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Recent evidence suggests increased metabolic and physiologic aging rates in
premature-born adults. While the lasting consequences of premature birth on human
brain development are known, its impact on brain aging remains unclear. We addressed
the question of whether premature birth impacts brain age gap estimates (BrainAGE)
using an accurate and robust machine-learning framework based on structural MRI
in a large cohort of young premature-born adults (n = 101) and full-term (FT) controls
(n = 111). Study participants are part of a geographically defined population study
of premature-born individuals, which have been followed longitudinally from birth until
young adulthood. We investigated the association between BrainAGE scores and
perinatal variables as well as with outcomes of physical (total intracranial volume, TIV)
and cognitive development (full-scale IQ, FS-IQ). We found increased BrainAGE in
premature-born adults [median (interquartile range) = 1.4 (−1.3–4.7 years)] compared
to full-term controls (p = 0.002, Cohen’s d = 0.443), which was associated with low
Gestational age (GA), low birth weight (BW), and increased neonatal treatment intensity
but not with TIV or FS-IQ. In conclusion, results demonstrate elevated BrainAGE in
premature-born adults, suggesting an increased risk for accelerated brain aging in
human prematurity.
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Abbreviations: ANOVA, analysis of variance; BLS, Bavarian Longitudinal Study; BrainAGE, Brain Age Gap Estimate;
BW, birth weight; FS-IQ, full-scale IQ; FT, full-term; FWHM, full-width at half maximum; GA, gestational age; INTI,
intensity of neonatal treatment index; MPRAGE, magnetization prepared rapid acquisition gradient echo; MRI, magnetic
resonance imaging; SES, socioeconomic status; TE, time to echo; TIV, total intracranial volume; TI, time to inversion;
TR, time to repetition; VLBW, very low birth weight; VP, very preterm; WAIS, Wechsler Adult Intelligence Scale.
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INTRODUCTION

Premature birth, i.e., birth before 37 weeks of gestation, has a
worldwide prevalence of around 11% (Chawanpaiboon et al.,
2019). Survival rates of very (<32 weeks) and extremely
(<28 weeks) premature-born individuals, in particular, have
increased over the last decades (Howson et al., 2013; Glass
et al., 2015). Prematurity has an impact on brain structure both
on a microscopic and macroscopic level, establishing it as a
paradigmatic neurodevelopmental disorder (Back et al., 2002;
Nosarti et al., 2008; Deng, 2010; Buser et al., 2012; Ball et al.,
2013; Dean et al., 2013; Volpe, 2019). These changes have been
mostly found in children but there is increasing evidence for
persistence of prematurity effects on the human brain until
adulthood (Nosarti et al., 2008; Sølsnes et al., 2015; Zhang et al.,
2015; Lefèvre et al., 2016). For example, aberrant gyrification and
white matter alterations have been described in premature-born
adults and were linked to functional deficits (Meng et al., 2016;
Hedderich et al., 2019).

Brain aging has been studied extensively on a molecular
and macroscopic level, mostly as a predisposing factor for
neurodegenerative disorders late in life (Yankner et al.,
2008). Examples for identified age-related brain alterations are
decreased dendritic arborization, decreased neuronal plasticity,
neuron cell loss, and decreasing white matter density (Bartzokis
et al., 2003; Hedden and Gabrieli, 2004; Burke and Barnes,
2006; Yankner et al., 2008). Changes in gene expression
patterns and defective DNA repair mechanisms have been
proposed as putative underlying causes for age-related brain
alterations (Lu et al., 2004; Fraser et al., 2005). However, the
full picture of aging processes in the brain remains elusive to
date. Recently, large-scale MRI studies have highlighted that
aging effects are not limited to late-life but exist throughout
the life course with spatially differential effects on gray matter
and white matter (Coupé et al., 2017). Moreover, due to the
increasingly recognized importance of early and mid-adulthood
as a window for interventions aiming at the prevention of
age-related brain disorders such as Alzheimer’s disease, the
need for a valid biomarker of brain aging over the life span
was emphasized (Belsky et al., 2015; Elliott et al., 2019). One
such concept relies on the fact that some people experience
faster biological degradation than others, resulting in an offset
between ‘‘biological’’ and ‘‘chronological’’ age (Belsky et al., 2015;
Elliott, 2020). Concerning the brain, this offset, or ‘‘brain age
gap estimation’’ (BrainAGE) can be measured on structural
MRI usingmachine-learning algorithms trained on large datasets
(Franke et al., 2010; Cole and Franke, 2017; Franke and
Gaser, 2019). This biomarker has proven sensitive to various
neurological and neuropsychiatric conditions not only from
the spectrum of dementing disorders in late-life but also in
much younger patients with multiple sclerosis or schizophrenia
(Kaufmann et al., 2019; Wang et al., 2019). Thus, it seems a
promising biomarker candidate to find subtle manifestations of
aberrant brain aging so early in life, when brain development
and aging are still highly interrelated (Elliott et al., 2019). Recent
evidence on metabolic and physiologic aging in premature-born
adults in young adulthood suggests increased aging rates based

on a previously established 10-item composite score (Belsky
et al., 2015; Darlow et al., 2020). However, evidence about age-
related, structural brain changes after premature birth is scarce
and conflicting results exist, postulating both accelerated and
delayed brain maturation (Franke et al., 2012; Karolis et al.,
2017).

In the current study, we investigate the impact of premature
birth on biological brain age in young adulthood in a large
cohort of individuals born very preterm and/or at very low
birth-weight (VP/VLBW) and age-matched controls born at
full-term (FT), who were followed from birth until adulthood in
a longitudinal, population-based cohort study. We address this
question using structural MRI, a robust and accurate machine
learning algorithm, and intelligence assessments at 26 years
of age. Specifically, we hypothesized that BrainAGE will be
altered in young adulthood and linked to perinatal variables
of premature birth. Furthermore, we hypothesized that these
alterations in BrainAGE are distinct from established markers of
physical and cognitive developmental outcomes.

MATERIALS AND METHODS

Participants
The participants examined in this study are part of the Bavarian
Longitudinal Study (BLS), a geographically defined, whole-
population sample of neonatal at-risk children and healthy
full-term controls who were followed from birth into adulthood
(Nosarti et al., 2008; Ball et al., 2012, 2014; Meng et al.,
2016; Grothe et al., 2017). Of the initial 682 infants born
very preterm (VP; <32 weeks) and/or with very low birth
weight (VLBW; <1,500 g), 411 were eligible for the 26-year
follow-up assessment, and of those, 260 (63.3%) participated
in psychological assessments (Riegel et al., 1995; Wolke and
Meyer, 1999). Of the initial 916 full-term born infants from
the same obstetric hospitals that were alive at 6 years,
350 were randomly selected as control subjects within the
stratification variables of sex and family socioeconomic status
to be comparable with the VP/VLBW sample. Of those,
308 were eligible for the 26-year follow-up assessment, and 229
(74.4%) participated in psychological assessments. All of the
260 subjects from the VP/VLBW group underwent an initial
screening for MR-related exclusion criteria, which included
claustrophobia, inability to lie still for>30 min, unstable medical
conditions (e.g., severe asthma), epilepsy, tinnitus, pregnancy,
non-removable MR-incompatible metal implants and a history
of severe CNS trauma or neurological disease. The most frequent
reason not to perform the MRI exam, however, was lack of
motivation. The remaining eligible, 101 VP/VLBW and 111 FT
individuals underwent MRI at 26 years of age. The distribution
of gestational age and birth weight in the VP/VLBW group
is depicted in the supporting information (Supplementary
Figure 1).

The MRI examinations took place at two sites: The
Department of Neuroradiology, Klinikum rechts der Isar,
Technische Universität München (n = 145), and the Department
of Radiology, University Hospital of Bonn (n = 67). The
study was carried out following the Declaration of Helsinki
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and was approved by the local institutional review boards.
Written informed consent was obtained from all participants.
All study participants received travel expenses and compensation
for participation. A more detailed description of participants,
including incidental brain MRI findings, can be found in
previous publications (Breeman et al., 2015).

Birth-Related Variables
Gestational age (GA) was estimated from maternal reports
on the first day of the last menstrual period and serial
ultrasounds during pregnancy. In cases where the two measures
differed by more than 2 weeks, clinical assessment at birth
with the Dubowitz method was applied (Bauml et al., 2015;
Grothe et al., 2017). Maternal age, infant birth weight (BW),
and duration of hospitalization were obtained from obstetric
records. Family socioeconomic status (SES) was assessed through
structured parental interviews within 10 days of childbirth. SES
was computed as a weighted composite score based on the
profession of the self-identified head of each family together
with the highest educational qualification held by either parent
(Dubowitz et al., 1970).

Neurocognitive Assessment
At 26 years of age, study participants were assessed using an
abbreviated version of the German Wechsler Adults Intelligence
Scale, Third Edition (WAIS-III; Bauer, 1988): The assessment
took place before and independent of the MRI scan and
was carried out by trained psychologists who were blinded
to group membership, resulting in a full-scale intelligence
quotient (FS-IQ).

MRI Data Acquisition
MRI examinations were performed at both sites on either
a Philips Achieva 3T or a Philips Ingenia 3T system using
8-channel SENSE head-coils. Subject distribution among scanner
was as follows: Bonn Achieva 3T: 5 VP/VLBW, 12 FT, Bonn
Ingenia 3 T: 33 VP/VLBW, 17 FT, Munich Achieva 3T:
60 VP/VLBW, 65 FT, Munich Ingenia 3T: 3 VP/VLBW, 17 FT.
To account for possible confounds by the scanner-specific
differences, statistical analyses included categorical dummy
regressors for scanner identity as covariates of no interest. Across
all scanners, sequence parameters were kept identical. Scanners
were checked regularly to provide optimal scanning conditions.
MRI physicists at both sites regularly scanned imaging phantoms,
to ensure within-scanner signal stability over time. Signal-
to-noise ratio (SNR) was not significantly different between
scanners [one-way ANOVA with factor ‘‘scanner-ID’’ (Bonn
1, Bonn 2, Munich 1, Munich 2); F(3,182) = 1.84, p = 0.11].
The imaging protocol included a high-resolution T1-weighted,
3D-MPRAGE sequence (TI = 1,300ms, TR = 7.7ms, TE = 3.9ms,
flip angle 15◦; the field of view: 256 mm × 256 mm) with a
reconstructed isotropic voxel size of 1 mm3.

Preprocessing of MRI Data and Data
Reduction
We used a modified approach of our preprocessing as
described previously (Franke et al., 2010). T1-weighted

images were preprocessed using the CAT12 toolbox1 and the
SPM12 software2, running under MATLAB3. All T1-weighted
images were corrected for bias-field inhomogeneities, then
segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) within the same generative model and
spatially normalized using an affine registration (Ashburner
and Friston, 2005). The segmentation procedure was further
extended by accounting for partial volume effects and by
applying adaptive maximum a posteriori estimations (Rajapakse
et al., 1997; Tohka et al., 2004). Preprocessing further included
smoothing with 4 mm full-width-at-half-maximum (FWHM)
smoothing kernels. Data were further reduced by applying
principal component analysis to reduce computational costs, to
avoid severe overfitting, as well as to get a robust and widely
applicable age estimation model, utilizing the ‘‘Matlab Toolbox
for Dimensionality Reduction4’’.

BrainAGE Model Training Sample
To train the age estimation framework, we used MRI data of
648 healthy subjects (275 male) from the publicly accessible
cohorts: fCONN5, NIH6, IXI7, and C-MIND8 aged 11–70 years
[mean (SD) = 27.2 (12.0) years]. T1-weighted images were
preprocessed using the same pipeline as described in the previous
section.

BrainAGE Framework
The BrainAGE framework utilizes a machine-learning pattern
recognition method, namely relevance vector regression (RVR;
Tipping, 2000, 2001). It was developed to model healthy brain
development and aging and subsequently estimate individual
brain ages based on T1-weighted images (Franke et al., 2010).
As suggested previously, a linear kernel was chosen, since
age estimation accuracy was shown not to improve when
choosing non-linear kernels (Franke et al., 2010). Thus and in
contrast to support vector machines, parameter optimization
during the training procedure was not necessary. Within this
study, the framework was applied using the linear combination
of preprocessed GM and WM images. Since a leave-one-
out approach is widely used in machine learning approaches
and has been shown to provide a conservative estimate of a
predictor’s true accuracy (Dosenbach et al., 2010), model training
and individual brain age estimation were done using leave-
one-out-loops (i.e., the preprocessed GM and WM images of
all subjects, except one, was used for training). Subsequently,
the brain age of the left-out subject was estimated. PCA was
performed on the training sample and the estimated parameters
were subsequently applied to the test subjects. In general, the
age regression model is trained with chronological age and
preprocessed whole-brain structural MRI data (as described
above) of the training sample, resulting in a complex model

1http://www.neuro.uni-jena.de/cat
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12
3http://www.mathworks.com
4http://lvdmaaten.github.io/drtoolbox
5http://www.nitrc.org/ir/app/action/ProjectDownloadAction/project/fcon_1000
6http://pediatricmri.nih.gov/nihpd/info/index.html
7http://brain-development.org/ixi-dataset/
8http://research.cchmc.org/c-mind/
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of healthy brain development and aging. In other words,
the algorithm uses those whole-brain MRI data from the
training sample to extract the salient features of healthy brain
development and aging. Additionally, voxel-specific weights
are calculated that represent the importance of each voxel
within the specified regression task (i.e., healthy brain aging).
For an illustration of the most important features (i.e., the
importance of voxel locations for regression with age) that
were used by the RVR to model normal brain aging and
more detailed information please refer to Franke et al. (2010).
Subsequently, the brain age of a test subject can be estimated
using the individual tissue-classified MRI data (as described
above), aggregating the complex, multidimensional aging pattern
across the whole brain into one single value. In other words,
all the voxels of the test subject’s MRI data are weighted by
applying the voxel-specific weighting matrix. Then, individual
brain age is calculated by applying the regression pattern of
healthy brain aging and aggregating all voxel-wise information
across the whole brain. The difference between estimated and
chronological age yields the individual brain age gap estimation
(BrainAGE) score, with positive values indicating accelerated
and negative values indicating decelerated structural brain
aging. Consequently, the BrainAGE score directly quantifies
the amount of acceleration or deceleration of brain aging.
Recent work has demonstrated that this method provides
reliable and stable estimates of BrainAGE at a mean absolute
error of 3.322 years, rendering this framework superior to
several recently introduced deep learning algorithms (Franke
and Gaser, 2019). Specifically, the BrainAGE scores calculated
from two shortly delayed scans on the same MRI scanner, as
well as on separate 1.5T and 3.0T scanners, produced intraclass
correlation coefficients (ICC) of 0.93 and 0.90, respectively
(Franke et al., 2012). Within the current study, the BrainAGE
framework was applied using the preprocessed GM and WM
images and we corrected for the different scanner sites in our
BrainAGEmodel. For training the model as well as for predicting
individual brain ages, we used ‘‘The Spider9’’, a freely available
toolbox including several machine learning algorithms running
in MATLAB.

Statistical Analysis
Normal distribution of data was assessed using the Shapiro-Wilk
test. Group difference of BrainAGE between VP/VLBW and
FT individuals was assessed using the nonparametric Mann-
Whitney-U test. Differences of clinical variables between
VP/VLBW and FT individuals were tested using Chi2 tests (sex,
SES) or two-sample t-tests (age, GA, BW, maternal age, FS-IQ).
Correlations between variables of premature birth, BrainAGE,
and adult FS-IQ were tested using Spearman’s rho, restricted
to the VP/VLBW group. Nonparametric partial correlation
analyses to calculate associations between total intracranial
volume (TIV), FS-IQ, and BrainAGE, corrected for sex. Cohen’s
d was calculated for group differences based on Mann-Whitney
U-test (Lenhard and Lenhard, 2016). Statistical significance was

9http://www.kyb.mpg.de/bs/people/spider/main.html

set at p < 0.05. Statistical analyses were carried out using SPSS
(version 25.0, IBM Corp.).

RESULTS

Sample Characteristics
There were no significant group differences regarding age
(i.e., mean age of 26 years) at scanning (p = 0.765), sex (p = 0.167),
socio-economic status (SES; p = 0.760), and maternal age at birth
(p = 0.889). By design, VP/VLBW individuals had significantly
lower gestational age (GA; p < 0.001) and lower birth weight
(BW; p < 0.001) and were hospitalized for a longer time after
birth (p < 0.001). VP/VLBW subjects had significantly lower
adult FS-IQ scores (p< 0.001). Please see Table 1 for details.

BrainAGE Is Increased for VP/VLBW Adults
and Associated With Variables of
Premature Birth
To investigate the effect of premature birth on the difference
between chronological age and biological brain age, we
determined BrainAGE separately for premature-born
adults (median = 1.37 years, interquartile range (IQR):
−1.26–4.67 years) and full-term controls (median = −0.19,
IQR: −3.02–3.28 years; Figure 1A). The difference between
groups was statistically significant (p = 0.002) at a moderate
effect size (Cohen’s d = 0.443). We interpret this result as
increased biological brain age in premature-born adults. To
test the specificity of this finding for premature birth, we ran
Spearman correlation analyses between BrainAGE and variables
of premature birth. We found significant correlations between
BrainAGE and GA (r = −0.271; p = 0.003), BW (r = −0.196;
p = 0.025) and intensity of neonatal treatment (INTI; r = 0.302;
p = 0.001), underscoring that elevated biological brain age is
specific for prematurity at birth (Figures 1B–D).

BrainAGE Is Not Associated With
Developmental Outcomes in
Premature-Born Individuals
To investigate whether elevated BrainAGE is explained by altered
developmental outcomes of cognitive and physical development,
we analyzed the association between BrainAGE, TIV, and
FS-IQ using non-parametric partial correlation analyses. Physical
(TIV) and cognitive (FS-IQ) developmental outcomes were
correlated significantly (r = 0.377; p< 0.001). No correlation was
observed between BrainAGE and FS-IQ and TIV (r = −0.114;
p = 0.133 and r = −0.106; p = 0.152; see Figure 2). We interpret
the missing correlation between BrainAGE and developmental
outcomes as support for our hypothesis that elevated BrainAGE
reflects subtle manifestations of accelerated aging in early
adulthood, which are not confounded by physical or cognitive-
developmental outcomes.

DISCUSSION

Using structural MRI and a well-established machine-learning
method for MRI-based estimation of the gap between

Frontiers in Aging Neuroscience | www.frontiersin.org 4 April 2021 | Volume 13 | Article 653365

http://www.kyb.mpg.de/bs/people/spider/main.html
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hedderich et al. BrainAGE After Premature Birth

FIGURE 1 | Increased BrainAGE after premature birth. (A) Group difference of BrainAGE between VP/VLBW and FT controls. Box plots of individual BrainAGE
scores are shown for VP/VLBW and FT adults, indicating the median, interquartile range, and range. The median BrainAGE score is significantly elevated in
VP/VLBW adults compared to FT controls as determined by Mann-Whitney U-test [VP/VLBW: 1.37 years, interquartile range (IQR): −1.26–4.67 years vs. FT: −0.19,
IQR: −3.02–3.28 years; p = 0.002]. Increased BrainAGE is associated with perinatal variables of premature birth (B–D). (B) ∆BrainAGE (y-axis) is plotted against
gestational age (GA) at birth in weeks (x-axis) in VP/VLBW individuals. A linear regression line is added. Spearman’s r revealed a significant correlation (r = −0.271,
p = 0.003). (C) ∆BrainAGE (y-axis) is plotted against birth weight (BW) in grams (x-axis) in VP/VLBW individuals. A linear regression line is added. Spearman’s r
revealed a significant correlation (r = −0.196, p = 0.025). (D) Association between BrainAGE and neonatal treatment intensity. ∆BrainAGE (y-axis) is plotted against
neonatal treatment intensity as measured by INTI (index of neonatal treatment intensity; x-axis) in VP/VLBW individuals. A linear regression line is added. Spearman’s
r revealed a significant correlation (r = −0.302, p = 0.001). Abbreviations: BrainAGE, Brain Age Gap Estimate; FT, full-term; IQR, interquartile range; VP/VLBW, very
preterm and/or very low birth weight.

TABLE 1 | Demographical, clinical, and cognitive data.

VP/VLBW (n = 101) FT (n = 111)

M SD Range M SD Range p value

Sex (male/female) 58/43 66/45 0.167
Age (years) 26.7 ± 0.61 25.7–28.3 26.8 ± 0.74 25.5–28.9 0.765
GA (weeks) 30.5 ± 2.1 25–36 39.7 ± 1.1 37–42 <0.001
BW (g) 1,325 ± 313 630–2,070 3,398 ± 444 2,120–4,670 <0.001
Hospitalization (days) 72.2 ± 26.4 24–170 6.9 ± 3.0 2–26 <0.001
SESa (a.u.) 29/44/28 1–3 35/50/26 1–3 0.760
Maternal age (years) 29.5 ± 4.8 16–41 29.4 ± 5.2 18–42 0.889
Full-scale IQb (a.u.) 94.1 ± 12.7 64–131 102.5 ± 11.9 77–130 <0.001

Statistical comparisons: sex, SES with χ2 statistics; age, GA, BW, Hospitalization, maternal age, IQ, with two-sample t-tests. Abbreviations: BW, birth weight; FT, full-term; GA,
gestational age; IQ, intelligence quotient; M, Mean; maternal age, maternal age at birth; SD, standard deviation; SES, socioeconomic status at birth; VP/VLBW, very preterm and/or
very low birth weight. a1 = upper class, 2 = middle class, 3 = lower class. bData are based on 97 VP/VLBW and 108 FT-born individuals.

chronological and biological brain age ‘‘BrainAGE’’, we
demonstrate significantly increased BrainAGE of approximately
1.4 years in premature-born adults at 26 years. We found this
BrainAGE increase to be specific for premature birth through

its associations with perinatal variables, namely low GA, low
BW, and high neonatal treatment intensity, while links between
BrainAGE and outcomes of physical and cognitive development
were not found. Thus, our study adds to the knowledge about
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FIGURE 2 | BrainAGE and variables of physical and cognitive outcomes
after premature birth. Association between Full-scale IQ and BrainAGE. (A)
Full-scale IQ (y-axis) is plotted against ∆BrainAGE in years (x-axis) in
VP/VLBW individuals. A linear regression line is added. Joint partial correlation
analysis with TIV corrected for sex revealed no significant correlation
(r = −0.114, p = 0.133). Association between Total Intracranial Volume and
Full-scale (B). Full-scale IQ (y-axis) is plotted against TIV in ml (x-axis) in
VP/VLBW individuals. A linear regression line is added. Joint partial correlation
analysis with BrainAGE corrected for sex revealed a significant correlation
(r = 0.377, p < 0.001). Association between TIV and BrainAGE (C). BrainAGE
in years (y-axis) is plotted against TIV in ml (x-axis) in VP/VLBW individuals. A
linear regression line is added. Joint partial correlation analysis with FS-IQ
corrected for sex revealed no significant correlation (r = −0.106, p = 0.152).
Abbreviations: BrainAGE, Brain Age Gap Estimate; FS-IQ, full-scale
intelligence quotient; FT, full-term; SD, standard deviation; TIV, total
intracranial volume; VP/VLBW, very preterm and/or very low birth weight.

the long-term consequences of premature birth extending into
the third decade of life and provides evidence for accelerated
brain aging in premature-born adults.

The research about MRI-derived measurements of brain
aging is still in its infancy and there exist mainly two distinct
but not mutually exclusive frameworks that seek to explain
the basis for increased BrainAGE (Elliott et al., 2019). A
‘‘geroscience’’ perspective argues that aging leads to the multi-
organ accumulation and defective repair of damage on various
levels, which is the basis for developing several diseases such
as neurodegenerative disorders. Thus, this concept links aging
with chronic diseases in late life, and an increase in BrainAGE
would be interpreted as accelerated aging (Kennedy et al., 2014).
The second perspective focuses on factors of imbalanced early
system integrity and interprets an increase of BrainAGE as an
indicator of compromised life-long brain health (Deary, 2012). In
other words, a discrepancy between chronological and biological
age may exist over a long period of life and may not change
dynamically in terms of accelerated aging.

In the case of survivors of premature birth, it seems likely
that early and persisting compromised system integrity plays
a role throughout the life course affecting both the brain and
the body. Premature birth is a risk factor for unfavorable
cognitive development and several neuropsychiatric conditions
such as attention deficit hyperactivity disorder (Nosarti et al.,
2012; D’Onofrio et al., 2013; Wolke et al., 2019). But also
organ function may be compromised affecting the lungs, the
cardiovascular system, or the kidneys (Raju et al., 2017).

However, as stated earlier, this does not exclude a
contribution of the geroscience perspective to our results.
A recent epidemiologic study has found that BrainAGE was
related to a ‘‘pace of aging’’ measure based on a composite score
indexing multi-organ integrity in mid-life, thus underlining
the possible interpretation of ‘‘accelerated aging’’ (Elliott et al.,
2019). While a relationship between increased BrainAGE and
the risk for neurodegenerative disorder has been established, it is
still speculative in younger ages (Wang et al., 2019; Elliott, 2020).
However, there is a biological rationale for this relationship since
tau protein aggregation in neurons usually starts in peripheral
dendrites and thus may reach the cell body faster in case of
underdeveloped dendritic arborization as in premature-born
humans (Dean et al., 2013; Back and Miller, 2014; Braak and
Tredici, 2018). Moreover, neuropsychological evidence comes
from a Finnish study that identified late premature birth as a
risk factor for poor cognitive performance at 68 years of age
(Heinonen et al., 2015). Although evidence on the relationship
between premature birth and neurodegenerative disorders can
only be regarded as preliminary, it constitutes an important
question since after premature birth there is a whole life span
available for potential preventive strategies.

While most studies on premature-born individuals use
endpoints of successful development in early life, our results may
motivate a life span perspective on survivors of premature birth
(Wolke et al., 2019). Against the backdrop of cognitive decline in
later life, improving cognitive abilities or educational attainment
in the early development of premature-born individuals can also
be viewed as a means to increase cognitive reserve throughout
the life span (Lövdén et al., 2020). Apart from increasing
the cognitive reserve through improving development and
education, risk factor management in early adulthood may
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play an important role in the prevention of neurodegenerative
disorders in later life (Belsky et al., 2015; Crous-Bou et al.,
2017; Elliott et al., 2019). For example, modifiable risk factors
for Alzheimer’s disease are either related to cardiovascular
health or lifestyle habits (Crous-Bou et al., 2017). Interestingly,
premature-born individuals bear a greater risk for hypertension,
insulin resistance, and cardiovascular disease (Lawlor et al., 2005;
Parkinson et al., 2013; Bavineni et al., 2019). Interventions aiming
at successful risk factor management and promoting a healthy
lifestyle may thus be of special importance for premature-born
individuals as a particularly vulnerable group.

Importantly, our findings are limited by the cross-sectional
study design and future studies with longitudinal follow-up
of premature-born individuals well until mid-life and multiple
time points of brain imaging will be needed in the future to
assess BrainAGE changes over time. Also, while we have used
FS-IQ as an overall measurement of cognitive performance
and did not find an association with BrainAGE, testing
of specific cognitive capacities over time may lead to a
more comprehensive characterization of cognitive abilities of
premature-born individuals in the context of aging.

In conclusion, we have shown specifically elevated BrainAGE
scores in young adults after premature birth using a robust
and well-validated machine-learning method. In line with the
current literature, we hypothesize that accelerated brain aging
processes contribute to this finding. Further research will need
to address the relationship between premature birth and aging,
particularly in long-term longitudinal studies on the effects of
premature birth throughout the life course to develop biomarkers
for early identification of at-risk populations for age-related
brain disorders.
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