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Background: Despite emerging evidence suggesting that visceral fat may play a major
role in obesity-induced neurodegeneration, little evidence exists on the association
between visceral fat and brain cortical thickness in the elderly.

Purpose: We aimed to examine the association between abdominal fat and brain
cortical thickness in a Korean elderly population.

Methods: This cross-sectional study included elderly individuals without dementia
(n = 316). Areas of visceral fat and subcutaneous fat (cm2) were estimated from
computed tomography scans. Regional cortical thicknesses (mm) were obtained by
analyzing brain magnetic resonance images. Given the inverted U-shaped relationship
between visceral fat area and global cortical thickness (examined using a generalized
additive model), visceral fat area was categorized into quintiles, with the middle quintile
being the reference group. A generalized linear model was built to explore brain regions
associated with visceral fat. The same approach was used for subcutaneous fat.

Results: The mean (standard deviation) age was 67.6 (5.0) years. The highest quintile
(vs. the middle quintile) group of visceral fat area had reduced cortical thicknesses in
the global [β = –0.04 mm, standard error (SE) = 0.02 mm, p = 0.004], parietal (β = –
0.04 mm, SE = 0.02 mm, p = 0.01), temporal (β = –0.05 mm, SE = 0.02 mm, p = 0.002),
cingulate (β = –0.06 mm, SE = 0.02 mm, p = 0.01), and insula lobes (β = –0.06 mm,
SE = 0.03 mm, p = 0.02). None of the regional cortical thicknesses significantly differed
between the highest and the middle quintile groups of subcutaneous fat area.

Conclusion: The findings suggest that a high level of visceral fat, but not subcutaneous
fat, is associated with a reduced cortical thickness in the elderly.

Keywords: abdominal fat, visceral fat, neuroimaging, cortical thickness, MRI

Frontiers in Aging Neuroscience | www.frontiersin.org 1 June 2021 | Volume 13 | Article 694629

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.694629
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2021.694629
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.694629&domain=pdf&date_stamp=2021-06-23
https://www.frontiersin.org/articles/10.3389/fnagi.2021.694629/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-694629 June 17, 2021 Time: 18:58 # 2

Cho et al. Visceral Fat and Brain Atrophy

INTRODUCTION

Obesity is a well-known risk factor for cardiovascular diseases,
type 2 diabetes, and cancer (Bogers et al., 2007; Renehan et al.,
2008; Bell et al., 2014). It has also been suggested that obesity is
an independent risk factor for Alzheimer’s disease and vascular
dementia (Beydoun et al., 2008). To elucidate the effect of obesity
on the brain in cognitively healthy individuals, a number of
neuroimaging studies have investigated the association between
obesity (including central obesity) and brain structure on
magnetic resonance imaging (MRI) (Gunstad et al., 2008; Taki
et al., 2008; Raji et al., 2010; Yokum et al., 2012; Kurth et al.,
2013; Kim et al., 2015; Medic et al., 2016; Dekkers et al.,
2019; Hamer and Batty, 2019; Morys et al., 2021). A large-
scale study of the United Kingdom Biobank (n = 9,652) showed
that three obesity indices [body mass index (BMI), waist-to-
hip ratio (WHR), and total fat mass from body impedance]
were significantly associated with a reduction in global gray
matter volume (Hamer and Batty, 2019). Another study of
the United Kingdom Biobank (n = 12,087) reported that the
association between total fat mass from body impedance and
global gray matter volume was significant only in men (Dekkers
et al., 2019). Some of the neuroimaging studies have measured
cortical thickness (Kim et al., 2015; Medic et al., 2016; Morys et al.,
2021), a more sensitive indicator of gray matter changes than
cortical volume (Burggren et al., 2008; Thambisetty et al., 2010).
Kim et al. (2015) demonstrated inverse associations between total
fat percentage from body impedance and WHR with region-of-
interest (ROI)-based global and frontal thicknesses only in men.
Medic et al. (2016) found several focal regions in the frontal
and occipital lobes inversely associated with BMI6). Morys
et al. (2021) reported that BMI, WHR, and body fat percentage
were associated with thinner temporal, entorhinal, orbitofrontal,
and cingulate cortices, as well as thicker frontal, parietal, and
occipital cortices.

Emerging neuroimaging studies have suggested the role of
visceral fat in the association between obesity and brain structures
in adults (Debette et al., 2010; Isaac et al., 2011; Widya et al., 2015;
Zsido et al., 2019). Debette et al. (2010) demonstrated that visceral
fat on computed tomography (CT) had the strongest association
with reduced total brain volumes when compared with other
obesity indices (BMI, waist circumference, wait-to-hip ratio, and
subcutaneous fat), and the association was independent of BMI
and insulin resistance. Widya et al. (2015) reported that increased
visceral fat (but not subcutaneous fat) was associated with
microstructural brain tissue damage in the elderly. Zsido et al.
(2019) demonstrated that increased visceral fat was associated
with accelerated brain aging (based on structural brain networks
derived from gray matter volume, cortical thickness, and surface
area) in adults including elderly participants. Isaac et al. (2011)
analyzed the data of 184 healthy elderly individuals using voxel-
based morphometry, and found that visceral fat was inversely
associated with cortical thicknesses in several focal regions (e.g.,
pre-central, post-central, superior temporal, and inferior parietal
cortices). Although the ROI-based approach (compared with
voxel-based morphometry) can facilitate clinical interpretation
by predefining brain regions, no study has investigated the

associations between visceral fat (as well as subcutaneous fat) and
ROI-based cortical thicknesses.

Hence, the present study aimed to explore brain regions
associated with abdominal fat in the elderly, using the ROI-based
analysis of brain magnetic resonance images.

MATERIALS AND METHODS

Study Participants
This study recruited ≥ 60 year-old individuals (without self-
reported history of dementia, movement disorders, or stroke)
through local advertisements between December 2015 and
September 2017 in Incheon, Republic of Korea, as part of the
EPINEF study. The survey was conducted at Gachon University
Gil Medical Center (Incheon, South Korea). Using a standardized
survey protocol, a total of 322 participants completed
questionnaires (regarding demographic characteristics, medical
history, and lifestyle behaviors), anthropometric measurement
(weight and height), blood sampling, abdominal fat CT scans,
mini-mental state examination (MMSE), and brain 3T MRI
scans. Two participants who were found to have brain tumors
on brain MRI were excluded. After excluding individuals with
missing values, 316 participants (129 men and 187 women) were
included in the study. All individuals provided written informed
consent. The study was approved by the Institutional Review
Board of Gachon University Gil Medical Center (approval
No. GDIRB2015-225).

Acquisition of Abdominal Fat Areas
All subjects underwent 10-mm-slice CT scans (SOMATOM
Sensation 64; Siemens Healthcare, Forchheim, Germany) at the
umbilical level. The average value of pixels within the range of
–200 to –20 Hounsfield units was used for the measurement
of abdominal fat areas (Jackson and Thomas, 2004). The total
visceral fat area and the subcutaneous fat area (unit: cm2) were
measured with a commercial software program (syngo Volume;
Siemens Healthcare, Forchheim, Germany).

Acquisition of Brain Imaging Markers
Brain 3D-T1-magnetization-prepared rapid gradient-echo (MP-
RAGE) images were obtained with a Siemens 3T Verio MRI,
using a standardized MRI protocol. The image parameters used
for 3D T1-MP-RAGE were as follows: repetition time, 1,900 ms;
echo time, 2.93 ms; flip angle, 8◦; pixel bandwidth, 170 Hz/pixel;
matrix size, 256 × 208; field of view, 256 mm; number of
excitations, 1; total acquisition time, 4 min 10 s; voxel size,
1.0 × 1.0 × 1.0 mm3.

ROI-based analyses of the brain images were performed
using the standard FreeSurfer 6.0.0 pipeline1, which consists of
subcortical segmentation (Fischl et al., 2002, 2004a); cortical
surface reconstruction (Dale et al., 1999; Fischl et al., 1999);
cortical thickness mapping (Fischl and Dale, 2000); surface-
based inter-subject alignment (Fischl et al., 1999); and cortical
parcellation (Fischl et al., 2004b; Desikan et al., 2006). Using

1http://surfer.nmr.mgh.harvard.edu/
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these serial procedures, we obtained estimates of regional
cortical thickness (frontal, temporal, parietal, occipital, cingulate,
and insula) and subcortical gray matter volume (thalamus,
caudate, putamen, pallidum, hippocampus, amygdala, and
nucleus accumbens). Global cortical thickness was calculated by
averaging the six cortical thicknesses.

Covariates
The questionnaire included educational years, history of disease
(hypertension, diabetes mellitus, dyslipidemia, and angina or
myocardial infarction), smoking status (never, former, or current
smoker), and alcohol consumption (currently drinking or not).
Measured weight and height were used to calculate BMI (unit:
kg/m2). At least 12-h fasting blood samples were tested for
blood glucose and total cholesterol levels, and apolipoprotein E
(APOE) genotyping.

Statistical Analysis
To explore the non-linear relationship between abdominal fat
area and cortical thickness, we used a generalized additive

model (GAM), including visceral fat area as a spline variable
and global cortical thickness as a dependent variable. In this
analysis, we adjusted for age, sex, educational years, hypertension,
diabetes, dyslipidemia, angina or myocardial infarction, smoking
status, alcohol consumption, APOE status (presence/absence of
ε4 allele), BMI, fasting blood glucose level, total cholesterol
level, and intracranial volume (ICV). The degrees of freedom
for the spline variable were automatically selected using the
generalized cross validation method. A two-sided p < 0.05
from analysis of deviance for GAM was considered as having a
significant non-linear relationship. There were significant non-
linear relationships of visceral fat area with global (p = 0.02),
frontal (p = 0.02), temporal (p = 0.02), and parietal thicknesses
(p < 0.001), with an inverted U shape (Figure 1). Hence, we
classified visceral fat area into quintiles (quintile 5 as the highest;
quintile 3 as the reference group) and entered the quintiles
into a generalized linear model (GLM). This approach was
used for all the regional cortical thicknesses (though occipital
and insular thicknesses did not exhibit significant non-linear
relationships) with a view to presenting results in a consistent

FIGURE 1 | Non-linear relationships of visceral fat area with (A) global, (B) frontal, (C) temporal, and (D) parietal cortical thicknesses. Df, degrees of freedom. Beta
coefficients were from generalized additive models, adjusting for age, sex, educational years, hypertension, diabetes, dyslipidemia, angina or myocardial infarction,
smoking status, alcohol consumption, apolipoprotein status, body mass index, fasting blood glucose level, total cholesterol level, and intracranial volume. Degrees of
freedom were determined by the cross-validation method.
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manner. The same method was applied to subcutaneous fat area
(albeit none of the non-linear relationships were significant)
in order to enable a straightforward comparison with visceral
fat. Given the absence of a significant non-linear relationship
in the GAM analysis of subcortical volumes, the abdominal fat
variables were entered as a continuous variable into the GLM
for subcortical volumes. All GLM analyses were conducted after
adjusting for the same covariates as the above GAM. Given
possible sex differences in abdominal fat distribution as well
as brain MRI markers (e.g., cortical thickness and volume)
(Ritchie et al., 2018), sex-stratified analyses were additionally
conducted. Significance of sex differences was tested using the
method described by Altman and Bland and expressed as p for
interaction (Altman and Bland, 2003). All analyses were corrected
for multiple comparisons using the false discovery rate (FDR)
method (Benjamini and Hochberg, 1995).

A post hoc analysis was conducted to examine the associations
of other obesity indices (BMI and waist circumference) with brain
cortical thickness. Quintiles of either BMI or waist circumference
were entered into GLMs, with adjustment for the same covariates
as the main analysis.

All statistical analyses were conducted using SAS version 9.4
(SAS Institute, Cary, NC, United States). Two-sided p< 0.05 were
considered statistically significant.

RESULTS

Characteristics of Study Participants
The mean [standard deviation (SD)] age of the study participants
was 67.6 (5.0) (Table 1). The numbers of those with hypertension
and dyslipidemia were 134 (42.4%) and 104 (32.9%), respectively.
The mean (SD) areas of visceral fat and subcutaneous fat were
125.3 (55.4) cm2 and 167.5 (65.7) cm2, respectively. The mean
(SD) MMSE score was 28.3 (1.9). The mean (SD) global thickness
was 2.5 (0.1) mm.

Association Between Abdominal Fat
Area and Cortical Thickness
The quintile 3 group of visceral fat area had the greatest global
cortical thickness (mean, 2.52 mm; SD, 0.07 mm), whereas
the quintile 5 group had the smallest (mean, 2.48 mm; SD,
0.08 mm) (Table 2). In the GLM analysis of visceral fat
(Table 3), the quintile 5 group (vs. the quintile 3 group)
had significantly reduced cortical thicknesses in the global
[β = –0.04 mm, standard error (SE) = 0.02 mm, p = 0.004],
parietal (β = –0.04 mm, SE = 0.02 mm, p = 0.01),
temporal (β = –0.05 mm, SE = 0.02 mm, p = 0.002), cingulate
(β = –0.06 mm, SE = 0.02 mm, p = 0.01), and insula lobes
(β = –0.06 mm, SE = 0.03 mm, p = 0.02). These associations
remained significant after FDR correction. In men, the quintile 5
group (vs. the quintile 3 group) had significantly reduced global,
temporal, and insular thicknesses, though these associations did
not remain significant after FDR correction. In women, the
quintiles 2, 4, and 5 groups had significantly reduced global
cortical thicknesses, as compared with the quintile 3 group. The
quintile 5 group (vs. the quintile 3 group) among women also

TABLE 1 | Characteristics of the study participants.

Total (N = 316) Men (N = 129) Women (N = 187)

Age, mean (SD) 67.6 (5.0) 68.9 (4.9) 66.7 (5.0)

Educational years,
mean (SD)

9.6 (4.3) 11.1 (4.1) 8.6 (4.0)

Hypertension, N
(%)

134 (42.4) 60 (46.5) 74 (39.6)

Diabetes mellitus, N
(%)

62 (19.6) 32 (24.8) 30 (16.0)

Dyslipidemia, N (%) 104 (32.9) 35 (27.1) 69 (36.9)

Angina or
myocardial
infarction, N (%)

37 (11.7) 19 (14.7) 18 (9.6)

Smoking status, N (%)

Never smoker 214 (67.7) 29 (22.5) 185 (98.9)

Former smoker 79 (25.0) 77 (59.7) 2 (1.1)

Current smoker 23 (7.3) 23 (17.8) 0 (0.0)

Alcohol drinking, N
(%)

113 (35.8) 75 (58.1) 38 (20.3)

Body mass index,
mean (SD)

24.7 (3.1) 24.8 (2.6) 24.7 (3.4)

Apolipoprotein status, N (%)

At least one ε4
allele

56 (17.7) 26 (20.2) 30 (16.0)

No ε4 allele 260 (82.3) 103 (79.8) 157 (84.0)

Fasting blood
glucose, mean (SD)

99.0 (21.7) 100.0 (22.3) 98.4 (21.4)

Total cholesterol,
mean (SD)

183.7 (37.7) 176.1 (38.0) 189.0 (36.7)

Abdominal fat (cm2), mean (SD)

Visceral fat 125.3 (55.4) 135.9 (59.9) 118.0 (51.0)

Subcutaneous fat 167.5 (65.7) 130.1 (46.8) 193.3 (64.5)

ICV (mm3), mean
(SD)

1,251,894 (126,138) 1,346,200 (101,857) 1,186,839 (96,866)

Cortical thickness (mm), mean (SD)

Global 2.5 (0.1) 2.5 (0.1) 2.5 (0.1)

Frontal lobe 2.5 (0.1) 2.5 (0.1) 2.6 (0.1)

Parietal lobe 2.8 (0.1) 2.7 (0.1) 2.8 (0.1)

Temporal lobe 2.3 (0.1) 2.2 (0.1) 2.3 (0.1)

Occipital lobe 2.0 (0.1) 2.0 (0.1) 2.0 (0.1)

Cingulate 2.6 (0.1) 2.5 (0.1) 2.6 (0.1)

Insula 2.9 (0.1) 2.9 (0.1) 2.9 (0.1)

Subcortical volume (mm3), mean (SD)

Thalamus 6474.9 (649.2) 6691.9 (666.2) 6325.2 (594.2)

Caudate 3256.3 (477.7) 3444.6 (476.3) 3126.4 (434.5)

Putamen 4461.1 (520.1) 4651.5 (534.4) 4329.7 (468.0)

Pallidum 1894.8 (205.4) 1960.8 (195.8) 1849.3 (199.8)

Amygdala 1637.6 (193.7) 1707.5 (187.4) 1589.4 (183.5)

Hippocampus 3903.3 (379.9) 3993.8 (363.4) 3840.9 (379.3)

Nucleus
accumbens

427.4 (75.0) 447.1 (78.8) 413.8 (69.3)

SD, standard deviation, ICV, intracranial volume.

had a significantly reduced parietal thickness (β = –0.04 mm,
SE = 0.02 mm, p = 0.04). After FDR correction, reduced
global thicknesses in the quintiles 2 and 3 groups, a reduced
frontal thickness in the quintile 4 group, a reduced parietal
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TABLE 2 | Global cortical thickness by quintiles of abdominal fat area.

Abdominal fat area Global cortical thickness

N Mean SD Minimum Maximum Mean SD

Visceral fat

Total (N = 316)

Quintile 1 63 54.68 15.51 13.66 74.13 2.50 0.08

Quintile 2 63 91.12 9.48 74.58 107.92 2.50 0.08

Quintile 3 64 120.08 7.96 108.22 135.14 2.52 0.07

Quintile 4 63 153.20 10.40 135.50 171.18 2.51 0.08

Quintile 5 63 207.75 33.47 171.24 326.45 2.48 0.08

Men (N = 129)

Quintile 1 25 53.24 18.36 13.66 75.27 2.47 0.08

Quintile 2 26 98.14 13.70 75.81 117.24 2.50 0.08

Quintile 3 26 134.38 10.32 118.03 150.33 2.50 0.08

Quintile 4 26 170.17 9.72 152.63 187.48 2.47 0.07

Quintile 5 26 220.63 25.49 191.04 280.17 2.46 0.07

Women (N = 187)

Quintile 1 37 55.19 13.42 16.87 73.47 2.52 0.07

Quintile 2 38 87.99 8.26 73.71 99.87 2.50 0.09

Quintile 3 37 112.48 6.75 100.05 125.28 2.55 0.06

Quintile 4 38 140.85 10.77 125.62 158.11 2.51 0.07

Quintile 5 37 193.86 39.00 159.1 326.45 2.52 0.08

Subcutaneous fat

Total (N = 316)

Quintile 1 63 90.06 23.79 15.75 115.14 2.48 0.07

Quintile 2 63 127.14 7.41 115.51 140.91 2.49 0.09

Quintile 3 64 157.95 9.71 142.03 173.87 2.51 0.07

Quintile 4 63 194.44 13.05 174.85 220.18 2.50 0.07

Quintile 5 63 268.05 47.02 221.54 417.81 2.52 0.08

Men (N = 129)

Quintile 1 25 69.99 21.65 15.75 92.57 2.46 0.07

Quintile 2 26 106.58 7.88 93.16 116.16 2.48 0.08

Quintile 3 26 125.29 4.80 116.23 133.09 2.47 0.10

Quintile 4 26 146.75 7.65 133.71 160.05 2.49 0.07

Quintile 5 26 199.35 33.93 163.84 306.01 2.48 0.06

Women (N = 187)

Quintile 1 37 114.85 18.21 40.03 138.36 2.51 0.07

Quintile 2 38 155.22 9.93 139.16 170.92 2.52 0.07

Quintile 3 37 184.30 8.88 171.04 198.74 2.53 0.07

Quintile 4 38 222.01 12.63 199.73 242.21 2.51 0.08

Quintile 5 37 290.52 48.13 243.25 417.81 2.54 0.08

SD, standard deviation.

thickness in the quintile 1 group, a reduced occipital thickness
in the quintile 1 group, and a reduced cingulate thickness
in the quintile 2 group remained significant. Regarding sex
differences, the quintile 2 (vs. quintile 3) group had reduced
cortical thicknesses among women but increased thicknesses
among men in the global (p for interaction = 0.024), frontal
(p for interaction = 0.036), parietal (p for interaction = 0.007),
and cingulate lobes (p for interaction = 0.021). Otherwise sex
differences were not significant.

In the GLM analysis of subcutaneous fat (Supplementary
Table 1), there were no significant differences in global cortical
thickness across the quintile groups. The quintile 4 group had
significantly reduced frontal (β = –0.03 mm, SE = 0.02 mm,
p = 0.03), temporal (β = –0.03 mm, SE = 0.02 mm, p = 0.04), and
occipital thicknesses (β = –0.03 mm, SE = 0.02 mm, p = 0.03),
as compared with the quintile 3 group. These associations did

not remain significant after FDR correction. After stratification
by sex, none of the associations remained significant.

Association Between Abdominal Fat
Area and Subcortical Volume
In the GLM analysis of visceral fat area (Table 4), an increase
in visceral fat area was significantly associated with reduced
volumes of the pallium (β = –0.66 mm3, SE = 0.25 mm3,
p = 0.01) and putamen (β = –1.36 mm3, SE = 0.63 mm3,
p = 0.03). In men, the association between visceral fat area and the
reduced volume of the pallidum was significant (β = –0.55 mm3,
SE = 0.25 mm3, p = 0.03). In women, the association between
visceral fat area and the reduced volume of the putamen was
significant (β = –1.78 mm3, SE = 0.90 mm3, p = 0.05). None of
the associations between subcutaneous fat area and subcortical
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TABLE 3 | Association between visceral fat area and cortical thickness.

Total (N = 316) Men (N = 129) Women (N = 187) p for interaction†

Beta SE p Beta SE p Beta SE p

Global Quintile 1 vs. 3 –0.008 0.015 0.61 –0.022 0.024 0.35 –0.022 0.02 0.27 1.00

Quintile 2 vs. 3 –0.01 0.014 0.45 0.017 0.023 0.45 –0.049 0.018 0.009* 0.024

Quintile 4 vs. 3 –0.011 0.014 0.42 –0.035 0.023 0.13 –0.05 0.018 0.007* 0.61

Quintile 5 vs. 3 –0.043 0.015 0.004* –0.05 0.024 0.042 –0.04 0.019 0.038 0.74

Frontal Quintile 1 vs. 3 –0.019 0.017 0.27 –0.014 0.025 0.58 –0.035 0.022 0.12 0.53

Quintile 2 vs. 3 –0.007 0.015 0.63 0.027 0.024 0.28 –0.04 0.021 0.055 0.036

Quintile 4 vs. 3 –0.013 0.015 0.40 –0.019 0.024 0.44 –0.059 0.021 0.004* 0.21

Quintile 5 vs. 3 –0.028 0.016 0.082 –0.014 0.026 0.58 –0.035 0.021 0.11 0.53

Parietal Quintile 1 vs. 3 –0.031 0.017 0.069 –0.03 0.029 0.29 –0.053 0.021 0.011* 0.52

Quintile 2 vs. 3 –0.009 0.016 0.58 0.045 0.028 0.11 –0.047 0.019 0.017 0.007

Quintile 4 vs. 3 –0.012 0.015 0.43 0.006 0.028 0.82 –0.045 0.019 0.021 0.13

Quintile 5 vs. 3 –0.041 0.016 0.013* –0.038 0.03 0.20 –0.042 0.02 0.039 0.91

Temporal Quintile 1 vs. 3 –0.019 0.018 0.28 –0.041 0.026 0.13 –0.014 0.023 0.55 0.44

Quintile 2 vs. 3 –0.024 0.016 0.14 –0.008 0.025 0.74 –0.049 0.022 0.026 0.22

Quintile 4 vs. 3 –0.02 0.016 0.22 –0.06 0.025 0.019 –0.043 0.022 0.046 0.61

Quintile 5 vs. 3 –0.054 0.017 0.002* –0.062 0.027 0.026 –0.043 0.022 0.056 0.59

Occipital Quintile 1 vs. 3 –0.037 0.017 0.03* –0.02 0.028 0.47 –0.065 0.021 0.003* 0.20

Quintile 2 vs. 3 –0.016 0.016 0.31 0.021 0.027 0.43 –0.034 0.02 0.094 0.10

Quintile 4 vs. 3 –0.014 0.015 0.35 –0.004 0.027 0.87 –0.027 0.02 0.17 0.49

Quintile 5 vs. 3 –0.016 0.016 0.32 –0.018 0.028 0.54 –0.016 0.02 0.44 0.95

Cingulate Quintile 1 vs. 3 0.02 0.023 0.37 –0.007 0.035 0.83 0.013 0.028 0.65 0.66

Quintile 2 vs. 3 –0.02 0.02 0.32 0.022 0.034 0.52 –0.078 0.027 0.004* 0.021

Quintile 4 vs. 3 –0.004 0.02 0.85 –0.034 0.034 0.31 –0.056 0.026 0.034 0.61

Quintile 5 vs. 3 –0.06 0.022 0.006* –0.056 0.036 0.12 –0.05 0.027 0.068 0.89

Insula Quintile 1 vs. 3 0.039 0.026 0.14 –0.021 0.039 0.60 0.024 0.034 0.48 0.38

Quintile 2 vs. 3 0.013 0.024 0.59 –0.003 0.037 0.94 –0.044 0.032 0.17 0.40

Quintile 4 vs. 3 –0.004 0.024 0.85 –0.095 0.037 0.012 –0.069 0.032 0.031 0.60

Quintile 5 vs. 3 –0.059 0.025 0.019* –0.112 0.04 0.006 –0.052 0.033 0.11 0.25

SE, standard error.
Beta coefficients were from generalized linear models, adjusting for age, sex, educational years, hypertension, diabetes, dyslipidemia, angina or myocardial infarction,
smoking status, alcohol consumption, apolipoprotein status, body mass index, fasting blood glucose level, total cholesterol level, and intracranial volume. The quintile 3
group was set as the reference group. Significant findings are highlighted in bold. *Significant (p < 0.05) after correction for multiple comparisons, using the false discovery
rate method.
†Significance of sex differences.

volumes were significant. After FDR correction, none of the
associations remained significant.

Post hoc Analyses
The quintile 1 group of BMI had significantly reduced
global (β = –0.03 mm, SE = 0.01 mm, p = 0.027), parietal
(β = –0.06 mm, SE = 0.02 mm, p < 0.001), temporal
(β = –0.05 mm, SE = 0.02 mm, p = 0.004), and occipital
thicknesses (β = –0.04 mm, SE = 0.02 mm, p = 0.007), as
compared with the quintile 3 group. Other findings are
presented in Supplementary Table 2. In the analyses of waist
circumference, none of the associations were significant except a
reduced parietal thickness in the quintile 1 group (β = –0.04 mm,
SE = 0.02 mm, p = 0.015). Other findings are presented in
Supplementary Table 3.

DISCUSSION

The present study is the first to investigate the associations
of visceral and subcutaneous fat area with ROI-based cortical
thicknesses and subcortical volumes in elderly individuals

without dementia. This neuroimaging study involved a relatively
large sample size (n = 316) and adjusted for a range of
covariates including well-known metabolic risk factors, as well
as the apolipoprotein ε4 allele—the major genetic risk factor
for Alzheimer’s disease. The main finding was that individuals
with the highest level of visceral fat area had significantly
reduced cortical thicknesses in the global, parietal, temporal,
cingulate, and insular lobes, as compared with those with the
middle level of visceral fat area. These associations did not
significantly differ by sex. By contrast, none of the regional
cortical thicknesses significantly differed between individuals
with the highest level and those with the middle level of
subcutaneous fat area.

In recent decades, there has been debate surrounding the
effect of high BMI on dementia risk. The largest cohort study
on this topic (of two million individuals) demonstrated a
protective effect of higher BMI (Qizilbash et al., 2015), while
a meta-analysis of four studies showed a harmful effect of
obesity (Pedditzi et al., 2016). Another cohort study of 1.3
million individuals suggested a harmful effect of higher BMI
on dementia risk over > 20 years of follow-up, as well as a
protective effect of higher BMI over ≤ 20 years of follow-up,
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TABLE 4 | Association between abdominal fat area and subcortical volume.

Total (N = 316) Men (N = 129) Women (N = 187) p for interaction†

Beta SE p Beta SE p Beta SE p

Visceral fat

Thalamus –0.383 0.643 0.55 0.2 0.988 0.84 –0.935 0.913 0.31 0.40

Caudate –0.928 0.609 0.13 –0.742 0.951 0.44 –1.144 0.877 0.19 0.76

Pallidum –0.664 0.25 0.008 –0.79 0.348 0.025 –0.584 0.385 0.13 0.69

Putamen –1.355 0.627 0.031 –1.247 0.983 0.21 –1.781 0.895 0.048 0.69

Amygdala 0.203 0.224 0.37 0.226 0.346 0.52 0.164 0.33 0.62 0.90

Hippocampus –0.286 0.428 0.50 –0.129 0.626 0.84 –0.597 0.641 0.35 0.60

Nucleus accumbens –0.132 0.093 0.16 –0.1 0.135 0.46 –0.186 0.136 0.17 0.65

Subcutaneous fat

Thalamus –0.217 0.624 0.73 –1.258 1.258 0.32 0.351 0.72 0.63 0.27

Caudate –0.602 0.592 0.31 –1.645 1.209 0.18 –0.445 0.692 0.52 0.39

Pallidum –0.008 0.246 0.97 –0.026 0.455 0.95 0.051 0.305 0.87 0.89

Putamen 0.307 0.612 0.62 0.877 1.263 0.49 0.134 0.712 0.85 0.61

Amygdala 0.047 0.218 0.83 0.278 0.442 0.53 –0.077 0.26 0.77 0.49

Hippocampus –0.148 0.416 0.72 0.722 0.797 0.37 –0.395 0.504 0.44 0.24

Nucleus accumbens –0.157 0.09 0.082 –0.091 0.173 0.60 –0.165 0.107 0.13 0.72

SE, standard error.
Beta coefficients were from generalized linear models, adjusting for age, sex, educational years, hypertension, diabetes, dyslipidemia, angina or myocardial infarction,
smoking status, alcohol consumption, apolipoprotein status, body mass index, fasting blood glucose level, total cholesterol level, and intracranial volume. Significant
findings are highlighted in bold. None of the associations remained significant after correction for multiple comparisons using the false discovery rate method.
†Significance of sex differences.

possibly due to reverse causation (Kivimaki et al., 2018). Another
meta-analysis of 10 prospective cohort studies demonstrated a
significant U-shaped association between BMI and dementia risk,
indicating that both underweight individuals and overweight
individuals are at risk of dementia (Beydoun et al., 2008). This
controversial relationship between BMI and dementia and its
underlying mechanisms can be, at least in part, scrutinized
by using more intricate biomarkers in imaging studies. An
MRI analysis of 1,777 cognitively healthy individuals found
a significant inverted U-shaped relationship between central
obesity (WHR as a proxy) and global cortical thickness (Kim
et al., 2015). In line with this, we found a significant inverted
U-shaped relationship between visceral fat area on CT and global
cortical thickness. It is noteworthy that, when compared with
the middle quintile group of visceral fat area, global cortical
thinning was significant in the highest quintile group, but not
in the lowest quintile group. This highlights a harmful effect
of high visceral fat on brain gray matter, as the previous
neuroimaging studies have suggested (Debette et al., 2010;
Isaac et al., 2011; Widya et al., 2015; Zsido et al., 2019). Taken
together, it is possible that high visceral fat leads to cortical
thinning and, hence, contribute to the increased risk of dementia
in overweight or obese individuals. Further, in concordance
with the previous study using voxel-based morphometry (Isaac
et al., 2011), the present study demonstrated that the highest
level of visceral fat was significantly associated with reduced
thicknesses in association cortices (critical for integrating sensory
inputs) such as the temporal and parietal lobes. A similar
pattern was observed in the cingulate cortex in the present
study. These affected brain cortices correspond to the sites that
show atrophy in the early stage of mild cognitive impairment
(McDonald et al., 2009). Hence, it is reasonable to suggest that
individuals with high visceral fat may initially develop preclinical

cortical thinning in the temporal, parietal, and cingulate
lobes, followed by clinical outcomes such as mild cognitive
impairment.

Given possible correlations between visceral fat area and
other obesity indices (e.g., BMI and waist circumference), it is
possible that the association between visceral fat and cortical
thickness was driven by the impact of other obesity indices. In
the present study, there was a significant correlation between
BMI and visceral fat area (Supplementary Figure 1), and cortical
thinning associated with the highest visceral fat group was
found significant in the temporal, parietal, cingulate, and insular
lobes, after adjusting for a range of covariates including BMI.
Notably, a significant decline in cortical thickness was mainly
observed in the highest quintile groups of visceral fat area,
whereas cortical thinning was significant only in the lowest
quintile groups of BMI or waist circumference (Supplementary
Tables 2, 3). This suggests that visceral fat area, compared with
BMI and waist circumference, might be a better indicator of
obesity-induced cortical thinning. In line with this, an analysis
of the Framingham Offspring cohort demonstrated that visceral
fat was more strongly associated with decreased cerebral volumes
compared with BMI, waist circumference, or subcutaneous fat
(Debette et al., 2010). Furthermore, the relationship between
visceral fat and cortical thinning is supported by animal
studies, demonstrating plausible biological mechanisms such as
microglial activation, upregulated pro-inflammatory cytokines
in the brain, and increased blood-brain barrier permeability
via visceral fat inflammation (Shin et al., 2015; Guo et al.,
2020). Epidemiological evidence also suggests that visceral fat
deposition may induce systemic inflammation and, in turn,
cerebral small-vessel disease (e.g., white matter hyperintensities),
which is related to reduced cortical thickness (Lampe et al., 2019;
Morys et al., 2021).
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There are several limitations to be noted. First, we cannot
establish temporality between a high level of visceral fat
and cortical thinning due to the cross-sectional nature of
the study. Longitudinal investigations are warranted to clarify
the temporal relationship between high visceral fat area
and cortical thinning. Second, our findings might not be
generalizable to other ethnic populations. In particular, the
inverted U-shaped relationship between visceral fat area and
cortical thickness in our samples might not be present in Western
populations, though a meta-analysis including 10 prospective
studies demonstrated a U-shaped relationship between BMI
and risk of dementia (Beydoun et al., 2008). Last, we included
dementia-free individuals based on self-reported information,
and this approach might not have captured variation in cognitive
health (including subthreshold cognitive impairment). Besides,
the MMSE may not be sensitive to mild cognitive impairment
(Mitchell, 2009; Yim et al., 2021). Future studies are warranted
to assess cognitive health with sufficient granularity to elucidate
fat-related cortical thinning.

In conclusion, a high level of visceral fat was significantly
associated with a reduced global cortical thickness in the brains
of elderly individuals without dementia, movement disorders,
or stroke. Cortical thinning associated with the highest level
of visceral fat area was significant in the parietal, temporal,
cingulate, and insular lobes, whereas cortical thinning associated
with the highest level of subcutaneous fat area was not significant
in any of the studied lobes. These findings support the role of
visceral fat in obesity-induced neurodegeneration.
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