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Objective: Although emerging evidence suggests that both osteoarthritis (OA) and brain
atrophy (as assessed by structural neuroimaging markers) are associated with the risk of
dementia, little is known about the association between OA and structural neuroimaging
markers. This study aimed to examine the association of OA with changes in structural
neuroimaging markers among non-demented older people.

Methods: We examined the cross-sectional and longitudinal associations between
OA and structural neuroimaging markers (hippocampal volume, entorhinal volume,
ventricular volume, and volume of gray matter of the whole brain) among non-demented
older people. We categorized our participants as those without OA (OA−) and those
with OA (OA+). At baseline, we included 1,281 non-demented older adults, including
1,050 without OA and 231 with OA.

Results: In the cross-sectional analysis, we did not observe any significant difference
in structural neuroimaging markers between the two OA groups. In the longitudinal
analysis, we found that compared to participants without OA, those with OA showed
a steeper decline in volumes of the gray matter of the whole brain among non-demented
older adults.

Conclusions: OA was associated with a steeper decline in volumes of the gray matter
of the whole brain over time among non-demented older people.

Keywords: osteoarthritis, MRI, neuroimaging, dementia, longitudinal study

INTRODUCTION

Osteoarthritis (OA) is a common and debilitating joint disorder that contributes to functional
impairment among older people (Hunter and Bierma-Zeinstra, 2019). The precise pathogenesis
of OA remains largely unknown, though inflammation is thought to play an important role in
the progression of OA (Hunter and Bierma-Zeinstra, 2019). For example, substantial evidence
suggests that proinflammatory factors are involved in the development of disease (Staite et al., 1990;
Ghivizzani et al., 1997; Lawlor et al., 2001). Interestingly, a previous retrospective population-based
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cohort study indicated that OA is also an independent risk factor
for developing dementia (Huang et al., 2015). Further, a recent
meta-analysis supported a link between OA and an increased
risk of dementia (Weber et al., 2019). However, the mechanism
through which OA increases the risk of dementia and cognitive
impairment remains unclear.

Cerebral atrophy assessed on structural MRI is a valid
marker of Alzheimer’s disease (AD) dementia (Mckhann et al.,
2011). In addition, rates of change in several brain regions,
such as entorhinal cortex (Cardenas et al., 2011), hippocampus
(Jack et al., 2004), ventricular enlargement (Ridha et al., 2008),
and whole-brain (Sluimer et al., 2010), have been reported to
be associated with changes in cognitive performance, further
suggesting that these brain regions are valid markers of disease
progression. However, no previous studies have attempted to
examine the association of OA with changes in these structural
neuroimaging markers.

In the current study, at baseline, we examined the cross-
sectional relationships between OA and several structural
neuroimaging markers among non-demented older adults.
Further, linear mixed models were conducted to examine the
association of OA with changes in structural neuroimaging
markers over time among non-demented older adults.

MATERIALS AND METHODS

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) Database
Data utilized in the present study were extracted from the
ADNI database1. The ADNI study has been described in detail
elsewhere (Weiner et al., 2015). In brief, the ADNI aims
to examine the progression of cognitive decline among MCI
and mild AD patients using a variety of variables, including
demographics, cognitive assessments, neuroimaging variables,
and fluid biomarkers. In the present study, we included 1,281
non-demented older adults at baseline. We further categorized
our participants into two groups based on their OA status: OA−

group (n = 1,050) and OA+ group (n = 231). The OA status
was reported by participants based on their medical history. At
ADNI sites, local institutional review boards approved the study
procedures, and participants provided written informed consent.

Participants
In total, we included 1,281 non-demented older adults, including
415 individuals with normal cognition and 866 individuals
with mild cognitive impairment (MCI). Individuals with normal
cognition had a Clinical Dementia Rating (CDR; Morris, 1993)
score of 0 and aMini-Mental State Examination (MMSE; Folstein
et al., 1975) score between 24 and 30. Individuals with MCI
had a CDR score of 0.5, an MMSE score between 24 and 30,
an objective memory impairment as evaluated by delayed recall
scores of the Wechsler Memory Scale Logical Memory II, and an
absence of clinical dementia. All the available data were used in
this study.

1adni.loni.ucla.edu

Cognitive Outcome
The global cognition of participants was assessed by the 13-item
Alzheimer’s Disease Assessment Scale-Cognitive subscale
(ADAS-Cog 13; Mohs et al., 1997).

Structural MRI
The structural MRI data were extracted from the ADNI database.
The procedure of neuroimaging analysis has been described in
detail elsewhere (Jack et al., 2010). Four structural MRI markers
were included in our analysis: hippocampal volume, entorhinal
volume, ventricular volume, and volume of the gray matter of
the whole brain. To adjust for the sex difference in head size
(Sundermann et al., 2016), several transformations were made:

• Hippocampal volume ratio (HVR) = hippocampal/
intracranial volume × 103.

• Entorhinal volume ratio (EVR) = entorhinal/intracranial
volume × 103.

• Ventricular volume ratio (VVR) = ventricles/intracranial
volume × 103.

• Whole brain volume ratio (WVR) = whole
brain/intracranial volume × 103.

• In the current analysis, the neuroimaging data were
extracted from the file ‘‘ADNIMERGE’’ on the ADNI
website.

Statistical Analysis
T-tests and x2 tests were used to examine differences in
demographical variables and clinical variables between the
two OA groups (OA− vs. OA+). Specifically, for continuous
variables (age, education, ADAS-Cog 13, HVR, EVR, VVR, and
WVR), t-tests were used to compare the difference between two
groups, while x2 tests were used to compare the categorical
variables between two groups (gender, APOE4 genotype, and
MCI diagnosis). In addition, to examine the association of the
OA status at baseline with changes in cognition andMRImarkers
over time, linear mixed models were conducted. All models
included OA status, age, APOE4 genotype, gender, education, as
well as their interactions with time. Every model also included a
random intercept for each subject. Q-Q plots of residuals of our
linear mixed models did not suggest any strong deviations from
normality. All statistical work was conducted using R statistical
software (version: 4.0.0; Team, 2013). The significance level was
set at p < 0.05.

RESULTS

Demographics and Clinical Characteristics
by the OA Status
At baseline, we included 1,281 non-demented older adults,
including 1,050 without OA and 231 with OA. As displayed
in Table 1, we did not find any significant differences in
demographics and clinical variables (age, gender, education,
APOE4 genotype, MCI diagnosis, ADAS-Cog 13, HVR, EVR,
VVR or WVR, all p > 0.05). There were missing values in
our variables (HVR, EVR, VVR, and WVR) due to the quality
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TABLE 1 | Demographics and clinical characteristics by OA status.

Characteristics OA− OA+ P values

Age, years 73.5 ± 7.13 74.3 ± 6.79 0.07
Female gender, n (%) 446 (42.5) 113 (48.9) 0.07
Education, years 16 ± 2.82 16 ± 2.76 0.95
APOE4 carriers, n (%) 442 (42.1) 107 (46.3) 0.24
MCI diagnosis, n (%) 721 (68.7) 145 (62.8) 0.08
ADAS-Cog 13 14.3 ± 6.93 13.8 ± 7.21 0.33
HVRa 4.57 ± 0.775 4.64 ± 0.780 0.29
WVRb 673 ± 51 676 ± 50 0.33
VVRc 24.7 ± 12.7 24.8 ± 12.2 0.94
EVRd 2.36 ± 0.47 2.4 ± 0.49 0.24

Abbreviations: OA, Osteoarthritis; MCI, Mild cognitive impairment; ADAS-Cog 13, the
13-item Alzheimer’s Disease Assessment Scale-Cognitive subscale; HVR, Hippocampal
volume ratio; WVR, Whole brain volume ratio; VVR, Ventricles volume ratio; EVR,
Entorhinal volume ratio. Notes. a Included in the present analysis are 1,110 participants,
including 918 in OA− group and 192 in OA+ group. b Included in the present analysis are
1,259 participants, including 1,035 in OA− group and 224 in OA+ group. c Included in the
present analysis are 1,237 participants, including 1,017 in OA− group and 220 in OA+
group. d Included in the present analysis are 1,112 participants, including 918 in OA−

group and 194 in OA+ group.

or availability of MRI scans, resulting in varying numbers of
participants used in our subsequent analyses (Table 1).

Association of OA Status With Changes in
Cognition and Neuroimaging Markers Over
Time Among Non-demented Older Adults
Results of linear mixed models are presented in Table 2. The
association of OA status with change in ADAS-Cog 13 was
marginally significant (Coefficient = −0.13, p = 0.08; Table 1
and Figure 1). However, as shown in Figure 2 and Table 2,
we found that the OA status was significantly associated with
change in WVR (Coefficient = −1.24, p < 0.001), but not HVR
(Coefficient = −0.005, p = 0.2) or VVR (Coefficient = 0.003,
p = 0.94). The association of OA status with change in EVR
was marginally significant (Coefficient = −0.01, p = 0.065).
Specifically, the OA status × time interaction term for WVR was
significant, suggesting that compared with participants without
OA, those with OA showed a significantly steeper decline in
WVR (Figure 2B). For Figures with both regression lines and
data points, please see the Supplementary Figures 1, 2.

Supplementary Analysis
In the present study, the dropout rate was high after the 4th
year of follow up visit. To test the robustness of our results, we
additionally conducted a supplementary analysis and restricted
our analysis to those with follow-up duration ≤4 years. The
association of OA status with change inWVRwas still significant
(Table 3).

DISCUSSION

In the current study, we examined the cross-sectional and
longitudinal association of the OA status with cognitive
performance and several structural neuroimaging markers
among non-demented older adults. In the cross-sectional
analysis, no significant difference in ADAS-Cog 13 or structural
neuroimaging markers was observed, suggesting that these

FIGURE 1 | Association of OA status with changes in cognition over time
among non-demented older adults. The OA status was not associated with
the change in ADAS-Cog 13 over time among non-demented older adults
(coefficient = −0.13, p = 0.08). Abbreviations: OA, Osteoarthritis; ADAS-Cog
13, the 13-item Alzheimer’s Disease Assessment Scale-Cognitive subscale.

outcome measures were similar between the two group at
baseline. In the longitudinal analysis, linear mixed models
showed that OA status was associated with the change in
volumes of the gray matter of the whole brain, but not
ADAS-Cog 13, hippocampal volume, entorhinal volume, or
ventricular volume.

The rate of decline in volumes of the gray matter of the whole
brain has been reported to be associated with cognitive decline,
supporting its role as a valid marker of clinical progression (Fox
et al., 1999; Josephs et al., 2008; Schott et al., 2008; Sluimer et al.,
2008). However, no previous studies have attempted to examine
the association of OA status with change in WVR over time
among non-demented older people. The finding of the present
study that OA was associated with the steeper decline in volumes
of the gray matter of the whole brain among non-demented
older adults is in line with the results of previous studies, which
suggested a relationship between OA and the risk of developing
dementia (Huang et al., 2015; Chen et al., 2018; Weber et al.,
2019). In a population-based cohort study, Huang and colleagues
have suggested that OA is an independent risk factor for
developing dementia (Huang et al., 2015). Another study also
indicated that compared to subjects without OA, those with OA
are at a higher risk of dementia (Chen et al., 2018). Recently, a
meta-analysis further supported an association between OA and
the risk of developing dementia (Weber et al., 2019). However,
no study has attempted to examine the association of OA
status with change in structural neuroimaging markers among
non-demented older adults. To our knowledge, this is the first
study to examine the longitudinal association between OA and
several structural neuroimaging markers (hippocampal volumes,
entorhinal volumes, ventricular volumes, and volumes of gray
matter of the whole brain) among non-demented older adults.

The precise mechanisms underlying this association remain
unknown, though there are several possible mechanisms that
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FIGURE 2 | Association of OA status with changes in MRI markers over time among non-demented older adults. Panel (A) shows that OA status was not
associated with the change in HVR. Panel (B) shows that compared with participants without OA, those with OA showed a significantly steeper decline in WVR.
Panel (C) shows that OA status was not associated with a change in VVR. Panel (D) shows that OA status was not associated with the change in EVR.
Abbreviations: OA, Osteoarthritis; HVR, Hippocampal volume ratio; WVR, Whole brain volume ratio; VVR, Ventricles volume ratio; EVR, Entorhinal volume ratio.

TABLE 2 | Association of OA status with changes in ADAS-Cog 13 and
neurodegenerative markers over time among non-demented older people.

Predictors Coefficient SE P values

Outcome: ADAS-Cog 13
OA × time −0.13 0.07 0.08

Outcome: HVR
OA × time −0.005 0.004 0.2

Outcome: WVR
OA × time −1.24 0.29 <0.0001

Outcome: VVR
OA × time 0.003 0.05 0.94

Outcome: EVR
OA × time −0.01 0.01 0.065

Abbreviations: OA, Osteoarthritis; ADAS-Cog 13, the 13-item Alzheimer’s Disease
Assessment Scale-Cognitive subscale; HVR, Hippocampal volume ratio; WVR, Whole
brain volume ratio; VVR, Ventricles volume ratio; EVR, Entorhinal volume ratio. Notes:
All models were adjusted for age, education, gender, APOE4 genotype, and their
interactions with time. However, coefficients of the main effects of these variables were
not shown. A comprehensive list of regression terms can be found in Supplementary
Tables 1–5.

may accelerate the reduction of brain volumes in subjects with
OA. First, it is possible that peripheral inflammatory cytokines

TABLE 3 | Association of OA status with change in WVR over time among
non-demented older people with the duration of follow up 5 4 years.

Predictors Coefficient SE P values

Time −5.11 1.26 <0.001
OA 7.74 3.3 0.019
Age −3.5 0.18 <0.001
Female gender 13 2.57 <0.001
APOE4 + genotype −8.16 2.58 0.0015
Time × OA −0.64 0.31 0.036
Time × Age 0.004 0.017 0.8
Time × Female gender −0.49 0.23 0.035
Time × APOE4 + genotype −2.2 0.23 <0.001

Abbreviation: OA, Osteoarthritis.

induced by OA may trigger neuroinflammation, which leads
to the accumulation of AD pathologies and neurodegeneration.
For instance, in an animal study, Kyrkanides and colleagues
suggested that induction of OA and peripheral inflammation
contributes to the progression of neuroinflammation and the
deposition of AD pathology (Kyrkanides et al., 2011). Further,
systemic inflammation induced by LPS could lead to the release
of inflammatory cytokines in the brain that promotes cognitive
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decline and neurodegeneration (Cunningham et al., 2005, 2009).
Second, it is possible that the association of OA with changes in
brain volumes may be mediated by other factors. For instance,
patients with OA demonstrate a reduced level of physical activity,
which has been reported to be associated with a higher risk of
developing dementia and decline in volumes of several brain
regions (Buchman et al., 2012; Blondell et al., 2014; Erickson
et al., 2014).

Several potential limitations should be addressed. First, we
categorized our participants into two OA groups (OA− vs.
OA+) based on the self-report of OA history, which may lead
to some misclassifications in both groups. In future studies, the
diagnosis of OA should be based on standardized diagnostic
criteria. Second, given the nature of our study design, we
could not provide any evidence on causation according to our
findings. Third, participants in the ADNI study represent a
convenience sample, which may limit our ability to generalize
our findings to other populations. Finally, the associations of
OA with changes in ADAS-Cog 13 and EVR were marginally
significant, indicating that there was a tendency towards an effect.
Therefore, further studies are needed to replicate and validate our
results.

In conclusion, OA was associated with a steeper decline in
volumes of the gray matter of the whole brain over time among
non-demented older people.
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