

age-matched control individuals

THP-1, U87 ApoE - Disrupts clearance of Aβ by ApoE through downregulation of its

expression

Wang et al., 2018

miR-139 SAMR1 and SAMP8 mice Primary

hippocampal cell

CB2 - Its overexpression improved memory function and learning ability

by targeting CB2.

Tang et al., 2017

miR-146a - SH-SY5Y Lrp2 Akt signaling

pathway

Raised the rate of cellular apoptosis through targeting Lrp2 and

inhibition of Akt signaling pathway

Wang et al., 2016

miR-146a Brain tissues from 17 AD patients, 5xFAD mice SH-SY5Y ROCK1 ROCK1/PTEN

pathway

Its inhibition decreased phosphorylation of tau proteins and

improved memory function by modulating ROCK1 expression.

Wang et al., 2016

miR-146a Brain tissues from 36 AD patients and 30

control subjects

Primary human

astroglial (HAG)

cells, primary HNG

IRAK-1 - Targets IRAK-1 and downregulated its expression so caused a

sustained inflammatory response

Cui et al., 2010

miR-33 APPsw/PSEN119 (APP/PS1) transgenic mice N2a, N2a-APPsw,

H4-APPsw

ABCA1 - Downregulates expression of ABCA1 and consequently impaired

Aβ clearance

Kim et al., 2015

miR-34c C57 mice Primary

hippocampal

neurons, N2a

VAMP2 - Its downregulation alleviated learning and memory dysfunction

and synaptic impairment through targeting VAMP2.

Hu et al., 2015

miR-26b APP/PS1 double-transgenic mice N2a, HEK293 IGF-1 - Augments production of Aβ by targeting IGF-1 and its inhibition

reversed these effects

Liu et al., 2016b

miR-98 APP/PS1 mice HEK293, N2a IGF-1 - Its inhibition suppressed Aβ generation and tau phosphorylation

by regulating the expression of IGF-1.

Hu et al., 2013

miR-206 Blood samples from 30 AD patients and 30

healthy controls

BV-2 IGF-1 - Elevates inflammatory responses induced by LPS and promoted

the release of Aβ from microglia cell through targeting IGF-1

Xing et al., 2016

miR-574 APP/PS1 double transgenic mice and wild type

mice

Primary

hippocampal

neurons obtained

from mice

Nrn1 - Is involved in the regulation of synaptic activity and cognitive

function through targeting Nrn1

Li et al., 2015

miR-26b Postmortem brain tissues from 10 patients with

MCI, 10 patients with AD, and eight controls

Primary cortical

neurons obtained

from Sprague

Dawley rat

Rb1 - Promotes tau phosphorylation and cell cycle entry and

consequently lead apoptosis by targeting Rb1

Absalon et al.,

2013

miR-922 - SH-SY5Y,

HEK-293T

UCHL1 - Enhances phosphorylation of tau proteins by targeting UCHL1 so

contributed to AD pathogenesis

Zhao et al., 2014

miR-485-3p Serum samples from 89 AD patients and 62

healthy controls

SH-SY5Y, BV2 AKT3 - Its knockdown promoted cell proliferation, inhibited apoptosis and

neuroinflammation partly by targeting AKT3. Its expression has

been associated with MMSE score, inflammatory response.

Yu et al., 2020
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FIGURE 1 | Summary of the function of miRNAs in the pathogenesis of AD. (A) Expressions of miR-135b (Zhang et al., 2016b), miR-195 (Zhu et al., 2012),

miR-34a-5p (Liang et al., 2020), miR-384 (Liu et al., 2014b), miR-125b-5p (Liang et al., 2020), miR-31 (Barros-Viegas et al., 2020), miR-200a-3p (Pan et al., 2019),

and miR-339-5p (Long et al., 2014) are decreased in patients with Alzheimer’s disease. These miRNAs bind with the 3’ UTR of BACE1 and decrease its expression.

Therefore, the downregulation of these miRNAs leads to the upregulation of BACE1. In addition, expression levels of some APP-binding miRNAs namely miR-101

(Vilardo et al., 2010), miR-153 (Liang et al., 2012), miR-16 (Liu et al., 2012), miR-384 (Liu et al., 2014b), miR-31 (Barros-Viegas et al., 2020), miR-193b (Liu et al.,

2014a), and miR-455-3p (Kumar et al., 2019) is decreased in patients with Alzheimer’s disease. (B) Tau phosphorylation leads to defects in microtubules and

induction of neurofibrillary tangles which result in neuron death. miR-138 and miR-425-5p are increased in Alzheimer’s disease. These miRNAs regulate the expression

of GSK-3β and enhance Tau phosphorylation (Wang et al., 2015b; Yuan et al., 2020). In addition, downregulation of miR-132 and upregulation of miR-125b and

miR-922 leads to Tau hyperphosphorylation (Zhao et al., 2014; Salta et al., 2016; Ma et al., 2017).

MIRNA POLYMORPHISMS AND RISK OF
AD

Boscher et al. have screened a larger cohort of early-onset
AD (EOAD) patients who did not have autosomal dominant
mutations for the presence of genetic polymorphisms. They
have recognized 86 copy number variants (CNVs) in miRNA-
coding genes, 31 of them being only present in EOAD cases.
Duplication of the MIR138-2 locus has been one of these
CNVs. Based on the role of miR-138 in Aβ production and
tau phosphorylation, this CNV might be implicated in the
risk of EOAD (Boscher et al., 2019). Functionally, miR-138
upregulation enhances Aβ synthesis and tau phosphorylation
through modulation of GSK-3β and FERMT2 (Boscher et al.,
2019). Other studies have demonstrated the role of rs2910164 of

pri-miR-146a, rs57095329 of miR-146a, and rs2291418 of miR-
1229 precursor in conferring risk of AD (Table 4). Zhang et al.
have scanned the coding region of pri-miR-146a in AD patients.
Among the four single nucleotide polymorphisms (SNPs) located
in this genomic region, rs2910164 has been identified as a risk
locus for AD as the C allele of this SNP has enhanced risk of AD.
Notably, this variant has been shown to reduce the expression of
mature miR-146a-5p, releasing TLR2 from its inhibitory effects.
Moreover, cell line studies have shown the impact of the C allele
on upregulation of expression of TNF-α after induction with β-
amyloid. Therefore, this SNP might predispose patients to AD
by disturbing the production of mature miRNA and influencing
the activity and expression level of TLR2 (Zhang et al., 2015).
Cui et al. have analyzed the genotype and allele frequencies of
rs2910464 and rs57095329 of miR-146a and have reported that
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TABLE 3 | Diagnostic role of miRNAs in AD.

microRNA Expression pattern Samples ROC curve analysis References

Sensitivity Specificity AUC

miR-133b Downregulated Serum samples from 105 AD

patients and 98 control

individuals

90.8% 74.3% 0.907 Yang et al., 2019b

miRNA-101a Downregulated Plasma samples from 46 AD

patients 60 healthy individuals

0.913 0.733 0.8725 Xiao et al., 2019

miR-433 Downregulated Serum samples from 118 AD

patients and 62 healthy controls

78.8% 80.6% 0.827 Wang and Zhang,

2020

miR-433 Downregulated CSF samples from 32 AD

patients and 12 controls

84.4% 91.7% 0.952

hsa-miR-21-5p Downregulated (in AD

patients compared with

DLB patients)

Plasma extracellular vesicles

from 18 patients with dementia

with Lewy bodies (DLB), 10 AD

patients and 15 age- and

sex-matched healthy controls

- - 0.93 Gámez-Valero

et al., 2019

hsa-miR-451a Downregulated (in AD

patients compared with

DLB patients)

- - 0.95

miR-103 Downregulated (in AD

patients compared with

PD patients and

controls)

Plasma samples from 120 AD

patients, 120 patients with

Parkinson’s disease (PD) and

120 healthy subjects

80.0% 84.2% 0.891 Wang et al., 2020

miR-103 Downregulated (in AD

patients compared with

PD patients and

controls)

86.7% 55.0% 0.775

miR-107 Downregulated (in AD

patients compared with

controls)

77.5% 59.2% 0.739

miR-132 Downregulated Blood samples (for neurally

derived plasma exosomes) from

16 AD patients, 16 patients with

mild cognitive impairment (MCI),

and 31 controls

- - 0.58 (distinguishing AD

and MCI patients from

controls)

Cha et al., 2019

miR-132 Downregulated - - 0.77 (distinguishing AD

patients from controls)

miR-212 Downregulated - - 0.68 (distinguishing AD

and MCI patients from

controls)

miR-212 Downregulated - - 0.84 (distinguishing AD

patients from controls)

has-miR-346

has-miR-345-5p

has-miR-122-3p

has-miR-208b-3p

has-miR-1291

hsa-miR-640

has-miR-499a-5p

has-miR-650

has-miR-1285-3p

has-miR-1299

has-miR-1267

has-miR-206

Upregulated

Upregulated

Upregulated

Downregulated

Upregulated

Upregulated

Downregulated

Upregulated

Upregulated

Upregulated

Upregulated

Downregulated

Serum samples from 51 controls

and 32 AD patients

90.0% 66.7% - Zhao et al., 2020

miR-106b Downregulated Serum samples from 56 AD

patients and 50 healthy

volunteers

94% 62% 0.80. Madadi et al.,

2020

miR-16-5p Downregulated CSF samples from 17

Young-onset AD (YOAD), 13

Late-onset AD (LOAD) and 12

healthy controls

- - 0.760 McKeever et al.,

2018

miR-451a Downregulated - - 0.951

(Continued)
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TABLE 3 | Continued

microRNA Expression pattern Samples ROC curve analysis References

Sensitivity Specificity AUC

miR-605-5p Downregulated - - 0.706

miR-125b-5p Upregulated - - 0.723

miR-451a Downregulated - - 0.847

miR-605-5p Downregulated - - 0.765

miR-125b-5p Upregulated - - 0.785

miR-501-3p Downregulated Serum samples from 36 patients

with AD and 22 age-matched

control volunteers

53% 100%, 0.82 Hara et al., 2017

hsa-miR-26a-5p

hsa-miR-181c-3p

hsa-miR-126-5p

hsa-miR-22-3p

hsa-miR-148b-5p

hsa-miR-106b-3p

hsa-miR-6119-5p

hsa-miR-1246

hsa-miR-660-5p

Downregulated

Downregulated

Downregulated

Downregulated

Downregulated

Upregulated

Upregulated

Upregulated

Upregulated

Serum samples 121 patients

with AD and 86 healthy controls

- - 0.987 Guo et al., 2017

hsa-miR-106a-5p Downregulated Blood samples from 172 AD

patients and 109 healthy controls

68% 93% - Yilmaz et al., 2016

miR-31

miR-93

miR-143

miR-146a

Downregulated

Downregulated

Downregulated

Downregulated

Serum samples 79 AD patients

and 75 controls

- - 0.709 Li et al., 2015

miR-342-3p Downregulated Serum samples from 208

patients with AD and 205 age-

and sex-matched healthy

volunteers

81.5% 70.1% - Tan et al., 2014

miR-125a-5p Upregulated CSF samples from 48 patients

with behavioral variant of

frontotemporal dementia

(bvFTD), 48 patients with AD and

44 healthy controls

74% 82% 0.75 Denk et al., 2018

miR-30a-5p Upregulated 78% 68% 0.73

miR-20a-5p Upregulated Serum samples from 48 patients

with bvFTD, 47 patients with AD,

and 38 healthy controls

- 92% 0.85

miR-29b-3p Upregulated 93% - 0.83

miR-26b-5p Upregulated 89% 89% 0.97

miR-320a Downregulated 83% 90% 0.90

miR-483-5p Upregulated Plasma samples from 20 AD

patients, 15 MCI-AD patients

and 15 non-demented controls

(CTR)

- - 0.99 (AD vs. CTR) Nagaraj et al.,

2017

miR-483-5p - - 0.95 (MCI-AD vs. CTR)

miR-502-3p Upregulated - - 0.94 (AD vs. CTR)

miR-502-3p - - 0.86 (MCI-AD vs. CTR)

miR-485-3p Upregulated Serum samples from 89 AD

patients and 62 healthy controls

84.3% 96.8% 0.933 Yu et al., 2020

miR-425 Upregulated Blood samples (for PBMC) from

45 AD patients and 41 age- and

gender-matched healthy controls

- - 0.868 Ren et al., 2016

miR-339 Upregulated - - 0.761

miR-206 Upregulated (in

aMCI-AD group

compared with

aMCI-aMCI group)

Serum sample from 458

amnestic mild cognitive

impairment (aMCI)

95.5% 77.8% 0.95 Xie et al., 2017

(Continued)

Frontiers in Aging Neuroscience | www.frontiersin.org 11 March 2021 | Volume 13 | Article 641080

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Samadian et al. microRNAs and Alzheimer’s Disease

TABLE 3 | Continued

microRNA Expression pattern Samples ROC curve analysis References

Sensitivity Specificity AUC

miR-455-3p Upregulated Postmortem brain samples from

27 AD patients and 15 controls

- - 0.792 Kumar and Reddy,

2018

miR-455-3p Upregulated Skin fibroblast cell from 4

patients with familial AD, 6

patients with sporadic AD, and

eight healthy control

- - 0.861

miR-455-3p Upregulated Serum samples from 10 AD

patients, 20 MCI patients and 18

healthy controls

- - 0.79 Kumar et al., 2017

miR-455-3p Upregulated Postmortem brain tissues from

16 AD patients and 5 controls

- - 0.86

miR-34c Upregulated Plasma samples from 110 AD

patients and 123 control subjects

0.92 0.96 0.99 Bhatnagar et al.,

2014

miR-29a Upregulated CSF samples from 18 patients

with AD and 20 healthy

volunteers

89% 70% 0.87 Müller et al., 2016

TABLE 4 | miRNA polymorphisms and risk of AD.

microRNA Polymorphism Samples Population Assay method Function References

miR-138 Copy number

variant (CNV)

Whole exome sequencing

data of 546 unrelated

patients with early-onset

Alzheimer’s disease (EOAD)

and 597 controls subjects

French QMPSF Its duplication was observed in EOAD

patients and functional studies

showed that miR-138 upregulation

caused increased production of Aβ

and higher phosphorylation of tau.

So miR-138 gene dosage can be a

potential risk factor for EOAD.

Boscher et al.,

2019

Pri-miR-146a SNP

(rs2910164)

Blood samples from 103 AD

patients and 206 healthy

controls

Han Chinese Sequencing Rare C allele of this SNP was

correlated AD and low expression of

mature miR-146a-5p.

Zhang et al., 2015

miR-146a SNP

(rs57095329)

Blood samples from 292 AD

patients 300 healthy

volunteers

Chinese ABI PRISM

SNapShot method

AA genotype of rs57095329 was

correlated with an elevated

predisposition to AD and was

associated with high expression of

miR-146a.

Cui et al., 2014

miR-1229

precursor

SNP

(rs2291418)

Analysis of GWAS data on

late-onset AD

- - rs2291418 was associated with AD

risk. An allele of rs2291418 was

correlated with an increased

miR-1229-3p expression that targets

an AD-related gene, SORL1, so can

have an important role in AD.

Ghanbari et al.,

2016

the AA genotype of the former SNP increases susceptibility to
AD and results in cognitive reduction in the affected individuals.
Contrary to the previously mentioned study by Zhang et al., the
risk genotype has been associated with higher levels of miR-146a
in the PBMCs of control subjects and has exerted more robust
effects on IL-6 and IL-1β synthesis following stimulation with
LPS (Cui et al., 2014). Finally, in a genome-wide association
study, Ghanbari et al. have detected an association between
rs2291418 in the miR-1229 precursor and risk of AD. The risk
allele of this SNP has been shown to increase the expression of
miR-1229-3p, thus decreasing the expression of SORL1, an AD-
associated gene. In addition, among more than 42,000 variants in
miRNA-binding regions, 10 variants in the 3’ UTR of nine genes

have been associated with this disorder; among them has been
rs6857, which enhances the miR-320e-mediated modulation of
PVRL2 expression (Ghanbari et al., 2016).

EFFECTS OF HERBAL/CHEMICAL
AGENTS ON THE EXPRESSION OF
MIRNAS IN THE CONTEXT OF AD

Osthole, the active component of the fruits of the genus Cnidium
moonnieri (L.) Cussion has been shown to affect the AD course
via modulation of miRNAs expression. Lin et al. have shown
miR-101a-3p as the main affected miRNA by osthole. APP
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has been identified as the target of miR-101a-3p. Osthole has
enhanced the learning and memory aptitude in an animal
model of AD, and it has inhibited APP levels by promoting
the expression of miR-101a-3p (Lin et al., 2019). Other studies
have verified the effects of Osthole on the expression of miR-
9 (Li et al., 2016, 2017). Functionally, osthole enhances the
viability of neurons, decreases apoptosis of these cells, and
reverses the decline of synaptic proteins in APP-expressing
cells by affecting miR-9 expression and consequently decreasing
CAMKK2 and p-AMPKα levels (Li et al., 2016). Additionally,
osthole has pro-survival effects in APP-expressing neural stem
cells through suppression of the Notch pathway (Li et al., 2017).
Moreover, Berberine has been shown to enhance proliferation
and attenuate neuron apoptosis via regulation of miR-188/NOS1
molecular cascade (Chen et al., 2020b). Treatment of Aβ-
treated murine microglia and neuroblastoma cells with this
substance or upregulation of miR-188 in these cells has
accelerated cell proliferation and suppressed caspase-3 activity
and apoptosis (Chen et al., 2020b). Finally, exmedetomidine
has been demonstrated to accomplish neuroprotective effects
and enhance cognitive function in an animal model of AD by
modulating the miR-129/YAP1/JAG1 cascade (Sun et al., 2020).
Table 5 shows the effects of different AD-modifying compounds
on the expression of miRNAs.

DISCUSSION

Numerous studies have demonstrated abnormal expression of
miRNAs in AD subjects or cell/animal models of AD. However,

each miRNA has been the subject of expression and functional
assays in few independent studies. miR-146 has been among the
miRNAs most assessed in the context of AD, as its expression
levels, functions, and polymorphisms have been assessed in
association with AD. miR-9 is another AD-associated miRNA
whose expression has been altered following treatment of APP-
expressing cells with anti-AD substances. In some cases, altered
expression of a certain miRNA is regarded as a part of a
self-protective process. For instance, the reduction of miR-409-
5p expression in the early stages of AD might be associated
with lower Aβ-induced synaptic injury (Guo et al., 2019).
Similarly, upregulation of miR-200b andmiR-200c has protective
effects against AD-associated neurotoxicity (Higaki et al., 2018).
However, in most cases, an aberrant miRNA signature directly
participates in the pathogenesis of AD. miRNAs partake in the
pathobiology of AD through various mechanisms, including the
regulation of BACE1 activity. miR-200a-3p, miR-195, miR-338-
5p, miR-34a-5p, miR-125b-5p, miR-132, miR-384, miR-339-5p,
miR-135b, miR-425-5p, and miR-339-5p are among the miRNAs
whose interaction with BACE1 has been verified in different
investigation. Other miRNAs, such as miR-129-5p, miR-22,
and miR-206, might affect the inflammatory responses in the
course of AD. Moreover, a number of miRNAs, such as miR-
326, miR-338-5p, miR-124-3p, miR-34a, miR-326, and miR-98,
modulate apoptotic pathways in neurons, thereby affecting the
AD course via this route. Tau phosphorylation can be modulated
by some miRNAs, namely, miR-200a-3p, miR-326, miR-124-3p,
miR-146a, miR-425-5p, and miR-132. Expression of miR-132
has been assessed by several investigations with most of them

TABLE 5 | Effect of different compounds on microRNAs.

microRNA Compound Cell line Animal model Gene/protein

interaction

Results References

miR-101a-3p Osthole SH-SY5Y APP/PS1 mice APP miR-101a-3p was upregulated by

Osthole and its upregulation led to

improved memory function and

learning capacity and prevented Aβ

formation through targeting APP

Lin et al., 2019

miR-9 Osthole Neural stem cells obtained

from newborn C57BL/6

mice

APP/PS1

double

transgenic mice

- miR-9 was upregulated by Osthole

and this caused improved cell

survival, reduced cell death, alleviated

cognitive deficit.

Li et al., 2017

miR-9 Osthole SH-SY5Y, primary cortical

neurons obtained from

C57BL/6 mice

- - Osthole improved cell survival and

suppressed apoptosis through

upregulation of miR-9 expression.

Li et al., 2016

miR-34a Tiaoxin Recipe - APPswe/PS11E9

mice

- Tiaoxin Recipe downregulated

expression of miR-34a and

ameliorated memory dysfunction, Aβ

formation

Boscher et al.,

2019

miR-188 Berberine BV2, N2a - NOS1 Berberine enhanced proliferation and

inhibited apoptosis partly through

regulation of the miR-188/NOS1 axis

Chen et al., 2020b

miR-129 Dexmedetomidine Primary hippocampal

neurons

Male NIH Swiss

mice

YAP1 miR-129 was upregulated by

Dexmedetomidine and its

upregulation led to decreased

apoptosis rate and alleviated

cognitive decline through targeting

YAP1 and prevention of YAP1

interaction with JAG1

Sun et al., 2020
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reporting its downregulation in AD (Wong et al., 2013; El Fatimy
et al., 2018; Cha et al., 2019; Deng et al., 2020). Yet, Liu et al.
have reported over-expression of miR-132 in patients with mild
cognitive impairment and AD vs. normal individuals (Liu and
Zhang, 2019).

Abnormal levels of miRNAs in serum or CSF samples have
been shown to distinguish AD subjects from normal subjects,
indicating their suitability as disease biomarkers. However, these
studies have not been validated in independent cohorts. miR-
103, miR-126, miR-93, miR-29, miR-424, and miR-181 are
among AD-associated miRNAs with biomarker potential whose
application as disease biomarkers has been validated in other
disorders (So et al., 2020).

Animal studies have shown promising results regarding the
impact of miRNA modifications on the course of AD. However,
based on the unavailability of brain tissue for therapeutic
interventions in human subjects, identification of appropriate
transport mechanisms for delivery of anta-/ago-miRs to this
tissue is an important issue.

The anti-AD effects of Osthole, Tiaoxin Recipe, Berberine,
and Dexmedetomidine have been shown to be exerted through

modulation of a number miRNAs, such as miR-101a-3p, miR-9,
miR-34a, miR-188, and miR-129, emphasizing further the impact
of miRNAs in the progression of AD. However, these results
should be verified in human subjects as well.

Few studies have shown the association between miRNA
CNVs/ SNPs and the risk of AD. However, these results have
not been verified in different ethnic groups. Re-assessment of the
results of genome-wide association studies with a focus on non-
coding regions might lead to the identification of further risk loci
for this multifactorial condition.

Finally, a limitation of several functional investigations in
this field is that they have assessed miRNA functions in cell
lines such as HEK293 and SH-SY5Y, which are not true models
of AD.
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