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Purpose: The aim of this study was to evaluate whether perivascular space (PVS)
severity and retinal ganglion cell layer (GCL) thickness differed based on the stage of
diabetic retinopathy (DR) and the cognitive status in patients with DR.

Methods: A total of 81 patients with DR (51 in the non-proliferative group and 30 in
the proliferative group) were included in this retrospective, cross-sectional study. PVS
severity was assessed in the basal ganglia (BG) and centrum semiovale using MRI. The
total cerebral small vessel disease (SVD) score was determined based on the numbers
of lacunes and microbleeds and the severity of white matter hyperintensity. Optical
coherence tomography was used to measure foveal and perifoveal GCL thicknesses.
Cerebral SVD markers and cognitive function were compared between the groups,
and correlations between the BG-PVS severity and the Mini-Mental Status Examination
(MMSE) scores and GCL parameters were evaluated.

Results: Patients with proliferative DR had higher BG-PVS severity (P = 0.012),
higher total cerebral SVD scores (P = 0.035), reduced GCL thicknesses in the inferior
(P = 0.027), superior (P = 0.046), and temporal (P = 0.038) subfields compared to
patients with non-proliferative DR. In addition, the BG-PVS severity was negatively
correlated with the MMSE score (P = 0.007), and the GCL thickness was negatively
correlated with the BG-PVS severity (P-values < 0.05 for inferior, superior, and
temporal subfields).

Conclusion: BG-PVS severity and retinal GCL thickness may represent novel imaging
biomarkers reflecting the stage of DR and cognitive decline in diabetic patients.
Furthermore, these results suggest a possible link between cerebral and retinal
neurodegeneration at the clinical level.

Keywords: basal ganglia, cerebral small vessel disease, cognitive decline, diabetes mellitus, diabetic retinopathy,
ganglion cell layer, perivascular space
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INTRODUCTION

Diabetic retinopathy (DR) is a major microvascular complication
of type 2 diabetes mellitus (T2DM) and a predictor of other
end-organ complications (Aminian et al., 2020), with a global
prevalence of 27% in patients with T2DM (Thomas et al.,
2019). DR can be divided into two major categories, namely,
non-proliferative DR in the early stages and proliferative DR
in the more advanced stages. While pathological preretinal
neovascularization is a hallmark feature of proliferative DR (Stitt
et al., 2016), retinal neurodegeneration is reported to occur earlier
in DR pathogenesis (Sohn et al., 2016). Retinal ganglion and
amacrine cells are believed to be affected first by diabetes-induced
apoptosis (Ng et al., 2016), which can be identified clinically
by a decrease in the ganglion cell layer (GCL) thickness on
optical coherence tomography (OCT) imaging (Ng et al., 2016).
Moreover, previous studies have shown that patients with DR
have an increased risk of cognitive impairment (Crosby-Nwaobi
et al., 2012; Gupta et al., 2019), although the pathophysiological
mechanisms underlying this process are not well known.

While the retina is the classic target organ for diabetic
microangiopathy, the brain has also recently been identified as
another target organ for diabetic microvascular complications
(Woerdeman et al., 2014). The retina and the brain share
similar anatomical and physiological characteristics, as both
are embryologically derived from the same tissue and possess
similar structural and functional features, such as the blood-
retinal/blood-brain barriers and glial cell connections (London
et al., 2013). In addition, similar to the retinal microvasculature,
an increasing body of evidence indicates that hyperglycemia can
induce dysfunction in the cerebral microvasculature, causing
pathological neurovascular remodeling, blood-brain barrier
disruption, and cell damage to neurons and glial cells (Ergul
et al., 2012). The retinal glymphatic system, a network between
the superficial capillary plexus and the inner nuclear layers, has
also been reported to reflect the state of neurodegenerative and
inflammatory disorders in the brain (Petzold, 2016).

Cerebral small vessel disease (SVD) encompasses a wide
spectrum of cerebrovascular diseases with similar clinical
manifestations. Using MRI, conventional markers for SVD
include lacunes, microbleeds, and white matter hyperintensity
(WMH) (Chen et al., 2019). Cerebral perivascular spaces (PVS),
also known as Virchow-Robin spaces, are pial-lined, interstitial,
fluid-filled spaces surrounding the penetrating vessels. A growing
body of evidence suggests that enlarged PVS represent a novel
biomarker for cerebral SVD (Duperron et al., 2018). Enlarged
PVS have been correlated with cerebrovascular disease (Hurford
et al., 2014; Potter et al., 2015) and neurodegenerative diseases
such as dementia (Ramirez et al., 2016; Banerjee et al., 2017;

Abbreviations: BG, basal ganglia; CDR, clinical dementia rating scale; CSO,
centrum semiovale; CSVD, cerebral small vessel disease; DR, diabetic retinopathy;
FOV, field of view; FLAIR, fluid-attenuated inversion recovery; GCL, ganglion cell
layer; GDS, global deterioration scale; MMSE, Mini-Mental State Examination;
OCT, optical coherence tomography; OR, odds ratio; PVS, perivascular space;
SNSB, Seoul neuropsychological screening battery; SVD, small vessel disease; TE,
echo time; TR, repetition time; T2DM, type 2 diabetes mellitus; WMH, white
matter hyperintensity.

Sepehrband et al., 2021). Moreover, PVS have been shown to be
a component of the glymphatic system, a recently discovered,
macroscopic, waste-clearance system in the brain (Jessen et al.,
2015). A recent study has demonstrated the glymphatic system
damage in T2DM rat models (Jiang et al., 2017), and the enlarged
PVS may reflect this damage (Jessen et al., 2015). However,
the relationships between cerebral PVS enlargement, retinal
neurodegeneration, DR stage, and cognitive decline have not yet
been evaluated. Therefore, the comprehensive assessments of the
brain and retinal changes should be performed to elucidate the
underlying mechanisms for these processes at the clinical level
and to acquire practical insights into the design of appropriate
treatments for the prevention of cognitive impairment in
patients with DR.

Therefore, in this study, we investigated whether MRI-visible
PVS, other cerebral SVD markers, and retinal GCL thickness
differed based on the DR stage and the cognitive status of
patients with DR.

MATERIALS AND METHODS

Patient Population
This retrospective study was approved by the Severance
Institutional Review Board, and a waiver of informed consent
was obtained (IRB approval number: 2020-3812-001). In
total, 158 patients with DR who had undergone detailed
neurological examinations for the assessment of cognitive
impairment from February 2010 to April 2020 were identified.
Among them, 130 patients with DR who had undergone both
brain MRI and neuropsychological testing within 1 year of
ophthalmologic examinations were enrolled. In this prospective
study, participants were excluded based on the following criteria:
(1) presence of other retinal diseases (e.g., age-related macular
degeneration, central serous chorioretinopathy, retinal vascular
occlusion, epiretinal membrane, and macular hole) or optic
nerve diseases (e.g., optic neuritis, glaucoma, and ischemic
optic neuropathy) (n = 19); (2) presence of old infarcts due to
large vessel disease or cardioembolic strokes, past intracerebral
hemorrhages, or post-traumatic encephalomalacia detected on
MRI (n = 17); (3) a previous history of intravitreal or sub-
Tenon’s injections, vitrectomy surgery, or laser photocoagulation
for the treatment of diabetic macular edema (n = 7); or (4) a
current or past history of severe dementia, other neurological
or neurodevelopmental disorders, substance-related problems,
or head trauma with loss of consciousness (n = 6). After the
consideration of these exclusion criteria, a total of 81 consecutive
patients with DR were included in the final study population
(mean age = 67.3 ± 9.9 years; 49 females and 32 males).

Demographic and clinical characteristics of patients, such as
age, sex, vascular risk factors (e.g., hypertension, dyslipidemia,
or cardiovascular diseases), and current or remote history of
smoking, were collected. The Mini-Mental Status Examination
(MMSE) (Han et al., 2008) assessed a range of elements
that include time orientation, spatial orientation, memory
registration, attention and calculation, memory recall, language,
and space-time configuration. The scores of the MMSE test
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result were divided into normal and abnormal in 15 percentile
standards by using the age and education criteria. “Cognitive
impairment” was defined as an adjusted MMSE score in the
range of 10–23, with less than 10 for “severe dementia” (Creavin
et al., 2016). The Seoul Neuropsychological Screening Battery
(SNSB) test results were evaluated to determine four cognitive
statuses (i.e., memory, language skills, space-time functions,
and executive function) and provided percentile score adjusted
for age, sex, and education (Ahn et al., 2010). The SNSB test
incorporated the MMSE, Clinical Dementia Rating (Juva et al.,
1994), and Global Deterioration Scale (Reisberg et al., 1982).

Assessment of Diabetic Retinopathy
Stage and Retinal Ganglion Cell Layer
Thickness
Images from laser-scanning ophthalmoscopy (Optos Plc.,
Dunfermline, United Kingdom) and fluorescein angiography
(Heidelberg Engineering, Heidelberg, Germany) were reviewed
to diagnose DR and to determine the DR stage. Non-proliferative
vs. proliferative DR stages were identified based on the presence
of preretinal angiogenesis using fundus fluorescein angiography
(Group, 1991). The examination of the GCL thickness in the
macula was performed using spectral-domain OCT (Spectralis R©,
Heidelberg Engineering, Heidelberg, Germany), and the retinal-
segmentation software accompanying this device was used
to identify and quantify the average thickness of each retinal
neuronal layer (Reisberg et al., 1982). The GCL failed was defined
as the layer between the ganglion cell-inner plexiform layer
(Mwanza et al., 2011), and the GCL thickness was measured
in the foveal area (a 1-mm zone centered on the fovea) and
in the inferior, superior, nasal, and temporal subfields (a 1- to
3-mm perifoveal zone), as defined by the Early Treatment DR
Study. The mean GCL thickness of each subfield in both eyes
was analyzed. However, if one eye met exclusion criteria, only
GCL parameters in the opposite eye were analyzed. Two trained
retinal ophthalmologists (with 8 and 18 years of experience,
respectively) measured OCT findings, and the averaged values
were used for statistical analyses.

MRI Protocol
All scans were acquired with a 3.0-T scanner (Achieva; Philips
Healthcare, Best, Netherlands) with a 32-channel head coil.
Head motion was minimized with restraining foam pads.
The MRI imaging protocol included T2-weighted (repetition
time [TR]/echo time [TE]: 2,800–3,000/80–100 ms; field of
view (FOV): 230–240 mm; section thickness: 5 mm; matrix:
256 × 256), T2∗-weighted gradient-echo images (TR/TE: 500–
1,000/15–25 ms; section thickness: 5 mm; matrix: 256 × 256),
and fluid-attenuated inversion recovery (FLAIR) images (TR/TE:
9,000–10,000/110–125 ms; FOV: 240 mm; section thickness:
5 mm; matrix: 256 × 256).

Assessment of Cerebral Small Vessel
Disease Markers
The PVS was identified and rated on axial, T2-weighted, MR
images based on the previously reported criteria (Wardlaw

et al., 2013) by two trained neuroradiologists (with 15 and
8 years of experience, respectively) who were blinded to clinical
information. A 4-point visual rating scale (0 = absent PVS, 1 = less
than 10 PVS, 2 = 11–20 PVS, 3 = 21–40 PVS, and 4 = more than
40 PVS) was applied to the basal ganglia (BG) and the centrum
semiovale (CSO) (Wardlaw et al., 2013). The number of MRI-
visible PVS was counted in each hemisphere, and the highest
score was recorded. The final consensus rating scale results were
used for the analysis.

Lacunes were defined as lesions larger than 3 mm and less than
15 mm in the subcortical area with high signal intensity on the
T2-weighted images and a perilesional halo on FLAIR imaging
(Wardlaw et al., 2013). The number of lacunes was manually
counted in the brain stem, BG, thalamus, pons, and cerebral
white matter. Microbleeds were defined as being 10 mm or less
in diameter on axial sections of the T2-weighted gradient-echo
images, using the previously reported criteria (Greenberg et al.,
2009). The total number of microbleeds was counted.

The WMH was defined as a hyperintense white matter lesion
on FLAIR images based on the STRIVE (STandards for ReportIng
Vascular changes on nEuroimaging) criteria (Wardlaw et al.,
2013) and was graded according to the Fazekas scale as deep
WMH (0 = absent, 1 = punctate, 2 = early confluent, and
3 = confluent) or periventricular WMH (0 = absent, 1 = caps
or pencil-thin lining, 2 = smooth halo, and 3 = irregular WMH
extending into the deep white matter) (Fazekas et al., 1987;
Wardlaw et al., 2013). The total Fazekas score was calculated by
adding together the periventricular and deep WMH scores (0–6)
(Park et al., 2018).

The total cerebral SVD score was calculated for each patient
using an ordinal scale ranging from 0 to 4 by counting the
presence of each of the four MRI features of cerebral SVD, with a
score of 1 point indicating the presence of high BG-PVS severity
(a score ≥ 2), lacunes, microbleeds, and severe WMH (total
Fazekas score > 3) (Staals et al., 2014). Lacunes, microbleeds,
and WMHs were rated through consensus discussions between
the two trained neuroradiologists.

Statistical Analysis
Baseline clinical and imaging characteristics were compared
between non-proliferative DR and proliferative DR groups using
the chi-squared or Fisher’s exact test for categorical variables or
the independent t-test or Mann–Whitney U test for continuous
variables, according to normality. Interobserver agreements for
imaging evaluations were calculated using the Cohen’s kappa
index. In addition, correlations between the BG-PVS severity
and the total cerebral SVD score with the MMSE score and
GCL parameters were evaluated using the Spearman’s correlation
coefficient analysis. The multivariable logistic regression analysis
using the enter method was performed to determine the effect of
selected cerebro-ophthalmic parameters (with P-values of < 0.10
in previous comparison and correlation tests) on the final
outcome, i.e., DR progression to the proliferative stage. An
identical process was performed to predict cognitive impairment
(adjusted score of < 24 on the MMSE).

All statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS/IBM Corporation; Chicago,
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IL, United States) version 23.0 software for Windows. A P-
value < 0.05 was considered statistically significant.

RESULTS

Among 81 patients, 51 patients were classified as having non-
proliferative DR and 30 were classified as having proliferative DR.

Interobserver Agreement of Perivascular
Space Evaluations
The inter-rater reliabilities were good for both BG-PVS (κ = 0.76)
and CSO-PVS (κ = 0.73).

Clinical, Cerebral Small Vessel Disease,
and Retinal Ganglion Cell Layer
According to Diabetic Retinopathy Stage
The clinical and neuropsychological characteristics of the non-
proliferative and proliferative DR groups are summarized in
Table 1. There were no significant differences between the clinical
or neuropsychological characteristics of these two groups.

TABLE 1 | Clinical characteristics and neuropsychological function according to
the diabetic retinopathy (DR) stage.

Non-
proliferative
DR (n = 51)

Proliferative
DR (n = 30)

P value*

Basic clinical variables

Age (years) 68.7 ± 9.2 64.9 ± 10.7 0.094

Sex (female) 27 (52.9) 22 (73.3) 0.070

Year of education 9.2 ± 4.3 8.8 ± 4.2 0.250

Hypertension 20 (54.1) 11 (39.3) 0.238

Hyperlipidemia 3 (8.1) 0 (0) 0.253

Cardiovascular disease 9 (24.3) 4 (14.3) 0.316

Current or previous
history of smoking

1 (2.7) 3 (10.7) 0.307

Neuropsychological assessment

MMSE 23.6 ± 4.4 23.9 ± 5.6 0.863

Cognitive impairment
(adjusted MMSE
score < 24)

34 (67) 15 (50) 0.163

CDR 0.5 (0.5–0.5) 0.5 (0.5–0.5) 0.720

GDS 3 (3–3) 3 (3–3) 0.992

Total attention score 25.9 ± 27.3 34.6 ± 32.1 0.877

Total language score 19.5 (2.1–48.9) 30.8 (8.0–51.1) 0.725

Total visuospatial
function score

42.2 (7.1–63.2) 44.3 (4.5–65.2) 0.855

Total memory score 10.9 (1.4–44.1) 27.3 (4.9–49.7) 0.544

Frontal executive
function score

2.6 (0.6–46.6) 13.8 (1.2–50.3) 0.496

Data were expressed as means with SDs or median with interquartile range or as
numbers with percentages in parentheses.
*Calculated from the chi-squared test for categorical variables, and the
independent t-test or Mann–Whitney U test for continuous variables
according to normality.

TABLE 2 | Cerebral and ophthalmic imaging findings according to the DR stage.

Non-
proliferative
DR (n = 51)

Proliferative
DR (n = 30)

P value*

Brain MRI imaging findings

BG-PVS 1 (1–2) 2 (1–3) 0.012

CSO-PVS 2 (1–2) 2 (1–4) 0.074

Total no. of old lacunes 0 (0–0) 0 (0–1) 0.072

Total no. of microbleeds 0 (0–0) 0 (0–0) 0.763

Total WMH 3 (2–4) 3 (2–4) 0.303

Total cerebral SVD
score

1 (0–2) 1 (1–2) 0.026

Retinal GCL thickness (µm)

Foveal center 17.26 ± 6.56 16.50 ± 8.01 0.531

Inferior 48.53 ± 10.16 41.26 ± 13.60 0.027

Superior 48.42 ± 10.98 42.69 ± 13.56 0.046

Nasal 48.36 ± 8.76 44.94 ± 11.06 0.094

Temporal 45.51 ± 10.68 39.35 ± 11.81 0.038

Data are expressed as means with SDs or median with interquartile range or as
numbers with percentages in parentheses. A P-value in bold indicates statistical
significance (P < 0.05).
*Calculated from the chi-squared test for categorical variables, and the
independent t-test or Mann–Whitney U test for continuous variables
according to normality.

Brain MRI and retinal OCT imaging findings for patients
in the two DR groups are summarized in Table 2. Patients in
the proliferative DR group had a significantly higher BG-PVS
severity (P = 0.012) and a significantly higher total cerebral
SVD score (P = 0.035) than patients in the non-proliferative DR
group. Patients with proliferative DR also showed significantly
reduced GCL thicknesses in the inferior (P = 0.027), superior
(P = 0.046), and temporal (P = 0.038) subfields compared to
patients with non-proliferative DR. Decreased GCL thicknesses
were also identified in other subfields (i.e., foveal center and
nasal) in the proliferative DR group; however, these results did
not reach statistical significance. Figures 1, 2 show representative
cases at different stages of DR progression.

Correlation of BG-PVS Severity and Total
Cerebral Small Vessel Disease Score
With MMSE Score
The results of the correlation analysis for cerebral SVD
makers and neuropsychological function are summarized in
Supplementary Table 1. The BG-PVS severity was negatively
correlated with the MMSE score (P = 0.007), while the total
cerebral SVD score did not show a significant correlation
with this score (P = 0.23). Figure 3 shows a corresponding
scatterplot. In addition, BG-PVS was negatively correlated with
total visuospatial score (P = 0.039), while it was positively
correlated with CDR (P = 0.043) and GDS (P = 0.004). Total
cerebral SVD score presented a negative correlation with frontal
executive function (P < 0.001) and a positive correlation with
GDS (P = 0.035).
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FIGURE 1 | (A) A 83-year-old female with non-proliferative diabetic retinopathy (DR). Patchy areas of capillary dropout with microaneurysms were observed on a
montage fundus fluorescein angiography (FFA) image. The axial T2-weighted MRI images show grade 0 perivascular space in the basal ganglia (BG-PVS). On
fluid-attenuated inversion recovery (FLAIR) images, the total Fazekas score was 2. The total cerebral small vessel disease (SVD) score was 0. (B) A 73-year-old
female with proliferative DR. Wide-field FFA image shows the presence of neovascularizations elsewhere around the wider areas of non-perfusion. The axial
T2-weighted images show grade 4 BG-PVS. On FLAIR images, the total Fazekas score was 3. The total cerebral SVD score was 1.

FIGURE 2 | Optical coherence tomographic (OCT) images of (A) a 62-year-old female with non-proliferative DR and of (B) a 63-year-old female with proliferative DR.
A cross-sectional B-scan of foveal center within the 6 × 6-mm macular cubes is shown in the upper row. The segmentation lines on the B-scan represent the inner
retinal nerve fiber layer (RNFL) and outer inner plexiform layer (IPL) boundaries of the slab of ganglion cell layer (GCL). The increased irregularity of the GCL
boundaries is observed in (B) when compared to (A). En-face OCT image with color topography of each GCL thickness corresponding to the Early Treatment
Diabetic Retinopathy Study (ETDRS) circles is presented in the bottom row. A decrease in GCL thickness is presented in panel B compared to panel A, as a
significant color change in the 1- to 3-mm perifoveal zone.
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FIGURE 3 | Correlation plot between the BG-PVS severity and the total cerebral SVD score with the Mini-Mental State Examination (MMSE) score.

The CSO-PVS showed a negative correlation with MMSE
(P = 0.005). Total WMH was negatively correlated with
total attention (P = 0.015), visuospatial (P = 0.023), memory
(P = 0.025), and frontal executive (P < 0.001) function scores.

Correlation of Retinal Ganglion Cell
Layer Thickness With BG-PVS Severity
and Total Cerebral Small Vessel Disease
Score
The correlation analysis results between the GCL thickness
and the BG-PVS severity and total cerebral SVD score are
summarized in Supplementary Table 2. In this analysis, the GCL
thickness showed significant negative correlations with the BG-
PVS severity (P = 0.041 for inferior; P = 0.006 for superior; and
P = 0.038 for temporal GCL, respectively) and the total cerebral
SVD score (P < 0.001 for inferior; P = 0.004 for superior; and
P = 0.001 for nasal and temporal GCL, respectively). Figure 4
shows corresponding scatterplots.

Supplementary Table 2 also summarizes the results of
correlation analyses for the thickness of retinal GCL with other
cerebral SVD-related markers. GCL thickness showed significant
negative correlations with BG-PVS (P = 0.041 for inferior;
P = 0.006 for superior; and P = 0.038 for temporal GCL,
respectively), total number of lacunes (P < 0.001 for inferior and
superior; and P = 0.012 for temporal GCL, respectively), total
WMH (P < 0.001 for inferior; P = 0.005 for superior; P = 0.015
for nasal; and P = 0.042 for temporal GCL, respectively), and
total CSVD (P < 0.001 for inferior; P = 0.004 for superior; and
P = 0.001 for nasal and temporal GCL, respectively). CSO-PVS
was not significantly associated with GCL thickness.

Logistic Regression Analysis for Diabetic
Retinopathy Stage Progression and
Cognitive Impairment
The determinants among cerebro-ophthalmic parameters
obtained by the logistic regression analysis are presented in

Table 3. Possible predictors (i.e., age, male sex, underlying
cardiovascular diseases, BG-PVS, CSO-PVS, total number of
lacunes and WMH, total cerebral SVD score, and inferior and
superior GCL thickness) that were significant in previous
comparison and correlation tests were included in the
multivariable logistic regression models with the enter method.
According to the developed model, a higher BG-PVS score
(OR = 2.306, P = 0.017) was associated with a higher risk of
pathological angiogenesis in DR, while old age (OR = 0.138,
P = 0.004) was associated with lower risk. Old age (OR = 2.620,
P = 0.012) and higher BG-PVS score (OR = 1.716, P = 0.044)
were associated with a higher risk of cognitive impairment, while
thicker inferior GCL (OR = 0.669, P = 0.011) was associated
with a lower risk.

DISCUSSION

In this study, we assessed the relationships between cerebral SVD
severity and retinal GCL parameters based on the DR stage.
Higher BG-PVS severity, higher total cerebral SVD score, and
reduced retinal GCL thicknesses in the inferior, superior, and
temporal subfields were identified in the proliferative DR group
compared with the non-proliferative DR group. In addition,
the BG-PVS severity was negatively correlated with the MMSE
score, while the retinal GCL thickness was negatively correlated
with the BG-PVS severity and the total cerebral SVD score.
Taken together, these findings suggest that the BG-PVS severity
reflects the retinal neurodegeneration that precedes pathological
angiogenesis during DR progression. Moreover, the BG-PVS
severity may be a potential biomarker of cognitive decline in
patients with DR. Finally, our results provide possible clinical
evidence of a link between the retina and the brain on the
cognitive impairment in patients with DR.

While a relationship between enlarged PVS and cerebral SVD
has been noted (Doubal et al., 2010), PVS have also been proposed
to be a part of a macroscopic clearance mechanism called the
glymphatic system (Jessen et al., 2015), which may be related to
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FIGURE 4 | Correlation plots between (A) BG-PVS severity and GCL
thickness and (B) total cerebral SVD score and GCL thickness.

the development of neurodegenerative diseases. A previous study
has shown that T2DM suppresses the clearance of interstitial
fluid, leading to the impairment of glymphatic system (Jiang
et al., 2017). Although the mechanism underlying enlarged PVS
is not completely understood, previous studies have shown that
associations of disease with visible PVS differ based on their
location (Charidimou et al., 2017; Chen et al., 2019). The BG-
PVS burden has been associated with hypertensive angiopathy,
systemic markers of inflammation, lacunar stroke, and vascular
cognitive impairment (Hansen et al., 2015; Chen et al., 2019),
while the CSO-PVS burden has been associated with cerebral
amyloid angiopathy and Alzheimer’s disease (van Veluw et al.,
2016; Chen et al., 2019; Sepehrband et al., 2021). In our study,
the BG-PVS severity was associated with a higher DR grade,
suggesting that pathological angiogenesis in DR is associated with
the systemic markers of inflammation and vascular cognitive
impairment. Although a previous meta-analysis has shown that
enlarged PVS is not associated with T2DM (Francis et al.,

TABLE 3 | Multivariable logistic regression models for the determination of
significant cerebro-ophthalmic parameters for DR progression (proliferative stage)
and for cognitive impairment (adjusted MMSE score < 24).

Variables DR progression Cognitive impairment

OR (95% CI) P Value OR (95% CI) P Value

Age > 65 0.14 (0.04–0.54) 0.004 2.62 (0.83–8.31) 0.012

Sex (male) 0.51 (0.12–2.12) 0.351 0.98 (0.27–3.59) 0.971

Underlying
cardiovascular
diseases

0.65 (0.17–2.54) 0.535 1.53 (0.39–6.05) 0.543

BG-PVS 2.31 (1.16–4.59) 0.017 1.72 (1.01–2.90) 0.044

CO-PVS 1.51 (0.75–3.03) 0.251 1.14 (0.43–3.02) 0.791

Total no. of old
lacunes

2.64 (0.66-10.57) 0.172 1.85 (0.72–4.74) 0.199

Total WMH 0.66 (0.27–1.59) 0.354 1.83 (0.78–4.31) 0.166

Total cerebral SVD 0.63 (0.18–2.20) 0.464 0.48 (0.16–1.46) 0.193

GCL_superior 1.04 (0.94–1.16) 0.446 1.06 (0.93–1.20) 0.380

GCL_inferior 0.93 (0.83–1.044) 0.223 0.67 (0.30–1.04) 0.011

A P-value in bold indicates statistical significance (P < 0.05).

2019), our discrepant results may have been related to the
fact that we assessed enlarged PVS based on the DR stage,
which represents the diabetic neurovascular remodeling process.
Proliferative DR is present only in 10–12% of patients with
T2DM (Thomas et al., 2015), and previous studies have not
evaluated whether the PVS burden is increased with higher
DR severity. Our results provide a better understanding of
the pathogenesis underlying brain manifestations during the
progression of DR.

Previous studies have shown an increased burden of
lacunes in patients with T2DM and DR (Inoue et al., 1998;
Sanahuja et al., 2016). The relationship between diabetes and
microbleeds, however, remains unclear (Umemura et al., 2017),
and the observational studies have reported discordant results
concerning the relationship between diabetes and WMH (van
Elderen et al., 2010; Sanahuja et al., 2016; de Bresser et al.,
2018). In our study, these cerebral SVD markers did not
show significant differences based on DR grade. The total
cerebral SVD score has recently been proposed as a potential
scoring system for the DR stage and has been shown to better
represent the overall effects of SVD on the brain than one or
two features independently (Cuadrado-Godia et al., 2018). Our
results also suggest that the total cerebral SVD score may well
reflect the DR stage.

Furthermore, our results suggest a potential effect of BG-PVS
severity on the early stages of cognitive impairment in patients
with DR. Recent studies have identified an association between
BG-PVS severity and cognitive impairment in patients with
Parkinson’s disease (PD) and stroke (Arba et al., 2018; Park et al.,
2019). These findings suggest that the BG-PVS severity may be a
novel indicator of the early pathophysiological processes leading
to cognitive impairment in the brain. Considering a recent study
showing that PVS from other brain regions may also be associated
with PD (Donahue et al., 2021), future studies should consider
various anatomical regions for PVS evaluation.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 November 2021 | Volume 13 | Article 666495

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-666495 November 12, 2021 Time: 12:59 # 8

Choi et al. Perivascular Spaces in Diabetic Retinopathy

Similar to the glymphatic system of the brain, the existence
of neurovascular units in the retina has also been proposed
(Metea and Newman, 2007; Newman, 2013). Blood-retinal
barrier disruption and retinal neurodegeneration (Bek, 2017;
Duh et al., 2017) are more significantly activated by low-grade
inflammation (Du et al., 2013; Altmann and Schmidt, 2018) and
are early events during the pathogenesis of DR. Glial activation
and neuronal apoptosis, both being the prominent features of
retinal neurodegeneration (Simó and Hernández, 2014), result
in decreased retinal GCL thickness. An association between a
reduced retinal GCL thickness and the SVD burden in the
brain was first identified in this study through a correlation
analysis between the BG-PVS severity and the total cerebral
SVD score. These findings suggest that DR progression and
cognitive impairment in diabetic patients may share specific
mechanisms mainly related to systemic microangiopathy. This
common mechanism appears to be associated with the changes in
GCL thickness and BG-PVS severity. Further longitudinal studies
are necessary to validate the sequence of these changes.

It should be noted that there were several limitations to our
study. First, this study was based on the retrospective, single-
institutional data with a relatively small size without complete
control of covariates and external validation potentially limiting
the generalizability of our results. However, to minimize the
selection bias, we ensured that the basic characteristics such as
age and sex and the underlying conditions of the subgroups were
comparable. Second, the lack of an age-matched control group
without DR prevents the extrapolation of these results to the
general diabetic population. Future studies with the inclusion
of age-matched control groups are warranted. Third, variables
such as brain volume or body mass index, which have shown an
association with PVS (Barisano et al., 2021; Liu et al., 2021), were
not analyzed in this study. Further studies should also include
these variables in a larger dataset.

CONCLUSION

Our results demonstrate that the BG-PVS severity may be a novel
imaging biomarker in patients with DR, reflecting progression
in the DR stage and cognitive impairment. Furthermore, our
identification of a possible association between a decreased GCL
thickness and the BG-PVS severity provides potential clinical
evidence of a link between retinal and brain changes during
diabetic neurodegeneration.
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