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The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological

biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs

are considered a sign of neural network dysfunction that may provide insights into

the structural connectivity changes associated with cognitive impairment in early-stage

Alzheimer’s disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from

hippocampus have been extensively studied during spatial navigation in rodents, and

more recent studies have investigated SWRs in the hippocampal-entorhinal cortex

(HPC-EC) system during a variety of other memory-guided behaviors. Understanding

how SWR disruption impairs memory function, especially episodic memory, could aid in

the development of more efficacious therapeutics for AD and TLE. In this review, we first

provide an overview of the reciprocal association between AD and TLE, and then focus

on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited

that these waveforms reflect rapid network interactions among excitatory projection

neurons and local interneurons and that these waves may contribute to synaptic

plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic

in AD and TLE. These waveforms may thus provide clues to understanding disease

pathogenesis and may even serve as biomarkers for early-stage disease progression

and treatment response.

Keywords: sharpwave ripple, hippocampal-entorhinal cortex system, Alzheimer’s disease, temporal lobe epilepsy,

oscillation

INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the
accumulation of deposits containing β-amyloid protein (amyloid plaques) and neurofibrillary
tangles in brain gray matter concomitant with progressive cognitive decline, which usually starts
with deficits in episodic memory. There is also a strong relationship between AD and temporal
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lobe epilepsy (TLE), as epileptic seizures are often present
in AD patients and amyloid plaques were first described in
epileptic patients (Nicastro et al., 2016; Zarea et al., 2016),
suggesting shared risk factors and pathomechanisms. For
instance, the hyperexcitability associated with seizures may
disrupt neural network connectivity, thereby increasing plaque
burden (Lott et al., 2012; Vossel et al., 2017). Moreover,
memory impairment is also a major sequela of temporal lobe
seizures (Duan et al., 2020; Gourmaud et al., 2020). The
hippocampus, a structure within the medial temporal lobe, is
critical for encoding events as transferable units of experience
and for the consolidation of these experiences into long-term
memories (Sun et al., 2020). These processes are mediated by the
formation of neuronal ensembles that fire in specific contexts,
such as the location-specific hippocampal place cells observed
following spatial navigation learning. It is believed that ensemble
formation is mediated in part by use-dependent synaptic
plasticity, such as NMDA receptor (NMDAR)-dependent long-
term potentiation (LTP), initiated by oscillatory brain activity
(rhythms) and regulated by a variety of neuromodulators such
as brain-derived neurotrophic factor (BDNF), dopamine, and
acetylcholine (ACh). These oscillations effectively enable both
the formation and consolidation of memories through repeated
circuit activation in the days and nights following learning events
(Norimoto et al., 2018; Malerba and Bazhenov, 2019; Eichenlaub
et al., 2020; Moon et al., 2020; Nguyen et al., 2020; Patel et al.,
2020).

While resonance activity of these hippocampal ensembles
in response to subthreshold oscillations provide a plausible
network-level mechanism to accurately encode and retrieve
information (Roach et al., 2018), long-term storage appears to
require the slow recruitment of neocortical memory circuits
through cortical plasticity (Farooq et al., 2019; Xu et al., 2019).
However, the detailed cellular mechanisms for this memory
transfer are unclear.

The hippocampus-entorhinal cortex (HPC-EC) is a key
structure for spatial navigation in rodents as well as for
various forms of associative learning in both animals and
humans. During rest and certain stages of sleep, the HPC-
EC electroencephalogram (EEG) displays a robust 4–7Hz theta
rhythm, and disruption of this theta rhythm impairs spatial
learning and memory, while induced theta burst stimulation
readily evokes synaptic plasticity within HPC-EC circuits. The
first half of each theta cycle is devoted to computing current
position using sensory information from the lateral entorhinal
cortex (LEC) and path integration information from the medial
entorhinal cortex (MEC) (Eichenbaum et al., 1999; Pastalkova
et al., 2008; Norimoto et al., 2018; Rolls, 2020), although a
clear dichotomy between MEC and LEC functions has yet to
be established (Kerr et al., 2007). Moreover, place cells are part

Abbreviations: SWRs, Sharp wave ripples; AD, Alzheimer’s disease; HPC-EC,

hippocampal-entorhinal cortex; DG, dentate gyrus; TLE, temporal lobe epilepsy;

NMDAR, NMDA receptor; LTP, long-term potentiation; BDNF, brain-derived

neurotrophic factor; Ach, acetylcholine; EEG, electroencephalogram; LEC, lateral

entorhinal cortex; MEC, medial entorhinal cortex; EC3, entorhinal cortex layer III;

fMRI, functional magnetic resonance imaging; HFOs, high-frequency oscillations.

of a wider network of spatially modulated neurons present in
hippocampal subregions CA1, CA3, and dentate gyrus (DG)
(Eichenbaum et al., 1999) that become reactivated during “off-
line” periods, possibly to consolidate acquired memories. In
addition to place cells, grid cells and head direction cells
in the MEC are also essential components of the neural
navigation system (Sargolini et al., 2006; Giocomo et al., 2014).
Hippocampal place cell output is required for the normal
activation of grid cells in the EC (Bonnevie et al., 2013).
In addition to spatial navigation, connections among various
cells in the HPC and EC are required for a variety of other
memory-guided behaviors (Buzsaki and Moser, 2013; Aronov
et al., 2017) and various intrinsic oscillations are required for
this functional coupling. For instance, multiple studies have
shown that the temporal coordination through the HPC-EC
system is maintained by hippocampal sharp-wave ripples (SWRs,
150–250Hz), gamma rhythms (40–100Hz), and theta rhythms
(4–7Hz) (Buzsaki and Wang, 2012; Moisa et al., 2016; Jiang
et al., 2019). Moreover, these different frequency bands are
involved in distinct stages of memory formation, especially
episodic memory formation. In rodents, theta and gamma
oscillations are hallmarks of active waking states when the
animal is engaged in behaviors such as ambulation, exploration,
rearing, or sniffing. Alternatively, SWRs occur mostly during
non-REM sleep and quiescent immobile “off-line” states of
the waking period such as during consummatory behaviors.
Although hippocampal theta oscillations alone are capable of
linking and segregating the firing of neuronal assemblies (for
review, see Hanslmayr and Staudigl, 2014), we present evidence
that SWRs are also essential for synaptoplastic processes, network
reorganization, and signaling among brain structures involved in
memory consolidation.

Hippocampal memory formation occurs in two stages
(Buzsaki, 1989). First, a memory trace is encoded via weak
synaptic potentiation in the CA3 network induced by theta
oscillations during exploratory behavior. Next, synapses
strengthened during exploration contribute to the generation of
SWRs. These SWRs in turn trigger LTP at synaptic connection
between CA3 and CA1 neurons (Sadowski et al., 2016). Dupret
et al. (2010) reported that hippocampal neurons encode newly
learned goal locations through the reorganization of ensemble
firing patterns in the CA1 area but not in CA3, and that
stabilization of CA1 ensembles requires NMDAR-dependent
synaptic plasticity. Further, Norimoto et al. (2018) reported
that SWRs can also induce long-term depression (LTD) and
that disruption of SWRs suppresses spontaneous synaptic
downregulation and impairs learning and memory. Collectively,
these findings strongly suggest that SWRs contribute to memory
function through bidirectional modulation of synaptic strength
in the hippocampus.

Sharp wave ripples are among the most synchronous
spontaneous population patterns in the mammalian brain, and
recent evidence suggest that these waves serve to reactivate
neurons encoding episodic memories such as place cells
to promote stabilization (a cellular correlate of memory
consolidation) and also contribute to the planning of future
actions by generating ordered neuronal firing sequences
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(Buzsaki, 2015; Foster, 2017; Oliva et al., 2018). The population
bursts underlying SWRs emerge within CA2–CA3a recurrent
collaterals and spread to CA3b and CA3c (Oliva et al., 2016).
It may be phase-coupled with a power spectral peak in the slow
gamma band originating from the CA3, which in turn determines
information flow in the HPC-EC system (Kitanishi et al., 2015).
It is believed that SWR power is associated with higher fidelity
replay of past experiences and of place cell trajectories (Carr
et al., 2012). In line with this notion, disruption of SWRs and/or
gamma oscillation in the HPC-EC of experimental animals and
humans causes severe memory impairment (Le Van Quyen
et al., 2010; Jadav et al., 2012; Fernandez-Ruiz et al., 2019, 2021;
Hollnagel et al., 2019; Jones et al., 2019; Mendes et al., 2019).

Due to the well-established functional relationship of SWRs
and/or gamma oscillations in the HPC-EC system to memory,
the current review is divided into three main sections. First, we
describe the neural circuits of the HPC-EC system and their
functions in different stages of memory formation. Second, we
discuss the contributions of SWRs and associated oscillation
within the HPC-EC system to memory formation and the
alterations underlying memory deficits in AD and TLE. Finally,
we discuss the potential utility of coherence analysis of SWRs and
associated oscillation in the HPC-EC system for early diagnosis
and treatment of AD and TLE.

Neural Circuits of the HPC-EC System and
Contributions to Memory
Reactivation of memory-encoding neurons (the cellular correlate
of memory replay) is crucial for strengthening synaptic
connections and for transforming hippocampus-dependent
memories into cortex-dependent memories for longer-term
storage (Wimmer and Shohamy, 2012; Buzsaki, 2015). In
general, the hippocampal subfields are differentially involved
in the representation of recent and remote autobiographical
memories during vivid recall (Bonnici et al., 2013). Like the
HPC, the EC exhibits a variety of state-dependent network
oscillations that are believed to effectively organize neuronal
activity in time during memory formation (Roth et al.,
2016). Finally, functional connectivity between the HPC and
cortex is also essential for retrieval of distant memories
and their integration into neocortical networks (Winocur
and Moscovitch, 2011). Recent functional magnetic resonance
imaging (fMRI) studies have demonstrated that cognitive spaces
defined by continuous dimensions are represented by the human
HPC-EC system (big-loop recurrence) (Tavares et al., 2015;
Constantinescu et al., 2016; Koster et al., 2018). Therefore,
understanding how HPC-EC system orchestrates activity can
provide insight into the mechanisms of for memory formation
and consolidation.

Although debate persists on whether semantic information
eventually becomes entirely hippocampus-independent after
consolidation (Nadel and Moscovitch, 1997; Manns et al.,
2003), there are several reports that even long-established
episodic memories depend on the HPC-EC system (Squire,
1992; Eichenbaum and Fortin, 2005). The internal signaling flow
underlying this episodic memory formation is well-described

based on hippocampal circuit anatomy. The CA1 receives signals
from both a monosynaptic pathway from the EC layer III
(EC3) and from the EC2–DG–CA3 trisynaptic pathway. Another
EC2–DG–CA2–CA1 pathway bypassing the CA3 has also been
described (Kohara et al., 2014), but its involvement in memory
encoding is unclear. Alternatively, numerous studies indicate that
CA3 output and the synaptic strengthening between CA1–CA3
and CA1–EC3 synapses are necessary for CA1 place cell activity
(Kitanishi et al., 2015) (Figure 1).

In mammals, the HPC-EC system contributes to spatial
navigation by mapping relationships in situations where
knowledge is physical, continuous, and consciously available
(Chadwick et al., 2015). Transgenic mice with inactive EC3
inputs to the HPC demonstrated spatial working memory
deficits in a trace-fear conditioning task (Suh et al., 2011),
implying that this HPC–EC pathway is critical for temporal
associationmemory, especially episodicmemory as remembering
event sequences is central to episodic memory (Chadwick
et al., 2014). In line with these findings, recent studies also
have shown that multi-voxel patterns in the EC, the human
homolog of the rodent LEC, specifically reflect the temporal event
structure after learning via neuronal network oscillation activity
(Bellmund et al., 2019).

Although the function the HPC-EC system in episodic
memory formation is only just beginning to be explored, current
findings are relevant to memory dysfunction in AD and TLE.
Therefore, in the following sections, we will introduce an updated
model of neural oscillations in the HPC-EC system, discuss
the underlying network mechanisms, and then describe possible
alterations contributing to memory deficits in AD and TLE based
on both in vitro and in vivo studies.

Network Mechanisms Underlying SWRs
Generation, SWRs Functions in the
HPC-EC System, and SWRs Alterations
in AD
Rhythmic voltage oscillations measured from the extracellular
space of nervous tissue (field potentials) have long been
used to assess coordinated neural activity within and among
various brain regions (Einevoll et al., 2013; Norman et al.,
2019). SWRs can be measured from multiple regions and
correspond to distinct neural processes associated with cognition
(Benthem et al., 2020; Jura et al., 2020). Hippocampal SWRs are
strongly associated with memory consolidation and retrieval via
interactions with the neocortex (Joo and Frank, 2018). Further,
concurrent SWRs can induce synaptic potentiation between
neurons in vivo, resulting in stronger functional coupling and
SWRs coherence (King et al., 1999). In animal models, including
rats and macaques, such coincident SWRs among neuronal
populations are observed during quiet immobility and sleep
as well as during consummatory behavior, grooming, brief
interruptions in locomotion, and even during active visual
exploration (O’Neill et al., 2006; Cowen et al., 2020; Hussin et al.,
2020; Nokia et al., 2020; Sosa et al., 2020).

In permissive network states, extracellularly recorded SWRs
are observed as large-amplitude fast oscillations in CA1 and
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FIGURE 1 | The HPC-EC system and network changes spanning from immediate memory to consolidation. (A) The three major circuits in the hippocampus. (B)

Specific inputs to CA1 pyramidal cells in relation to local network oscillations. HPC, Hippocampus; DG, Dentate gyrus; EC2, Entorhinal cortex layer II; EC3, Entorhinal

cortex layer III; CA1, CA3, CA2 and DG areas constitute the HPC.

CA3 that correspond to the synchronous depolarization of local
neurons functionally coupled by synaptic plasticity (Ramirez-
Villegas et al., 2018). In addition, SWRs may propagate between
structures, such as the CA1 and cortex, to entrain further
neuronal populations. This propagation may be essential for the
cortical storage of memories, although this remains a matter
of debate.

Multiple studies have shown that SWRs are generated by CA3
pyramidal cells and require initial excitation of CA1 pyramidal
cells as well as the participation of parvalbumin-expressing
fast-spiking inhibitory interneurons that fire independently of
external inputs and propagate signals through the “output loop”

into the EC (Ylinen et al., 1995; Roth et al., 2016). In addition,
EC input to CA1 is crucial for local SWR bursts and long-range
reactivation (replay) specifically in the quiet awake state, whereas
CA3 input is essential for both (Yamamoto and Tonegawa, 2017).
It is also possible that this activity is also modulated by CA2
(Oliva et al., 2016) and DG (Sasaki et al., 2018). An optogenetic
study in rats found that local field potential–spike coupling
between CA1 and CA3 regions during SWRs was lowest in the
gamma band and that longer SWRs were preceded by increased
firing in the EC (Oliva et al., 2018), incidentally the first region of
the hippocampal formation affected by Aβ accumulation in AD
(Harris et al., 2010).
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Indeed, the same activity from CA3 that excites a large
subset of CA1 pyramidal cells (Valero et al., 2017) also excites
interneurons (Palop and Mucke, 2016), resulting in oscillatory
excitation and inhibition of interneuron-coordinated pyramidal
cell ensembles that manifest as coincident ripples. In a mouse
model, soluble amyloid beta oligomers blocked the learning-
induced increase in hippocampal SWRs rate and impaired
spatial memory formation (Nicole et al., 2016). In addition to
circuits within the HPC, SWRs have recently been observed
in HPC–EC pathways (Wang and Ikemoto, 2016; Rothschild
et al., 2017; Opalka et al., 2020), where they may contribute
to reconsolidation of memories and hippocampal–neocortical
signaling underlying memory transfer (Karimi Abadchi et al.,
2020). For instance, selective elimination of early SWRs during
post-training consolidation periods resulted in performance
impairment in AD model animals trained on a hippocampus-
dependent spatial memory task (Girardeau et al., 2009; Jones
et al., 2019). In future experiments, it is essential to elucidate the
mechanisms of SWR propagation and the functional significance
of these signals to cortical plasticity and memory.

Fast-spiking parvalbumin-positive interneurons modulate the
temporal spiking activity of pyramidal cells thought to initiate
SWRs. Lower amplitude SWRs with altered temporal structure
have been reported in the rTg4510 mouse model of AD, resulting
in increased phase-locking of pyramidal cells and decreased
phase-locking of interneurons (Witton et al., 2016). A selective
decrease in excitatory synaptic drive to parvalbumin basket
cells was also reported in the 5xFAD mouse model of familial
AD during the early stage of amyloid pathology, a period
associated with hyperactivity and SWRs disruption (Caccavano
et al., 2020). These results suggest that disruption of the
functional coupling between pyramidal cells and interneurons
directly contributes to altered SWRs in the HPC-EC of AD
model animals.

Indeed, a growing body of literature has documented altered
SWRs in AD, but the exact mechanism has not yet been clarified.
In an activity-dependent genetic forms, SWRs alterations may
involve the abnormal transcription of the immediate early gene
Npas4, which regulates a multitude of genes expressed by
hippocampal CA1 pyramidal neurons that govern the integration
of adult-born neurons into hippocampal circuits (Sim et al.,
2013), a process essential for themaintenance of normal cognitive
functioning with age. In addition, altered synaptic transmission
and ionic channel modulation may contribute to aberrant
plasticity and SWRs signaling in AD. The extracellular matrix is a
major regulator of neuronal synaptic plasticity, and dysfunction
of mature perineuronal nets can aberrantly increase SWRs
frequency (Sun et al., 2018). Besides, dopaminergic activation
is likely to reorganize cell assemblies during SWRs (Miyawaki
et al., 2014). Further, reduced Nav1.1 level and parvalbumin cell
dysfunction contribute to abnormalities in oscillatory rhythms,
SWRs network synchrony, and memory in AD model animals
(Verret et al., 2012).

Conversely, modulating interneuron-dependent network
alterations and synaptic plasticity induced by SWRs could be
a potential therapeutic strategy to improve HPC-EC system
function in early-stage AD.

Network Mechanisms Underlying SWRs
and Alterations in TLE
According to fMRI studies, both TLE and AD demonstrate

reduced resting-state activity and functional connectivity within
the default mode network (DMN), a cortical system that is most

active during conscious rest, suggesting shared regional network

dysfunction (Luo et al., 2011). Deficits of episodic memory are
also frequent in TLE (Helmstaedter, 2002; Holler et al., 2020)

and other neurological disorders known to specifically affect

temporal lobe circuits (Derner et al., 2018; Kilias et al., 2018;
Kuhn et al., 2018). Moreover, loss of MEC layer III neurons in
TLE alters intrinsic membrane and synaptic properties within

associated circuits, resulting in hyperexcitability (Tolner et al.,

2007). Typically, TLE is characterized by profound changes in
hippocampal and parahippocampal network circuitry resulting

in spontaneous recurrent seizures and interictal activity in both
humans and animal models (Sidhu et al., 2013; Sloviter and
Bumanglag, 2013; Kuhn et al., 2018).

Further, the network- and synapse-level changes required for

encoding and retrieval of memory within HPC-EC circuits may
be conducive to the generation of hyperactivity if compensatory

control processes are disrupted. Single neurons in the human EC

alter their spatial tuning to target relevant memories for retrieval
(Qasim et al., 2019). Activating DG GABAergic interneurons in

the HPC-EC can effectively inhibit the spread of ictal seizures and

largely rescue behavioral deficits in TLE mice (Lu et al., 2016).
These findings suggest that facilitated transfer of information

between the HPC and EC may promote the construction of

epileptogenic circuits. Collectively, such studies implicate altered
network oscillations in TLE and associated memory deficits.

Both synchronization and desynchronization occur during
memory encoding, with synchronizationmostly described within
the medial temporal lobe and desynchronization in the neocortex
(Hanslmayr and Staudigl, 2014; Parish et al., 2018). Intriguingly,
functional connectivity between the EC and HPC has also been
associated with the temporal coupling of brain oscillations, such
as theta and gamma waves, which selectively modifies both feed-
forward connections (mossy fibers and synapses of the perforant
path fromDG to CA3) and feedback connections (CA3 recurrent
collaterals) via different mechanisms (Chauviere, 2019). Theta is
already impaired early after status epilepticus (SE), and circuit
remodeling post-SE may decrease the cooperation between theta
generators. Impairment of parvalbumin basket cells in TLE rats
resulted in firing patterns poorly coordinated with the theta cycle
as well as reduced gamma oscillations, probably related to lower
input strength from the CA3–CA1 Schaffer collaterals and altered
theta oscillations (Lopez-Pigozzi et al., 2016). Several related
reviews have also emphasized the role of theta–gamma coupling
as a crucial neural code for mnemonic processes within the HPC-
EC network (Colgin, 2015; Heusser et al., 2016). Hence, here we
introduce a potential role for SWRs within the HPC-EC network
in TLE.

Sharp wave ripples in rat HPC-EC are of particular interest in
epilepsy research for two reasons. First, patients with TLE have
memory impairments and these waveforms are strongly involved
in memory consolidation. Second, the epileptic brain generates
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pathological high-frequency oscillations (HFOs) resembling
SWRs (Foffani et al., 2007). However, isolated SWRs associated
with memory consolidation are markedly reduced in TLE model
rats (Marchionni et al., 2019). Nonetheless, it is difficult to
effectively distinguish between pathological HFOs and normal
SWRs. Bragin et al. described two similar types of HFOs recorded
from the HPC-EC of patients with mesial TLE. A key distinction
between pathological HFOs and normal ripples is that the former
are readily recorded fromDG, whereas SWRs are not observed in
the DG under normal conditions (Bragin et al., 1999a,b; Flynn
et al., 2015). Therefore, pathological HFOs typically occur in
association with interictal EEG spikes, are associated with regions
capable of generating spontaneous seizures, and appear more
disorganized temporally and spatially compared to memory-
associated SWRs (Staba et al., 2002; Foffani et al., 2007; Jacobs
et al., 2008).

To understand how SWR-like events may contribute to TLE,
Ewell (2018) compared hippocampal single-cell activity during
physiological and pathological SWRs measured from single cell
recordings in normal and epileptic rats with different memory
abilities and found that SWRs in epileptic rats had greater

spectral power in high-frequency bands and that cell-specific
synaptic inputs govern the firing selectivity of CA1 pyramidal
cells during SWRs. Liotta et al. investigated the relation between
recurrent epileptiform discharges (REDs) and SWRs, and found
that the cholinergic agonist nicotine, which is known to
facilitate LTP induction, dose-dependently transformed SWRs
into REDs in the hippocampus. This transition was associated
with reduced inhibitory conductance in CA3 pyramidal cells,
suggesting that recruitment of inhibitory cells during SWRs
may prevent hyperexcitation and seizure generation (Liotta
et al., 2011). Similarly, a series of epileptic animal model and
brain slice studies reported a feed-forward propagation pathway
of ictal discharges from DG to MEC circuits, which may
also provide clues to therapeutic measures for TLE involving
HPC–EC pathways (Carter et al., 2011; Lu et al., 2016).
How then do these aberrant SWRs disrupt episodic memory
in TLE?

While brain network structure obviously influences neural
activity patterns, it is also true that these activity patterns can
modify network organization through structural and synaptic
plasticity. This reciprocal interaction makes it especially difficult

FIGURE 2 | Potential contributions of neuronal network oscillations within the HPC-EC system to episodic memory encoding, consolidation, and the pathogenesis of

AD and TLE. Neuronal network oscillations, especially SWRs, are disturbed in AD and TLE.
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to distinguish whether abnormal SWR activity contributes to
TLE pathogenesis or is merely a consequence of TLE-associated
network dysfunction (Warren et al., 2017). Dysfunctional
synaptic plasticity may drive brain network disruption in TLE,
but the underlying mechanisms are unclear. One possibility
is disruption of the normal excitatory/inhibitory synaptic
balance. For instance, impaired GABAergic transmission could
induce hyperexcitability and epileptiform activity, and also
disrupted normal hippocampal LTP induction (Lei et al.,
2016). Similarly, deficient AMPA receptor palmitoylation, a
major regulator of surface expression and phosphorylation
state, resulted in hyperexcitability and seizures (Itoh et al.,
2018). Hence, a decrease in GABAergic inhibitory activity
and/or increased glutamatergic excitatory activity could promote
neuronal hyperexcitability and epileptogenesis, as well as
impair hippocampal LTP, contributing to learning and memory
deficits. In fact, augmenting GABAergic activity can effectively
preserve network stability in the epileptic brain (Itoh et al.,
2018). Further studies on the contributions of SWRs to
TLE and the underlying mechanisms may provide clues
to novel antiepileptic drugs. Interestingly, SWRs appear to
contribute to the formation of memory engrams and erasure
of irrelevant information during slow wave sleep by increasing
the net synaptic depression necessary to increase neuronal
responsiveness (Norimoto et al., 2018). Notably, optimal
network architecture, characterized by efficient information
processing and resilience, and reorganization after damage
strictly depend on the balance between these forms of
plasticity (Stampanoni Bassi et al., 2019), and patterns of
neuronal activity including SWRs may differentially shape
synaptic connections.

Nevertheless, because SWRs/HFO display substantial
frequency overlap with static and progressive epileptogenic
disturbances, the practical utilization of these waveforms
for presurgical evaluation of epileptic foci has not yet been
achieved (Engel et al., 2009; Frauscher et al., 2017). As SWRs
are usually associated with robust network inhibition, they may
represent an intrinsic, dynamic mechanism to modulate the
threshold for seizure induction (Liotta et al., 2011). In either
case, we believe that HFOs in the HPC-EC EEG could be
used as a non-invasive marker to predict the development of
epilepsy following potentially epileptogenic cerebral insults or
prolonged seizures, and thus, facilitate more timely initiation of
preventive therapy.

Taken together, these results help us better understand the role
of excitatory and inhibitory neuronal circuits in the generation of
SWRs and to define the subtle border between physiological and
pathological synchrony in the TLE brain.

CONCLUSION

The HPC-EC system is likely critical for a myriad of
diverse behavioral tasks in addition to supporting cognitive

processes underlying spatial navigation. After hippocampal
neurons respond to the acquisition of novel information, SWRs
will trigger transient network synchronization by modulating
synaptic plasticity. Our current review suggests dual roles
for SWRs in memory consolidation. On one hand, SWRs
facilitate LTP amongst active cells that encode spatial or episodic
information, while on the other, SWRs also trigger LTD at
certain synapses from the HPC-EC system to neocortex, which
may contribute to memory refinement, especially of episodic
memories (Yamamoto and Tonegawa, 2017). We suggest that
an imbalance between these processes may underlie AD and
epileptogenesis (Figure 2).

Therefore, SWRs may coordinate brain-wide networks
involved in system consolidation, including hippocampus and
other associated brain regions such as perirhinal cortex (Doron
et al., 2020). Future studies are warranted to examine the
neurophysiological factors that indirectly affect the balance
between excitatory and inhibitory processes for memory
induction and consolidation, such as somatostatin neurons
(Sharma et al., 2020), since an abnormal sleep-wake cycle
drives AD neurodegeneration and sleep deprivation increases
of the spread of AD pathology (Holth et al., 2019). To what
extent SWRs function differently among neuronal subtypes,
and whether such functional heterogeneity is directly related
to the expression of activity-dependent immediately early genes
such as Npas4, ARNT2, and Homer1a are also important
issues for future research. Finally, much additional research is
needed to elucidate how an episodic memory is encoded by
neuronal ensembles.

In summary, patients with AD and epilepsy, especially TLE,
can show accelerated cognitive decline and may benefit from
antiepileptic treatments that target network hyperexcitability due
to aberrant SWRs. How SWRs and related oscillations reorganize
and consolidate circuits under non-pathological conditions may
provide clues to the contributions of these signals to AD, TLE,
and associated cognitive deficits. Further studies combining
neurophysiological and fMRI measures are required to better
understand the spatial and temporal relationships among brain
oscillations and plastic changes at circuit and network levels in
health and disease.
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