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Dementia due to Alzheimer’s disease (AD) is a neurological syndrome which
has an increasing impact on society, provoking behavioral, cognitive, and
functional impairments. AD lacks an effective pharmacological intervention; thereby,
non-pharmacological treatments (NPTs) play an important role, as they have been
proven to ameliorate AD symptoms. Nevertheless, results associated with NPTs are
patient-dependent, and new tools are needed to predict their outcome and to improve
their effectiveness. In the present study, 19 patients with AD underwent an NPT for
83.1 ± 38.9 days (mean ± standard deviation). The NPT was a personalized intervention
with physical, cognitive, and memory stimulation. The magnetoencephalographic
activity was recorded at the beginning and at the end of the NPT to evaluate the
neurophysiological state of each patient. Additionally, the cognitive (assessed by means
of the Mini-Mental State Examination, MMSE) and behavioral (assessed in terms
of the Dementia Behavior Disturbance Scale, DBD-13) status were collected before
and after the NPT. We analyzed the interactions between cognitive, behavioral, and
neurophysiological data by generating diverse association networks, able to intuitively
characterize the relationships between variables of a different nature. Our results suggest
that the NPT remarkably changed the structure of the association network, reinforcing
the interactions between the DBD-13 and the neurophysiological parameters. We
also found that the changes in cognition and behavior are related to the changes in
spectral-based neurophysiological parameters. Furthermore, our results support the
idea that MEG-derived parameters can predict NPT outcome; specifically, a lesser
degree of AD neurophysiological alterations (i.e., neural oscillatory slowing, decreased
variety of spectral components, and increased neural signal regularity) predicts a better
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NPT prognosis. This study provides deeper insights into the relationships between
neurophysiology and both, cognitive and behavioral status, proving the potential of
network-based methodology as a tool to further understand the complex interactions
elicited by NPTs.

Keywords: non-pharmacological treatment (NPT), Mini-Mental State Examination (MMSE), Dementia Behavior
Disturbance Scale (DBD-13), magnetoencephalography (MEG), networks, predict

INTRODUCTION

Dementia is a neurological syndrome that induces cognitive,
behavioral, and functional alterations (Cummings, 2003). It is
estimated that, in 2019, about 50 million people suffered from
dementia worldwide, and this number is expected to increase to
132 million in 2050 (Alzheimer’s Disease International, 2019).
Furthermore, its global economic impact is currently estimated at
$1 trillion, and it is expected to be doubled by 2030 (Alzheimer’s
Disease International, 2019). Alzheimer’s disease (AD) is the
most common cause of dementia, with an exponentially growing
incidence, especially in developed countries, due to the increase
in life expectancy (Alzheimer’s Association, 2019). These figures
show that AD is becoming a problem of utmost importance,
highlighting the need to develop new treatments to help
ameliorate the increasing impact of AD.

Some pharmacological treatments for AD have been
developed over the past few years (Alzheimer’s Disease
International, 2019). Nonetheless, their effectiveness to mitigate
dementia symptoms is very limited and patient-dependent
and, in addition, they are often expensive (Qaseem et al.,
2008; Alzheimer’s Association, 2019; Alzheimer’s Disease
International, 2019). On the other hand, non-pharmacological
treatments (NPTs) are showing promising results when
dealing with AD-related cognitive alterations (Zucchella et al.,
2018; Alzheimer’s Association, 2019). NPTs include a wide
variety of strategies, ranging from physical training to cognitive
stimulation, through psychological therapy (Dyer et al., 2018). As
pharmacological therapies, they are not able to repair or stop the
neuronal death caused by AD, but they are beneficial to patients
with the disease (Dyer et al., 2018; Alzheimer’s Association,
2019). NPTs have been proven to effectively treat behavioral
and psychological dementia symptoms, as well as to improve
cognitive function and scores in depression tests (Oliveira
et al., 2015; Dyer et al., 2018; Alzheimer’s Association, 2019).
Therefore, NPTs are recommended as first-line managers to cope
with behavioral and psychological symptoms of dementia, as
they do not have adverse effects (Dyer et al., 2018). Nonetheless,
their effectiveness has been shown to be patient-dependent
(Kurz et al., 2011; Maki et al., 2018; Alzheimer’s Association,
2019). Many factors could influence the outcome of NPTs, such
as previous cognitive level, symptom severity, or anti-psychotic
use, but their impact is still unclear (Hsu et al., 2017). Therefore,
being able to a-priori predict NPT outcome is a problem of
paramount importance, since it would lead to personalized
treatments and, consequently, to increased treatment efficiency.

Neuroimaging techniques could be useful in this regard.
They record neuronal activity on different levels, providing

a quantitative framework to assess NPT influence on higher
cognitive functions. Resting-state electroencephalography (EEG)
and magnetoencephalography (MEG) have already been proven
to be sensitive to changes induced by NPTs in brain activity
(Amjad et al., 2019; Shigihara et al., 2020a,b), as well as to
be potential predictors of NPT outcome (Amjad et al., 2019;
Shigihara et al., 2020a,b). Both EEG and MEG are noninvasive
neurophysiological techniques, though only MEG provides
simultaneously high spatial and temporal resolution, as well as
low distortion of scalp recordings due to the resistive properties
of brain structures (Babiloni et al., 2009). MEG records brain
activity in the range of milliseconds, which is of paramount
importance to understand the function of a dynamic system
like the brain (Babiloni et al., 2009). MEG recordings, and
specifically resting-state signals, are often analyzed in patients
with AD because they are able to detect the subtle changes
that the disease provokes in neural activity (Engels et al.,
2017; Mandal et al., 2018). Likewise, as previously mentioned,
past studies found individual correlations between MEG-based
parameters in specific brain regions and both, cognitive and
behavioral variations due to NPTs (Amjad et al., 2019; Shigihara
et al., 2020a,b). These results support the potential of MEG to
quantify the effects of these therapeutic interventions. In the
current research, we propose to further explore the complex
interactions between the diverse variables under study by
means of a network-related framework, which enables us to
glimpse the footprint of the therapy in neural signals in a
comprehensive and intuitive way. This approach is based on the
generation of the so-called ‘‘association networks’’ that simplify
the interpretation of the complex interactions between variables
of diverse nature (Borsboom and Cramer, 2013; Fornito et al.,
2016; Borsboom, 2017). Association networks are increasingly
used as a tool for conceptualizing the interactions between
symptoms in mental disorders, given their ability to capture all
the intriguing complexity of these pathologies (Borsboom and
Cramer, 2013; Borsboom, 2017). To the best of our knowledge,
this is the first time that a network framework has been
applied to assess the complex associations due to an NPT
between neurophysiology, cognition, and behavior in AD. This
framework provides a powerful tool to analyze the impact of NPT
on neurophysiological signals and its potential predictors in a
simple and integrated way.

In this work, we hypothesize that NPT elicits several changes
in different cognitive and behavioral dimensions, which in turn
modify functional brain activity. The relationships between brain
function and higher-order capacities are governed by a complex
pattern of interactions between neurophysiological, cognitive,
and behavioral variables. Consequently, new methodological
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approaches are needed to identify the changes in oscillatory
brain activity that could be used to quantitatively assess NPT
outcomes and, eventually, to design personalized therapeutic
interventions. To address these issues, 19 patients with AD went
through an NPT. Resting-state MEG activity, cognitive state, and
behavioral status were evaluated at the beginning and end of
the NPT. Different spectral and non-linear parameters of the
MEG recordings were calculated to evaluate their interactions
with the NPT outcome, which was measured by means of
cognitive and behavioral tests. Specifically, we will address the
following research questions: (i) are the association networks
able to reflect the influence of the NPT on the relationships
between neurophysiological and cognitive/behavioral variables?;
(ii) what are the particular changes in the structure of
the association networks due to the NPT?; and (iii) can
the neurophysiological parameters predict the cognitive and
behavioral changes associated with the NPT?

MATERIALS AND METHODS

Participants
Nineteen patients with dementia from the geriatric health
services facility ‘‘Kakehashi’’ (Obihiro, Japan) were recruited
for this study. It is an official facility authorized by the
Ministry of Health, Labor, and Welfare in Japan, recognized
as a transient facility between hospitals and patients’ homes.
The main role of this facility is to improve the physical and
cognitive conditions of aged individuals to enable them to
return to their homes. All the participants were diagnosed
with AD, and two of them were also diagnosed with other
pathologies: one with Parkinson’s disease, and the other
one with vascular dementia. The diagnoses were carried
out by clinicians before admission in the ‘‘Kakehashi’’
facility, and according to the National Institute on Aging-
Alzheimer’s Association criteria (McKhann et al., 2011). If
possible, patients’ medication remained unchanged during the
NPT period.

Patients underwent the NPT for 83.1 ± 38.9 days
(mean ± standard deviation, see Figure 1 for a graphical
description of the NPT period), being treated every day by the
NPT professionals. NPT is composed of five types of activities
commonly used in geriatric health services facilities in Japan:

1. Physical training. It is aerobic exercise and resistance
training, which are effective to improve cognitive function in
aged individuals (Nagamatsu et al., 2012; Amjad et al., 2019).

2. Therapeutic role-playing. This therapeutic intervention is
called ‘‘Otona-no-gakko’’ (‘‘School for adults’’) and it is used
to both re-introduce patients to active life and enhance their
daily motivation (Cotelli et al., 2012).

3. Nursing care. Nursing care provides proper eating, drinking,
and a sanitary environment, which are essential to keep brain
activity healthy. Furthermore, it has been previously suggested
that diet has some relevant impact on AD (Rege et al., 2016;
McGrattan et al., 2019).

4. Horticultural therapy. This therapy is based on gardening
and planting activities to improve physical and cognitive

FIGURE 1 | Schematic overview of the time course of the study. Two
assessments took place during the study: at the beginning and the end of the
therapy. Each assessment consisted of MEG recording and application of
Mini-Mental State Examination (MMSE) and Dementia Behavior Disturbance
(DBD)-13 tests, that were performed within 3 days. The period between
assessments is defined as the time between the first and the second
assessments. The non-pharmacological treatment (NPT) period is defined as
the time between the admission in the facility and the second assessment.

TABLE 1 | Sociodemographic and clinical information of the sample.

Sociodemographic data

Number of subjects 19
Age (years) 86.00 ± 3.86
Gender (M:F) 7:12
NPT Period (days) 83.05 ± 38.88

Pre Post

MMSE 14.11 ± 5.95 16.00 ± 7.32
DBD-13 10.89 ± 9.93 9.84 ± 10.55

Data are shown as mean ± standard deviation. M, male; F, female; MMSE, Mini-Mental
State Examination; DBD-13, Dementia Behavior Disturbance scale.

conditions (Lu et al., 2020). Patients were familiar with these
activities since our facility is located in an agricultural area.

5. Self-cognitive training. Self-cognitive training includes
activities such as coloring books or crossword puzzles
(Anderson and Grossberg, 2014).

Each NPT session was designed each day by the experts to
adapt it to the clinical features and mood of each patient (Maki
et al., 2018), with a duration ranging from 20 to 40 min, according
to the Japanese regulations. See Table 1 for a description of the
sociodemographic and clinical information of the sample.

All participants and their families or caregivers gave their
informed consent to participate in the present study. The
investigation was carried out in accordance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). The protocol was approved by the Ethics Committee
of Hokuto Hospital.

Cognitive and Behavioral Assessment
Cognitive and behavioral performance was assessed twice for
each patient, at the beginning and at the end of the NPT. Each
assessment session consisted of two different tests conducted
on the same day: an abbreviated version of the Dementia
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Behavior Disturbance Scale (DBD-13; Machida, 2012), and
the Japanese Mini-Mental State Examination (MMSE; Folstein
et al., 1975; Sugishita et al., 2010). The DBD-13 scale is a
52-point test consisting of 13 items of the original DBD-28
scale (Baumgarten et al., 1990; Machida, 2012). It measures the
behavioral disturbance induced by dementia, assigning higher
values to more behavior problems. The MMSE is a test with a
maximum score of 30, which measures cognitive impairment
by assessing different cognitive domains (Folstein et al., 1975;
Sugishita et al., 2010). Lower values correspond to more impaired
cognition.

MEG Recordings
All MEG recordings were acquired at the Hokuto Hospital
(Obihiro, Japan). As for the cognitive and behavioral
assessments, brain signals were recorded twice: at the beginning
and end of the treatment. MEG recordings, cognitive state, and
behavioral status were evaluated within 3 days in order to: (i)
accurately match each MEG recording with a cognitive and
behavioral assessment; and (ii) make the intervals between MEG
recordings and both cognitive and behavioral assessments as
similar as possible. Thereby, 76.1 ± 36.0 days (mean ± standard
deviation) passed between the initial and final assessments.
See Figure 1 for a graphical description of the period between
assessments.

For each subject, 5 min of resting-state brain activity was
recorded using a 160-channel axial gradiometers MEG system
(MEG Vision PQ1160C, Yokogawa Electric), with a sampling
rate of 1,000 Hz and a low-pass filter at 200 Hz. Head position
was registered with three fiducial markers placed on the patient’s
head during the MEG scan: 5 mm above the nasion, and 10 mm
in front of the tragus on each side of the head. Patients were asked
to stay calm and awake with eyes closed, in a supine position
during the recording. For security reasons, as well as to prevent
somnolence, MEG recordings were monitored in real time.

MEG Analysis
Signals were preprocessed before the application of the source
inversion algorithm. Next, different spectral and non-linear local
activation parameters were calculated from the signals at the
source level. Finally, these parameters were used to construct the
networks based on the Spearman correlations between them. The
next subsections describe the steps followed in the MEG analysis
in detail.

Preprocessing of MEG Signals
To limit the presence of noise in the MEG recordings, signals
were preprocessed using a 4-step pipeline (Rodríguez-González
et al., 2020): (i) artifact removal using the SOUND algorithm
(Mutanen et al., 2018; Rodríguez-González et al., 2019); (ii) finite
impulse response (FIR) filtering: 1–70 Hz band-pass to limit
noise bandwidth, and 49–51 Hz band-stop to remove line noise;
(iii) artifact removal using independent component analysis; and
(iv) visual selection of 5-s artifact-free epochs.

Source Inversion
Source-level signals were obtained using the Brainstorm toolbox,
which is documented and freely available for download online

under the GNU general public license1 (Tadel et al., 2011). A
forward model with 15,000 sources was created by means of
boundary element model using the ICBM152 head template
(Montreal Neurological Institute) and OpenMEEG software
(Fonov et al., 2009; Gramfort et al., 2010; Douw et al., 2018). The
head model was segmented into three tissues: brain, skull, and
scalp, with conductivities of 1, 0.0125, and 1 Siemens per meter,
respectively (Mahjoory et al., 2017). Sources were restricted to the
cortex, and their direction was set normal to it (Mahjoory et al.,
2017; Lai et al., 2018; Rodríguez-González et al., 2020). No noise
recordings were available, so an identity matrix was used as noise
covariance (Lai et al., 2018; Rodríguez-González et al., 2020).
The 15,000 source-level time courses were projected into the
68 regions of interest (ROIs) provided by the Desikan-Killiany
atlas, in order to have a manageable number of ROIs to work with
Desikan et al. (2006), Lai et al. (2018), and Rodríguez-González
et al. (2020). This source projection was done by averaging the
reconstructed activation time courses of all the voxels in each
ROI after flipping the sources of opposite direction (Lai et al.,
2018; Rodríguez-González et al., 2020).

As, we were working with resting-state signals, no a-priori
assumptions about sources could be made. Thus, we used the
weighted minimum-norm estimation (wMNE) algorithm, which
restricts the solutions by minimizing the energy (L2 norm)
weighting deep sources to facilitate their identification (Lin et al.,
2004). This method has been proven to be useful to reconstruct
the underlying sources of resting-state MEG datasets (Lin et al.,
2004).

Feature Extraction
Diverse signal processing methods have been widely used
to describe the properties of brain activity. These methods
characterize the electromagnetic fields generated by the
synchronized neuronal pools responsible for the observed brain
activity. In this study, we have used several local activation
parameters, which measure the activation of single functional
units (i.e., synchronized neuronal pools; Stam and van Straaten,
2012) They can be grouped in two main categories: (i) spectral
parameters, which evaluate the time-frequency content of the
recorded signal; and (ii) non-linear parameters, which measure
relevant non-linear properties of the signal, such as variability,
irregularity, or complexity. In this study, we have calculated a
wide variety of parameters in both categories to fully characterize
the properties of the resting-state MEG activity using its source
reconstructed time courses on the 68 estimated ROIs.

Spectral Parameters
They are useful to characterize the spectral content of the signal.
They were derived from the normalized power spectral density
(PSDn), which was calculated using the Blackman-Tuckey
method (Blackman and Tukey, 1958; Ruiz-Gómez et al., 2018;
Rodríguez-González et al., 2020). The parameters computed in
this category are listed below:

• Relative power (RP). It summarizes the neural activation in a
certain frequency range, relative to the full spectral content of

1http://neuroimage.usc.edu/brainstorm
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the signal. RP was calculated in the well-known conventional
frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha
(α, 8–13 Hz), beta 1 (β1, 13–19 Hz), beta 2 (β2, 19–30 Hz),
and gamma (γ, 30–70 Hz).

• Median frequency (MF). MF is the frequency that
divides the PSDn into two halves of equal power.
It is commonly used to measure the global signal
slowing provoked by AD disruptions (Poza et al., 2007;
Dauwels et al., 2011).

• Individual alpha frequency (IAF). It measures the frequency
where the alpha peak can be found. It is calculated as the
frequency that divides the extended alpha band (4–15 Hz)
into two halves of equal power (Klimesch, 1999; Poza et al.,
2007). Alpha peak is related to higher cognitive functions, so
this parameter is widely used to assess cognitive disfunction
(Klimesch, 1999; Poza et al., 2007).

• Spectral entropy (SE). This parameter measures the flatness
or uniformity of the PSDn using Shannon entropy. It has
been proven that patients with AD show a less distributed
spectral content of the PSDn than controls, which suggests
less variety of neural oscillatory components (Poza et al.,
2008b; Gómez and Hornero, 2010).

• Spectral edge frequency (SEF). It is quantified as the upper
limit of the PSDn. This parameter is calculated as the
frequency that comprises 95% of the power of the PSDn,
and is identified as the bandwidth of the signal (Poza et al.,
2007). Due to the slowing and the reduction in the variety of
neural oscillatory activity associated with AD, this parameter
has been used to characterize brain signals in patients with
dementia (Poza et al., 2007).

Non-linear Parameters
Non-linearity is a fundamental property of complex systems,
such as the brain (Stam, 2005). Non-linear analyses of brain
signals are then commonly used to describe the alterations
produced by a neuropathology like AD. The non-linear
parameters assessed in this study are:

• Lempel-Ziv complexity (LZC). It is a coarse-grain
complexity measure. LZC estimates the complexity by
counting the number of subsequences that the binarized
version of the analyzed signal contains (Lempel and Ziv,
1976). It assigns higher values to more complex time series
(Fernández et al., 2010, 2011). A decrease in complexity has
been associated with AD progression (Gómez et al., 2006;
Fernández et al., 2010).

• Sample entropy (SampEn). SampEn is an irregularity
measure that assigns higher values to more irregular time
sequences. It has two tuning parameters: the sequence length
and the tolerance, which were respectively set to 1 and
0.25·std (std: standard deviation of the signal) based on
previous studies (Gómez et al., 2009; Hornero et al., 2009;
Rodríguez-González et al., 2020). A decrease in irregularity
has been observed in the neural activity of patients with AD
(Escudero et al., 2009; Gómez et al., 2009; Hornero et al.,
2009).

• Central tendency measure (CTM). This parameter is useful
to quantify the variability of a signal. It is based on calculating

the second-order differences diagram of the time series and
then counting the points within a radius. In the present study,
the radius has been set to 0.025, based on previous analyses
(Ruiz-Gómez et al., 2018; Rodríguez-González et al., 2020).
CTM assigns higher values to less variable signals. Previous
studies have reported that AD is associated with lower CTM
values (Ruiz-Gómez et al., 2018).

In addition to the spectral and non-linear parameters, a new
measure is presented in the current study: the spatial Shannon
entropy (SSE). Specifically, the SSE computes the entropy of
the spatial distribution of values for a given local activation
parameter. The spatial distribution of the considered parameter
is estimated as the normalized histogram of its values considering
the 68 ROIs. The calculation of the SSE of a local activation
parameter enables us to quantify the changes induced by the
NPT in the spatial patterns of brain oscillatory activity. A
parameter with similar values across the brain (i.e., showing a
delta-like distribution of values) would yield a low SSE value,
whereas a high SSE value would be obtained by a parameter
with a wide range of variation (i.e., displaying a uniform
distribution). It is noteworthy that in the previous examples
the parameters could have similar mean values, but their
SSE values would be different. Hence, the SSE was computed
for each spectral and non-linear parameter; the SSE of a
given parameter will be referred to as S with the parameter
name in brackets, e.g., the SSE of the IAF will be denoted
as S(IAF).

Construction of Association Networks
In this study, we have generated different networks
to account for the potential relationships between the
neurophysiological, cognitive, and behavioral parameters.
Thereby, the network nodes were individual variables (all
the neurophysiological parameters, the score in the cognitive
examination—i.e., MMSE–, and the score in the behavioral
test—i.e., DBD-13), and the network edges (or weights) were the
associations between them. These associations were estimated
as the Spearman rank correlations between pairs of variables
to detect both linear and non-linear monotonic interactions;
age and gender were introduced in the correlation analysis as
covariates to control for their effect. Non-significant correlations
(i.e., network edges with p-values > 0.05) were removed
from the network (Zhang, 2011; Barberán et al., 2012). For
the sake of simplicity, negative correlations were converted
to positive, as we were interested in the association, and not
in the nature of that association. Afterward, networks were
constructed using Gephi software2. The width of the edges was
linked to the magnitude of the relationship, with a wider edge
meaning stronger association. The Force Atlas 2 algorithm
was employed to group nodes with higher correlations while
taking nodes with lower correlations away (Jacomy et al.,
2014). No regularization algorithm was applied, as we were
interested in exploring all the associations, especially those of
cognitive and behavioral parameters, even if they are weaker
than others.

2https://gephi.org/
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Four different associations networks were generated:

• Pre-NPT network. The nodes were the neurophysiological,
cognitive, and behavioral parameters obtained before the
application of the NPT.

• Post-NPT network. The nodes were the neurophysiological,
cognitive, and behavioral parameters obtained after the
application of the NPT.

• Changes network. The nodes were the variation of
neurophysiological, cognitive, and behavioral parameters
during the NPT, i.e., the difference between their values
before and after the NPT.

• Prediction network. The nodes were the neurophysiological
parameters before the application of the NPT, and the
variation of the cognitive and behavioral parameters during
the NPT.

Furthermore, networks stability was analyzed. To do that, the
probability of obtaining similar results was assessed by using
a bootstrapping methodology with 2,000 iterations to generate
new random network instances (Efron, 1992; Epskamp et al.,
2018). In each iteration, a new network is created by randomly
selecting 19 subjects of the original dataset, being possible to
select the same subject more than once (Efron, 1992). From the
four bootstrapped instances (one for each network), the 95%
confidence interval of the edges’ weights was reported (Jimeno
et al., 2020).

Another network was generated using the bootstrapped
samples from Pre-NPT and Post-NPT networks: the Variability
network. This network shows the differences in the association
pattern between Pre-NPT and Post-NPT. Each network edge
from the Variability network was computed as the test statistic
obtained when comparing the bootstrapped samples from
Pre-NPT and Post-NPT networks for that particular edge.
Thus, the higher the edge weight in the Variability network,
the higher the differences between Pre-NPT and Post-NPT
networks. Although all the edge weights were statistically
significant (p-values< 0.05, Wilcoxon signed rank test), only the
5% strongest connections (i.e., showing the biggest differences
between Pre-NPT and Post-NPT networks) were displayed.

RESULTS

Changes in Cognition and Behavior
Induced by the NPT
The average MMSE value before conducting the NPT was
14.11 ± 5.95 (mean ± SD), while the average for DBD-13
was 10.89 ± 9.93. Then, after applying the NPT, the
average value for the MMSE was 16.00 ± 7.32, and the
average for DBD-13 9.84 ± 10.55. The effectiveness of the
NPT was assessed by comparing the MMSE and DBD-13
before and after conducting the NPT. Both, MMSE and
DBD-13 show a statistically significant improvement after the
NPT, with MMSE significantly increasing (p-value = 0.0323,
one-tailed Wilcoxon signed rank test) and DBD-13 significantly
decreasing (p-value = 0.007, one-tailed Wilcoxon signed
rank test).

FIGURE 2 | Parameter network of the patients with Alzheimer’s disease (AD)
before the NPT (Pre-NPT network). Wider edges correspond with stronger
associations. Nodes corresponding to cognitive and behavioral parameters
are shown in blue, while nodes of neurophysiological parameters are shown
in orange.

FIGURE 3 | Parameter network of the patients with AD after the NPT
(Post-NPT network). Wider edges correspond with stronger associations.
Nodes corresponding to cognitive and behavioral parameters are shown in
blue, while nodes of neurophysiological parameters are shown in orange.

Changes in Network Structure Induced
by the NPT
In order to evaluate the changes induced by the NPT in
the patients’ network structure, three different networks were
evaluated: (i) Pre-NPT network (Figure 2); (ii) Post-NPT
network (Figure 3); and (iii) Variability network (Figure 4). The
figures depicting the stability of the networks shown in Figures 2,
3 can be found in the Supplementary Figures 1, 2.
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FIGURE 4 | Variability network, showing the 5% strongest connections
corresponding to the network edges that obtained the most significant
differences between Pre-NPT and Post-NPT networks. Wider edges
correspond with stronger associations. Nodes corresponding to cognitive
and behavioral parameters are shown in blue, while nodes of
neurophysiological parameters are shown in orange.

Figure 2 displays the relationships between the parameters
under study without the influence of the NPT, as they
were calculated with the samples obtained at the beginning
of the therapeutic intervention. It can be observed that
while DBD-13 is disconnected (i.e., it has no relationship
with any other parameter), MMSE is related with another
11 parameters: RP(Gamma), MF, IAF, SE, SEF, LZC, SampEn,
CTM, S(RP(Gamma)), S(RP(Beta 1)), and S(CTM). Interestingly,
no associations were observed for any RP parameter apart from
RP(Gamma).

On the other hand, Figure 3 shows the association network,
but including the influence of the NPT, as it has been calculated
with the parameters obtained after conducting the NPT. The
Post-NPT network has a higher number of connections on
cognitive and behavioral parameters in comparison with the
Pre-NPT network: MMSE now has 13 connections, while
DBD-13 has 11. Of note, eight out of the 13 associations of
MMSE were maintained from the Pre-NPT network (MF, IAF,
SE, LZC, SampEn, CTM, S(RP(Beta 1)), and S(CTM)), while the
other five were new associations (RP(Delta), RP(Beta 1), RP(Beta
2), S(RP(Beta 2)), and S(SampEn)). In contrast to the Pre-NPT
network, three parameters based on RP are now associated
with the MMSE, but RP(Gamma) is no longer significant.
Furthermore, the significant relationships for DBD-13 that can

FIGURE 5 | Network of changes. As indicated by the “Var” suffix, this
network displays the relationships between the variation of the parameters
under study during the NPT (i.e., ParameterPost − ParameterPre). Wider edges
correspond with stronger associations. Nodes corresponding to cognitive
and behavioral parameters are shown in blue, while nodes of
neurophysiological parameters are shown in orange.

be appreciated in the Post-NPT network are with: RP(Gamma),
SE, SEF, LZC, SampEn, CTM, S(RP(Gamma)), S(SEF), S(LZC),
S(SampEn), and S(CTM).

To get deeper insights on the changes induced by the
NPT in the parameter network, the Variability network was
constructed, depicting the 5% strongest differences between
Pre-NPT and Post-NPT networks (Figure 4). As expected,
the parameter whose relationships have changed most between
both networks is DBD-13, with 11 connections, while MMSE
only showed one connection. Interestingly, six out of those
11 connections (S(RP(Delta), S(RP(Beta 2)), S(RP(Gamma)),
S(LZC), S(SampEn), and S(CTM)) are spatial entropies.

Relationship Between Neurophysiological
and Cognitive and Behavioral Changes
The network of changes can be observed in Figure 5.
This network describes the associations between the
variation of the parameters under study (neurophysiological,
cognitive, and behavioral) by computing: ParameterPost −

ParameterPre. A positive value indicates an increase in the
parameter provoked by the NPT, while a negative value is
associated with a decrease. The figure showing the stability
of the network depicted in Figure 5 can be found in the
Supplementary Figure 3.

It could be observed that apart from the DBD-13 -
MMSE relationship, DBD-13 displays four connections
RP(Beta 1), S(IAF), S(SE), and S(RP(Beta 1)), while MMSE
only one S(RP(Beta 2)). Interestingly, four out of five
significant associations involve spatial entropies: S(RP(Beta
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FIGURE 6 | Prediction network, showing the ability of the assessed
neurophysiological parameters to predict the outcome of the NPT. The “Var”
suffix, which appears associated with DBD and MMSE, means the variation
of the parameters under study during the NPT (i.e., ParameterPost −

ParameterPre). Wider edges correspond with stronger associations. Nodes
corresponding to cognitive and behavioral parameters are shown in blue,
while nodes of neurophysiological parameters are shown in orange.

1)), S(IAF), S(SE) with DBD, and S(RP(Beta 2)) with MMSE.
Besides, three associations involve beta band: RP(Beta 1),
S(RP(Beta 1)), and S(RP(Beta 2)). No association involves any
non-linear parameter.

Predictability of the NPT Outcome by
Means of the Neurophysiological
Parameters
Figure 6 contains the Prediction network. It depicts the
ability of the neurophysiological parameters under study to
predict the outcome of the NPT, measured by the variation
of the cognitive and behavioral parameters (MMSE and DBD-
13). It could be appreciated that, aside from the relationship
that links cognitive and behavioral parameters, MMSE has
nine significant relationships (RP(Delta), RP(Beta 1), MF,
SE, SampEn, S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)), and
S(CTM)), while DBD-13 has only one (RP(Beta 1)). Of note, only
two out of these 10 parameters involve non-linear parameters
(MMSE-SampEn and MMSE-S(CTM)), and four of them involve
spatial entropies (S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)),
and S(CTM)). Supplementary Figure 4 depicts the stability of
the network depicted in Figure 6.

These relationships are of great importance because, as
mentioned in the Introduction section, predicting the NPT is
crucial. Thus, to obtain deep insights on them, and disentangle
the nature of these associations, we plotted scatterplots for
every significant relationship (involving cognitive or behavioral
parameters) obtained in the previous section, reporting the

specific correlation values (ρ). These scatterplots are shown in
Figure 7. Remarkably high relationships between parameters
can be observed, with a mean value of 0.56. The strongest
relationships can be observed for associations involving MMSE
and delta and beta bands: MMSE-RP(Delta) (ρ = −0.69, p-
value = 0.002, Spearman rank correlation), MMSE-RP(Beta 1)
(ρ = 0.57, p-value = 0.017, Spearman rank correlation), MMSE-
S(RP(Delta)) (ρ = −0.56, p-value = 0.019, Spearman rank
correlation), and MMSE-S(RP(Beta 1)) (ρ = 0.70, p-value = 0.002,
Spearman rank correlation).

DISCUSSION

In the present study, we have assessed the effects of an
NPT in the neurophysiology of patients with AD, as well as
whether its outcome is predictable by means of MEG-based
parameters. Our results hold three main findings related to
the three research questions posed in the introduction: (i)
the NPT alters the structure of the association networks,
unveiling relationships between DBD-13 and neurophysiological
parameters: RP(Gamma), SE, SEF, LZC, SampEn, CTM,
S(RP(Gamma)), S(SEF), S(LZC), S(SampEn), and S(CTM); (ii)
the changes induced by the NPT are related to the changes
in the DBD-13, suggesting an impact of the NPT in the
behavioral symptoms of AD; and (iii) the value of nine
neurophysiological parameters (RP(Delta), RP(Beta 1), MF,
SE, SampEn, S[RP(Delta)], S[RP(Alpha)], S(RP(Beta 1)), and
S(CTM)) before going through the NPT are related to the
NPT outcome, suggesting a potential predictive power of the
aforementioned parameters to foresee the response of the
patients to the NPT.

NPT Induces Several Changes in the
Structure of the Association Networks
The Pre-NPT network displayed in Figure 2 shows that, before
conducting the NPT, the neurophysiological parameters are
associated with the MMSE, but not with the DBD-13. This
could be explained as both tests are measuring the alterations
provoked by dementia in different cognitive domains. On the
one hand, DBD-13 measures strictly behavioral disturbances
defined as ‘‘the outward manifestation of some underlying
cognitive, psychological, or physiological deficit—regardless of
etiology—likely to cause stress to those caring for the patient’’
(Baumgarten et al., 1990). On the other hand, MMSE quantifies
cognitive impairment in a more global sense, by means of
different cognitive dimensions, such as attention, orientation,
language, perception, calculus, or the ability to follow simple
instructions (Folstein et al., 1975). Therefore, these results
suggest that cognitive disturbances measured in a broader sense
are directly related to the neurophysiological state. Nevertheless,
this is not the case for behavioral disturbances, where this
relationship could be mediated or obscured by external factors,
such as the environment, relationship with caregivers, or daily
life habits.

It is worth mentioning that all the spectral and non-linear
parameters, apart from those derived from the RP (except
RP(Gamma)), show statistically significant associations with
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FIGURE 7 | Scatterplots representing the relationship between the neurophysiological parameters computed before applying the NPT (x-axis) and the changes in
cognitive and behavioral variables after the NPT (y-axis). In the top part of each panel, the value of the Spearman rank correlation for each specific pair of parameters
is plotted. Dashed lines represent the linear regression of the data.

the MMSE. RP values do not contain information about the
complete oscillatory activity, but only of a certain frequency
band, typically associated with a limited number of cognitive
functions (Uhlhaas et al., 2008). As it is known that AD
induces alterations in several cognitive domains (Alzheimer’s
Association, 2019; Alzheimer’s Disease International, 2019),
it could be hypothesized that the absence of associations
between MMSE and RP could be provoked, at least partially,
because they are only reflecting particular cognitive dimensions

of AD disruptions. Noteworthy, associations were found for
RP(Gamma), as well as for its spatial entropy. The gamma
band has been proven to play an important role in several
higher cognitive functions (Bartos et al., 2007; Martorell et al.,
2019). Besides, this frequency band is also affected by AD
neuropathology. Previous studies reported that AD patients’
brain activity is associated with an enhanced gamma power (van
Deursen et al., 2008; Wang et al., 2017), an increase in long
distance gamma connectivity (Bas̨ar et al., 2017), and an increase
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in the cross-frequency-coupling strength between gamma and
low frequency bands (Wang et al., 2017).

The Post-NPT network included in Figure 3 depicts the
association network after the application of the NPT. By
comparing this network with that in Figure 2, we can infer
the influence of the NPT in the pattern of interactions between
the different parameters (neurophysiological, cognitive, and
behavioral) under assessment. In this regard, the Variability
network (Figure 4) is also relevant, as it shows the 5% strongest
associations with the biggest differences induced by the NPT.
For MMSE, the basic structure of the network is relatively
maintained, as 62% of the statistically significant associations
are the same before and after conducting the NPT. Of note,
the associations with RP(Gamma), as well as its spatial entropy
S(RP(Gamma)), are not statistically significant; this result can
be interpreted as the NPT modulating the impairment provoked
by AD in the gamma band. Gamma activity is associated
with gamma-aminobutyric acid (GABAergic) activity, which
is the principal inhibitory neurotransmitter (Bartos et al.,
2007; Porges et al., 2017). Since an increased concentration of
GABA is related to superior cognitive performance, we may
suggest a relationship between gamma activity and cognitive
performance (Bartos et al., 2007; Porges et al., 2017; Mably
and Colgin, 2018). Besides, an increase in the gamma band
activity of the angular gyrus for AD patients has also been
reported (Shigihara et al., 2020b). This increase was associated
with the NPT inducing compensatory mechanisms against the
functional deficit provoked by dementia (Shigihara et al., 2020b).
Furthermore, new associations between MMSE and RP appear
with the application of the NPT: RP(Delta), RP(Beta 1), RP(Beta
2), and S(RP(Beta 2)). These bands are associated with the
well-documented slowing that AD elicits on oscillatory neural
activity (Jeong, 2004; Dauwels et al., 2011); therefore, they are
likely to be affected by the NPT. Interestingly, the association
of MMSE with RP(Alpha) is missing in both networks, though
it is commonly related to AD. This could be due to the fact
that the alpha band is acting as a ‘‘transition’’ band between
the decrease of power in faster bands (beta 1 and beta 2)
and the increase in the slower ones (delta and theta), thus
being less affected by the NPT. This result does not agree
with previous findings (Shigihara et al., 2020b), where the NPT
induced differences in the right temporal and right fusiform
areas in the alpha band. The discrepancies could be due to the
band definition (alpha band was split in alpha 1 and alpha 2)
or due to the spatial dimension of the analyses conducted by
Shigihara et al. (2020b).

Crucially, in Figure 4, it could be observed that the
majority of the associations that changed the most after the
NPT involve the DBD-13. This could be explained because of
the environment and habits of the patients being controlled
during the NPT, i.e., the therapeutic intervention would be
modulating those external factors, that could, in turn, be
mediating or obscuring the associations between DBD-13 and
the neurophysiological parameters before the application of the
NPT. Thus, we can speculate that the NPT has a direct impact
on the behavioral disturbances associated with AD, unveiling
their association with the neurophysiological oscillatory activity.

The behavioral symptoms are common in dementia, and largely
affect health and quality of life (Dyer et al., 2018). This is
in line with previous studies, where NPTs showed greater
effectiveness against behavioral symptoms than against cognitive
symptoms (Zucchella et al., 2018). Interestingly, 55% of the
associations of DBD-13 that changed the most after the NPT
are spatial entropies. This suggests that the spatial patterns
of the neurophysiological alterations elicited by NPT play a
significant role in patients with AD. Diverse brain regions
are affected differently by the NPT and, consequently, the
spatial entropy of local activation parameters is able to reflect
such changes. This is supported by previous studies where
NPT effects were observed in specific brain regions such as
the fusiform gyrus, right angular gyrus, sensorimotor area, or
right temporal lobe (Zucchella et al., 2018; Shigihara et al.,
2020a,b).

Relationship Between Neurophysiological,
Cognitive, and Behavioral Changes
Our findings suggest that changes in RP(Beta 1) and RP(Beta
2) are related with the cognitive and behavioral changes:
changes in RP(Beta 1) and S(RP(Beta 1)) are associated with
changes in DBD-13, whereas changes in S(RP(Beta 2)) are
related with those in MMSE. Beta activity is known to be
associated with GABA transmission, somatosensory functions,
and emotional processes (Jensen et al., 2005; Poil et al.,
2013). Besides, beta oscillations have been linked to AD: a
decrease in beta activity associated with the disease has been
widely reported (Jeong, 2004; Fernández et al., 2006; Poza
et al., 2007; Dauwels et al., 2011; Roh et al., 2011). Hence,
its application as a clinical tool to aid in AD diagnosis
and to assess neural disruption processes has been proposed
(Poil et al., 2013). Likewise, it has also been linked to
neuroplasticity, as well as to behavioral and psychological
symptoms of dementia via GABAergic activity (Lanctôt et al.,
2004; Griffen and Maffei, 2014). Also, in previous studies
associations between RP in beta and the changes in cognition
induced by an NPT has been reported (Shigihara et al.,
2020a,b).

Furthermore, a remarkable number of relationships between
the spatial entropies and both, cognitive and behavioral
parameters can be observed. This fact reinforces the idea posed in
the previous section: the NPT not only affects the global values of
the parameters under study, but their spatial distribution (i.e., the
changes induced by the NPT follow a specific spatial pattern).
This could be explained by the NPT restoring specific cognitive
domains (Zucchella et al., 2018), which are placed in specific
brain regions (Augustine, 2007), and can be detected by cognitive
and behavioral tests (e.g., behavior for DBD-13 or memory for
MMSE; Folstein et al., 1975; Baumgarten et al., 1990). The NPT
affecting different brain regions differently has been previously
reported (Zucchella et al., 2018; Shigihara et al., 2020a,b).

Finally, it can also be observed that the changes in non-linear
parameters are not related to the changes in cognition or
behavior, indicating that the NPT does not directly affect the
non-linear properties of resting-state MEG activity. It should
be noted that the non-linear parameters are affected by the
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NPT (as discussed in the previous section), but those changes
are not related to the NPT outcome (as measured by the
cognitive and behavioral tests). Thus, it is possible that non-linear
parameters are affecting specific cognitive domains not measured
by the tests, or that those domains are related to specific
aspects of the tests, thus blurring those differences among
the other dimensions. This is in line with previous studies
showing that, although spectral and non-linear parameters
are related (Dauwels et al., 2011), they also had remarkable
differences. Furthermore, the absence of connections with
non-linear parameters could be due to a decreased sensitivity of
the non-linear parameters to detect the AD neurophysiological
disruptions. This issue is in line with previous studies, where
non-linear parameters showed reduced capabilities for AD
classification compared to the spectral ones (Hornero et al., 2008;
Escudero et al., 2009; Poza et al., 2012).

Potential of Neurophysiological
Parameters to Predict the NPT Outcome
As stated in the Introduction section, predicting the
outcome of the NPTs would be of great interest, as
important differences have been found in the cognitive
impact of NPT among patients; some of them showed great
responsiveness to the treatment, while others were unresponsive
(Shigihara et al., 2020a).

It can be observed in Figure 6 that spectral parameters are
more associated with the NPT outcome than non-linear ones:
seven out of the nine local activation parameters that show
statistically significant relationships are derived from the PSDn.
This suggests that the NPT has a greater influence on the
spectral components of the resting-state MEG activity than on
its non-linear properties, which could be motivated by greater
disruptions of AD in the spectral content than in the non-linear
properties of the neural signals (Hornero et al., 2008; Escudero
et al., 2009; Poza et al., 2012).

Associations between MMSE and RP(Delta), RP(Beta 1), and
their SSEs can be appreciated, though the strongest association
was obtained between DBD-13 and RP(Beta 1). These two bands
are related to AD, as they measure the well-known frequency
shift provoked by AD: an increase of oscillatory activity in low
frequency bands and a decrease in higher ones (Jeong, 2004).
Not only the beta band, as previously stated, but also the delta
band is found to be associated with AD pathology. Delta has
been associated with the cholinergic levels of the brain, with
the current cognitive status, and also with the progression of
AD. Additionally, its increased delta activity has been proposed
as evidence of neural degeneration (Fernández et al., 2013;
Nakamura et al., 2018; Shigihara et al., 2020a). Furthermore, the
ratio between the power of neural activity in delta and beta bands
has been used to reflect AD disruptions (Babiloni et al., 2004;
Poza et al., 2008a; Knyazeva et al., 2010; Wang et al., 2017). In
a previous study, a correlation between beta power and NPT
outcome, measured by means of the MMSE, was also observed
(Shigihara et al., 2020a).

It is also noteworthy that our results suggest that milder
decline (measured by means of the neurophysiological
deterioration, i.e., slowing, diminished variety of frequency

components and irregularity loss; Jeong, 2004; Escudero et al.,
2009; Dauwels et al., 2011) is related with a better NPT outcome.
While AD provokes a shift to lower frequencies and a reduced
SE (Poza et al., 2008b; Dauwels et al., 2011; Bruña et al.,
2012), we have found that a PSDn skewed towards higher
frequencies (observed in the correlations MMSE-RP(Delta),
MMSE-RP(Beta 1), MMSE-MF, and DBD-13-RP(Beta 1))
and with a richer variety of frequency components (observed
in the correlation MMSE-SE) predicts a better outcome of
the therapy. Besides, AD is linked with more regular signals
(Escudero et al., 2009; Gómez et al., 2009; Hornero et al., 2009),
and we have observed that signals with higher irregularity
(observed in the correlation MMSE—SampEn) predict a better
response of the patient to the therapy. The correlation between
DBD-13 and RP(Beta 1) is negative, whereby higher beta
power is related to lower DBD-13, which indicates a better
behavioral state.

Besides, the SSE of the parameters were shown to be
important for predicting the NPT outcome: we found four
statistically significant correlations between MMSE and
S[RP(Delta)], S(RP(Beta 1)), S[RP(Alpha)], and S(CTM).
Also, all the correlations apart from the one with S[RP(Delta)]
are positive, which suggests that a more homogeneous spatial
distribution of the corresponding local activation parameters
predicts a better prognosis for the NPT. AD does not affect the
whole brain simultaneously, it is a progressive process (Raji
et al., 2009). Thus, a lower SSE could indicate that neural damage
is focused on specific brain areas (due to the variations in the
spatial pattern of the neurophysiological parameters), which the
NPT is unable to recover, so yielding a worse outcome of the
therapeutic intervention. Again, this idea is in line with previous
findings, where the spatial dimension of the results related to the
NPT is evident (Shigihara et al., 2020a,b).

The NPT significatively improved both cognition, as indicated
by the MMSE, and behavior, as quantified by the DBD-13. These
findings agree with previous studies where other NPTs yielded
beneficial effects in dementia patients (Zucchella et al., 2018).
Besides, in a previous study with the same NPT but a different
sample, statistically significant improvements were observed for
the MMSE but not for the DBD-13 (Shigihara et al., 2020b).
The discrepancy in the DBD-13 results could be explained due
to the different number of participants in the sample, or due to
the different pathology of the participants; in this study, only
patients with AD were included, while in the study conducted
by Shigihara et al. (2020b) the sample was composed of AD and
vascular dementia patients.

Limitations and Future Lines
Although this study has yielded interesting findings, there are
also some methodological issues that have to be mentioned, as
this is an exploratory study intended to be continued in the
future.

Firstly, the sample size is limited due to the difficulty of
carrying out this type of study, that requires a longitudinal
follow-up. This issue impacts, in turn, the stability of the
networks, probably due to the usage of bootstrapping that, with
reduced sample sizes (N = 19 in our case), yields high variability
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between iterations (Efron and Tibshirani, 1993). In order to
minimize the impact on the stability of the networks, they
have been generated considering only the statistically significant
connections (Supplementary Figures 1–4). Nevertheless, we are
working on incorporating new participants into the database,
which could also be interesting to design a classification
model useful to predict the responsiveness of a patient to
the NPT.

Another limitation is that we collapsed all the ROIs,
considering only the spatial dimension of the data by means
of the SSE. The results obtained with the SSE-related measures
support future studies that would address the role of spatial
patterns in detail. By analyzing its influence in each ROI
separately, deep insights on the NPT outcomes could be
obtained.

We have used only two tests in the cognitive assessments.
The inclusion of additional cognitive tests would be useful to
increase the robustness of the results by diminishing the impact
of biases and measurement errors. Besides, it would be also
interesting to disaggregate the MMSE results in its different
domains to assess how the NPT differently influences diverse
cognitive domains.

Furthermore, we have obtained interesting findings by
analyzing the association between the NPT outcome and
local activation (spectral and non-linear) neurophysiological
parameters. By analyzing the relationship between the
NPT outcome and connectivity or graph parameters
in future studies, we could potentially obtain a broader
characterization of the neurophysiological patterns associated
with the NPT.

Finally, we have conducted the study using resting-state MEG
recordings, where the background brain activity is measured.
Resting-state is a widely used paradigm, but it would be of great
interest to replicate the analysis performed in this study using
brain signals during sleep, as NPTs are able to ameliorate the
sleep disturbances provoked by AD (Berry et al., 2012; Horvath,
2018; Zucchella et al., 2018).

CONCLUSIONS

In this study, we conducted an exploratory analysis
about the associations between different local activation
neurophysiological parameters (spectral and non-linear, as well
their spatial counterparts) and the NPT outcome, quantified
with MMSE and DBD-13 tests. Our findings suggest that the
NPT modifies the association network structure, influencing
the behavioral disturbances and suggesting its relationship with
the neurophysiological patterns. Changes in cognition and
behavior due to the NPT are related to the spectral changes
in MEG activity, especially in the beta band. Furthermore, the
NPT induces spatial-dependent patterns in MEG activity that
are able to reflect the cognitive and behavioral changes due to
the therapeutic intervention. Finally, we can conclude that the
analyzed neurophysiological parameters are potential predictors
of the NPT outcome; specifically, less severe neurophysiological
alterations due to AD can be associated with a better prognosis
of the NPT.
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