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Neurodegenerative disorders are characterized by typical neuronal degeneration
and axonal loss in the central nervous system (CNS). Demyelination occurs when
myelin or oligodendrocytes experience damage. Pathological changes in demyelination
contribute to neurodegenerative diseases and worsen clinical symptoms during disease
progression. Glaucoma is a neurodegenerative disease characterized by progressive
degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not
yet well understood, we hypothesized that demyelination could play a significant
role in glaucoma. Therefore, this study started with the morphological and functional
manifestations of demyelination in the CNS. Then, we discussed the main mechanisms
of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-
inflammatory responses. Finally, we summarized the existing research on the relationship
between optic nerve demyelination and glaucoma, aiming to inspire effective treatment
plans for glaucoma in the future.
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INTRODUCTION

Neurodegenerative diseases are a group of heterogeneous diseases with progressive and selective
loss of neurons (Lin and Beal, 2006). These diseases have some common pathological changes
such as axonal dysfunction, demyelination, and irreversible neuronal death. Glaucoma is a
neurodegenerative disease characterized by chronic loss of retinal ganglion cells (RGCs) and their
axons, with typical clinical manifestations including optic nerve atrophy, visual field defects, and
diminution of vision (Weinreb et al., 2014; Jones-Odeh and Hammond, 2015; He et al., 2018).
The data from population-based surveys showed that 60 million people suffered from glaucoma
worldwide, of which 8.4 million became bilaterally blind, and 112 million people are expected to
be suffering from glaucoma by 2040 (Quigley, 2011; Cook and Foster, 2012; Jonas et al., 2017).
Developing countries lack efficient and low-cost early screening methods, so the diagnosis of
glaucoma is usually confirmed at an advanced stage at which point the optimal treatment period
is already missed. Glaucoma disease management in many developing countries needs further
improvement. Although it is the leading cause of irreversible blindness worldwide and has been
extensively investigated, the pathogenesis of glaucoma is still not yet fully understood (Weinreb
et al., 2014). Therefore, it is imperative to explore the pathogenesis and establish an early diagnostic
method for glaucoma.
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Myelin sheath, a vital part of the nerve, is a multilayered
glial membrane surrounding the axons of the myelinated
nerve fiber in vertebrates. In the central nervous system
(CNS), oligodendrocytes extend the processes to form
myelin sheaths (Luse, 1956; Nave and Werner, 2014).
Under physiological conditions, myelin plays a critical role
in providing survival support to the axons, by maintaining
connections and enabling efficient transmission of action
potentials. The deterioration of the myelin sheaths and
oligodendrocytes, known as demyelination, can affect
multiple nerve fibers and form multiple disseminated
lesions, leading to serious consequences, including nervous
system dysfunctions (Baumann and Pham-Dinh, 2001). As
the earliest pathological changes, destruction of the myelin
sheath may be the basis of neurodegenerative diseases, such
as multiple sclerosis, a typical demyelinating disease with
axonal injury (Kaminska et al., 2017), or Alzheimer’s disease
(Cai and Xiao, 2016). Therefore, demyelination plays a
decisive role in neurodegenerative diseases (Coleman, 2005;
Mitew et al., 2014).

It has been proposed that demyelination occurs in
neurodegenerative diseases even earlier than neuronal death
and axonal dysfunction (You et al., 2019). Some researchers
suggested that demyelination is a potential etiological factor
of glaucoma. However, it has not been fully accepted due to
the prevailing notion that demyelination occurs secondary to
neuronal death and axonal dysfunction. Whether demyelination
is an underlying factor in glaucoma and if the identification
of demyelination could help in the early diagnosis of
glaucoma remain controversial. We intend to review the
possible mechanisms and manifestations of demyelination
and discuss the relationships between demyelination and
glaucomatous neurodegeneration that may help explore
possible therapeutic directions for glaucoma in the future
(Figure 1).

THE PHENOMENON OF
DEMYELINATION

As a type of plasma membrane, the main components of the
myelin sheath are lipids and proteins. Lipids, which account
for 70–75% of the dry weight of myelin, mainly contain
cholesterol, galactosylceramide, and ethanolamine plasmalogen
(Schmitt et al., 2015). Proteins comprise 25–30% of myelin,
and the major protein components are myelin basic proteins
(MBP) and proteolipid proteins (PLP) (Aggarwal et al., 2013).
There is a close relationship between myelin, oligodendrocytes
and axons. Therefore, morphological and functional changes
in oligodendrocytes, myelin, and axons can be observed when
demyelination occurs.

Morphological Changes
Changes of Oligodendrocytes and Other Glial Cells
Demyelination affects the number of oligodendrocyte-lineage
cells at various stages, such as the increased number of
oligodendrocyte precursor cells (OPCs) after demyelination.
Increased OPC can further differentiate into premyelinating
oligodendrocytes and remyelinating oligodendrocytes after
demyelination (Son et al., 2010; Jennings and Carroll, 2015).
Other related cell types can also be affected by demyelination.
For example, astrocytes are activated during the early stages of
demyelination, characterized by changes in proteins such as glial
fibrillary acidic protein and vimentin. During the late stages
of demyelination, the number of microglial cells is increased
to phagocytose the myelin sheath fragments (Rotshenker et al.,
2008; Rotshenker, 2009; Son et al., 2010).

Changes in the Morphology of Myelin Sheaths and
the Contents of Lipids and Proteins
Myelin has an unusual lipid composition — the lipid-to-protein
ratio in the myelin membrane is the reverse of other cellular

FIGURE 1 | Vision impairment from glaucoma significantly influences daily life. In this article, we explored the relationship between demyelination and glaucoma,
aiming to discover an early diagnosis for glaucoma in the future.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 November 2021 | Volume 13 | Article 701322

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-701322 October 27, 2021 Time: 15:32 # 3

Xue et al. Optic Nerve Demyelination in Glaucoma

membranes. The molar ratio of cholesterol, phospholipids,
galactolipids, and plasmalogens in myelin is approximately
2:2:1:1, respectively (Norton and Poduslo, 1973; Nave and
Werner, 2014). Phospholipids are essential for the adhesive
properties of myelin, and decreased phospholipid content
results in phospholipid disarrangement. Based on the fact, the
demyelination process can be monitored using Luxol Fast Blue
(LFB), a Cu-Ti dye that interacts with phospholipids. When
the optic nerve cross-sections are stained with LFB, the myelin
sheaths appear as ring- or strip-shaped structures stained in blue,
while other parts are transparent (Jennings and Carroll, 2015;
Renner et al., 2017).

During demyelination, the contents of myelin proteins, such
as MBP and myelin oligodendrocyte glycoprotein (MOG), are
dramatically decreased in the myelin sheaths (Renner et al.,
2017). These protein components play a critical role in the
compaction of myelin sheaths. The interaction of MBP with
the cytosolic membrane surfaces allows MBP to switch from
an intrinsically unstructured polypeptide chain to a tightly
packed protein phase, which could make a tight bond between
cytoplasmic surfaces. The highly condensed cytoplasmic surfaces
can be observed under EM as major dense lines (Stadelmann
et al., 2019). MOG, located on the surface of myelin sheaths
and oligodendrocyte processes, is crucial for the structural
maintenance of the myelin sheath, especially compaction
(Brunner et al., 1989). PLP is a transmembrane protein in
myelin and a candidate for the tight apposition of membrane
sheaths due to its hydrophilic extracellular domains (Slavin
et al., 1997; Stadelmann et al., 2019). When demyelination
occurs, the transcription and translation of these proteins such
as MBP and MOG are affected, which could be detected by
immunofluorescence and RT-qPCR (Renner et al., 2017).

Ultrastructural Changes in Myelin Sheaths and Axons
Morphological changes during demyelination can be evaluated
using different approaches. Among them, the most intuitive and
reliable method is to observe the ultrastructure and analyze the
material composition of myelin sheaths by electron microscopy
(EM) (Helvacioglu and Dagdeviren, 2019).

Under normal circumstances, it was observed that the myelin
sheath is a stack of alternating electron-dense and electron-
lucent layers, which are named the major dense line and
intraperiod line, respectively (Stadelmann et al., 2019). When
demyelination, vacuolation and splitting of the myelin sheath
can be observed. It is widely believed that the G-ratio (ratio
of the inner to the outer radius of the myelin sheath wrapped
around the axon) is a parameter for assessing axonal myelination
(Chomiak and Hu, 2009). An increase in the G-ratio usually
means the myelin sheath thinning or the swelling of the axoplasm
without affecting myelin thickness (Stikov et al., 2015). Normal
axons have a normal G-ratio (0.6–0.75), while demyelinated
axons lack myelin (G-ratio 1.0). Some demyelinated axons have
undergone spontaneous remyelination, with thin sheaths and
G-ratio greater than 0.75 (Chomiak and Hu, 2009; Berman et al.,
2018; Duncan et al., 2018).

In addition, the change in axons is the breakdown of
the cytoskeleton, including axoplasmic microtubules and

neurofilaments, which are transformed into amorphous and
granular materials. The morphological manifestations of axonal
degeneration are as follows: (1) dark degeneration, where axons
become dark, with dense axoplasm and miscellaneous organelles;
(2) watery degeneration, where axons become pale, swollen,
enlarged, and the axoplasm is either filled with an amorphous or
granular material or is completely devoid of organelles (Saggu
et al., 2010). Enlarged and swollen mitochondria are observed
in axons, accompanied by fading cristae in the mitochondria
(Coughlin et al., 2015; Thai et al., 2019). Mitochondrial
dysfunction impairs mitochondrial transport along the axons
and triggers necrosis of neurons (Chandrasekaran et al., 2019;
Feng et al., 2021). Some RGCs have an intact cell membrane
with swollen organelles; some RGCs are severely damaged
with disrupted cytoplasmic organelles and electron-dense
clumped nuclear remnants distributed in the cytoplasm
(Narciso et al., 2001).

Functional and Imaging Changes
Demyelination could also disrupt the integrity of the visual
pathway, as reflected by reduced nerve conduction velocity and
axonal damage. The action potential could not be recorded
by giving a stimulation in an experimentally demyelinated
sciatic nerve induced by lysophosphatidylcholine (Waxman
et al., 1994). The delays in conduction along the visual
system could be measured with visual evoked potentials (VEPs)
(Berman et al., 2020). In addition to the morphological
examination, axonal damage could be reflected by functional and
imaging examination, such as diffusion tensor imaging (DTI)
(Ngamsombat et al., 2020).

Visual Evoked Potentials
As an electrophysiological examination, visual evoked potentials
(VEPs) can detect the integrity of the entire visual pathway
from the retina to the visual cortex (You et al., 2015). The
latency of VEP reflects the speed of signal transduction along
the visual pathway, where a prolonged VEP latency implies
demyelination (Heidari et al., 2019). Furthermore, the decrease
in VEP amplitude indicates axon loss, inflammation, and/or
demyelination (You et al., 2012).

Diffusion Tensor Imaging
Diffusion tensor imaging is the development and deepening of
diffusion-weighted imaging, the only non-invasive examination
method that can effectively observe and track the bundles of white
matter fibers in the brain (Li et al., 2019). The function change can
be revealed by the parameters of DTI, such as radial diffusivity
(λ⊥), axial diffusivity (λ ||), and fractional anisotropy (FA). λ⊥,
the mean value of λ2 and λ3, increases when myelin sheaths are
damaged due to the weakened restriction of perpendicular water
molecule diffusion by myelin sheaths during demyelination. λ ||
reflects axonal integrity. FA decreases upon axonal degeneration
and myelin sheath damage (Xu et al., 2013).

Visual evoked potential and diffusion tensor imaging have
been used to screen for glaucoma in high-risk groups. Recently,
several studies have investigated the utility of DTI in the diagnosis
of glaucoma, and it has been suggested that the parameters of
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DTI in the optic nerve and brain may be sensitive and reliable
biomarkers for glaucoma evaluation (Li et al., 2019; Schmidt
et al., 2019; Nucci et al., 2020). However, compared to IOP
screening or visual field examination, VEP and DTI are relatively
expensive and inconvenient, especially when the relationship
between demyelination and glaucoma is unknown.

MECHANISMS OF DEMYELINATION

There has been much discussion about the mechanism
of demyelination. Here, we highlight three key points:
(1) Mitochondrial dysfunction in oligodendrocytes. Such
dysfunction leads to impaired synthesis of lipid, a major myelin
component (Schoenfeld et al., 2010). (2) Increased oxidative
stress in oligodendrocytes. Reactive oxygen free radicals or
reactive nitrogen free radicals may play a potential role in
oligodendrocyte death (Roth and Núñez, 2016). (3) Immune
and inflammatory injury (Figure 2). Interactions between T
cells and glial cells could promote oligodendrocyte injury and
myelin damage (Kunkl et al., 2020; Sidoryk-Węgrzynowicz and
Strużyńska, 2021). Autoantibody production and complement
system also play a role in demyelination (Stern and Keskin, 2008).

Mitochondrial Dysfunction in
Oligodendrocytes
Mitochondria are essential for oligodendrocyte survival and
myelination. Mitochondria are semi-autonomous organelles
that have their own genetic material, mtDNA. Functional
defects and morphological changes in the mitochondria have
been observed in neurodegenerative diseases (Lin and Beal,
2006). The nodes of Ranvier contain a large number of
mitochondria, which are responsible for respiratory reactions
and encode proteins involved in the oxidative phosphorylation
system. In oligodendrocytes, the transcription and translation
of mitochondrially expressed genes play an essential role in
differentiation. Mitochondrial fatty acid oxidation transcripts
are activated to synthesize cholesterol, which is required for
myelination; the transcription of DBI gene, which transfers
mitochondrial cholesterol to the cytoplasm, is also increased;
transcription of other myelination genes such as myelin-
associated oligodendrocytic basic protein and fyn proto-
oncogene are also induced (Schoenfeld et al., 2010). The
dysfunction of mtDNA reduce the transcription and translation
of these genes, leading to demyelination. Mitochondrial DNA
double-strand breaks are also a risk factor for oligodendrocyte
cell death, which then cause secondary damage such as
demyelination (Madsen et al., 2017). Other research groups
have also demonstrated that mitochondria are crucial metabolic
factors that affect oligodendrocyte myelination.

Increased Oxidative Stress in
Oligodendrocytes
Oxidative stress can lead to demyelination of the nervous
system (Ohl et al., 2016). Oligodendrocytes have relatively low
levels of antioxidant ability, extensive elaborations of membranes
and high levels of iron content. All features predispose

oligodendrocytes to oxidative damage. Meanwhile, the myelin
sheath is a preferential target of oxidative stress because of its
composition and high lipid to protein ratio (French et al., 2009).
Oxidative stress is caused by an imbalance between oxidants
and antioxidants, or the accumulation of reactive oxygen free
radicals or reactive nitrogen free radicals (Kehrer and Klotz, 2015;
Kimura et al., 2017). Oxidative stress and mitochondrial damage
can promote each other, forming a vicious cycle (Mahad et al.,
2015). According to a previous study, oxygen free radicals can
attack DNA in oligodendrocytes, and oxidative stress can also
affect mitochondrial membrane phospholipids, enzymes, protein
complexes, and mtDNA (Spaas et al., 2021). Oxidative stress
attacks other components, in addition to mitochondrial damage.
For example, matrix metalloproteinases (MMPs) are susceptible
to redox state, oxygen free radicals facilitate the transcription and
translation of MMP1/2/9. As an interstitial collagenase, MMPs
could breakdown the basement membrane of the blood-brain
barrier and degrade MBP, leading to the invasion of immune cells
and demyelination (Offen et al., 2004; Ljubisavljevic, 2016).

Immune and Inflammatory Injury
Accumulated evidence indicates that demyelination is closely
associated with immune dysfunctions. For example, some
neurodegenerative diseases with demyelination, such as multiple
sclerosis and Alzheimer’s disease, have been associated with
immune system abnormalities (Heneka, 2017; Kunkl et al., 2020).
Furthermore, T cells have been found to be involved in the
degeneration of the optic nerve in glaucoma (Chen et al., 2018).

The effects of T cells on demyelination in neurodegenerative
diseases have been widely recognized. CD4+ Th cells are
activated by mature dendritic cells. Subsequently, dendritic
cells and other costimulatory molecules promote CD4+ Th cell
proliferation and differentiation. CD4+ Th cells may differentiate
into Th1, Th17, and Th1-Like Th17 cells. These cells can
invade the CNS and interact with microglia and astrocytes,
resulting in inflammatory responses by cytokines and inhibiting
the maturation of oligodendrocytes and myelin sheath (Uccelli
et al., 2003; Constantinescu et al., 2011; Kunkl et al., 2020). For
example, inflammatory stimuli such as TNF-α, interleukin (IL)-
1β, and IL-17 could cause nuclear translocation of the nuclear
factor κ-light-chain-enhancer (NF-κB). The activation of NF-
κB is a central step in astrocyte activation, promoting apoptosis
of oligodendrocytes via Fas ligand, TNF, and NO or glutamate
release (Linnerbauer et al., 2020). Microglia could transfer into
neurotoxic microglia, which presents MHCII and CD86 by
stimulating IL-6 and IFN-γ. Then, they produce cytokines such as
NO, ROS, IL-1β, and TNF-α to promote oligodendrocyte damage
(Geladaris et al., 2021).

Pathogenic autoantibodies specific to CNS antigens produced
by B cells and the activation of the complement pathway also
cause demyelination. For example, inflammation may disrupt
the blood-brain barrier, permitting entry of MOG antigen
(Zamvil and Slavin, 2015). Then the antigen could activate
CD4+ T cells and recruit MOG-specific B cells, which produce
a large number of antibodies. The MOG-IgG mediates the
damage of MBP, destroying the myelin sheath (Ambrosius et al.,
2020). Meanwhile, MOG could directly activate the classical
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FIGURE 2 | Immune and inflammatory injury. Interactions between glial cells and self-reactive lymphocytes in the CNS: CD4+ Th cells may differentiate into Th1,
Th17, and Th1-Like Th17 cells. The main cytokines released by Th1 cells are IFN-γ and TNF-α, Th17 cells are IL-22 and IL-17, Th1-Like Th17 cells are IL-17 and
IFN-γ. TNF-α, IL-1β, and IL-17 could activate astrocytes via NF-κB, leading to the apoptosis of oligodendrocytes via Fas ligand, TNF, and the release of NO or
glutamate. IL-6 and IFN-γ could transfer microglia into neurotoxic microglia, producing NO, ROS, IL-1β, and TNF-α to attack oligodendrocytes. Pathogenic
autoantibody and complement system could also play a role in demyelination. MOG antigen leaks into the peripheral blood, then transfers B cells into MOG-specific
B cells, producing MOG-IgG. The antibody disrupts the interaction between MOG proteins and MBP proteins, causing demyelination. Meanwhile, MOG could
directly activate the classical pathway of the complement cascade, exerting a cytotoxic effect.

pathway of the complement cascade, leading to demyelination
(Johns and Bernard, 1999).

IS DEMYELINATION ASSOCIATED WITH
GLAUCOMA?

Thus far, it is unknown whether demyelination is an underlying
factor in glaucoma. However, we do find a correlation between
the two in both basic science studies and clinical patients.
Clinically, in patients with primary open-angle glaucoma,
researchers have observed the delay of VEP latency and an
increase of λ⊥ in the optic radiation in DTI (You et al., 2019).
This phenomenon indicates that demyelination occurs in patients
with glaucoma. Such relevance is also proved indirectly in other
demyelinating diseases. For example, more than fifty percent
of patients suffer from high IOP or glaucoma in Charcot–
Marie–Tooth disease type 1, whose characterized pathology is
demyelination (Laššuthová et al., 2018). Furthermore, in basic
research studies, researchers used laser photocoagulation to build
a chronic glaucoma model in rhesus monkeys. Transmission

electron microscopy analysis provided evidence of demyelination
by observing myelin swelling in the lateral geniculate nucleus
(Yan et al., 2017).

Thus far, only a few studies have focused on the relationship
between demyelination and glaucoma. Available references are
listed in Table 1.

Evidence That Supports an Association
Between Demyelination and Glaucoma
Morphological Changes of Demyelination in
Glaucoma
The morphology of myelin sheath is mainly observed by
immunohistochemistry (LFB staining), immunofluorescence
(MBP staining) and EM. Reinehr et al. (2016) established an
experimental autoimmune glaucoma (EAG) model by injecting
bovine optic nerve homogenate antigens. Data showed that the
pathogenesis of this model is the activation of the complement
system via the lectin pathway. Activation occurred at 7 days
with significant RGC loss observed at 28 days; however, changes
in the myelin sheath appeared early. A rapid increase in
the MBP-positive area was observed at 3 days, MBP-positive
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TABLE 1 | The different viewpoints about the demyelination in glaucoma.

Viewpoint Research model Testing index Evidence

Supporting EAG MBP Decrease of MBP (Reinehr et al., 2016)

Chronic ocular hypertension Oligodendrocytes Oligodendrocyte loss before RGCs (Schmidt et al., 2019)

Acute ocular hypertension SEM Swelling myelin (Shen et al., 2017)

Primary angle-closure glaucoma DTI Decrease of FA and increase of λ⊥ (Garaci et al., 2009; Zhang et al., 2015)

Opposing NMDA excitotoxic injury LFB Intact myelin sheath (Kuehn et al., 2017)

Secondary glaucoma: DBA/2J G-ratio The decrease of G-ratio (Smith et al., 2018)

Secondary glaucoma: DBA/2J Oligodendrocytes Axon damage precedes myelin damage (Son et al., 2010)

EAG LFB RGC loss precedes myelin damage (Kuehn et al., 2018)

area fell back to the control values after 7 days, and a
decrease in the MBP-positive area occurred at 14 days (Reinehr
et al., 2016). Based on the above results, we speculate that
the early changes in the myelin sheath indicate glaucoma.
Consistent with these results, researchers also revealed a
change in MBP in a rabbit model of ocular hypertension.
The authors suggest that MBP activity is a marker of stress
under incipient degeneration, during which myelin is destroyed,
and loosely compacted myelin sheaths can also be observed
under scanning electron microscope (SEM). However, the
underlying mechanisms have not yet been carefully investigated
(Shen et al., 2017).

Another morphological change of demyelination reflects
as the changes of oligodendrocytes. A significant change
in oligodendrocytes was observed in a chronic ocular
hypertensive model established by laser photocoagulation.
The key point of pathogenesis is the increase in TNF-
α levels. The level of TNF-α increased rapidly at
3 days after laser photocoagulation, while the increased
protein levels were maintained for at least 14 days. The
oligodendrocyte loss occurred at 1 week, and a loss
of RGCs occurred 2 weeks after oligodendrocyte loss
(Nakazawa et al., 2006).

Functional Changes of Demyelination in Glaucoma
In a recent study, 20 patients with bilateral chronic primary
angle-closure glaucoma were examined using DTI for axonal
and myelin damage of the optic nerves and optic radiations.
Compared with the control group, the patients had significantly
decreased FA and increased λ⊥, and increased λ⊥ correlated
with mfVEP latency. Surprisingly, an increase in λ⊥ was
observed not only in the optic radiation fibers projecting
to the affected visual hemifield, but also in the unaffected
visual hemifield. This phenomenon indicates that myelin
damage precedes axonal degeneration (Garaci et al., 2009;
Zhang et al., 2015).

Other Circumstantial Evidence
Some experiments shows that demyelination could be a target
for predicting glaucoma. Increased serum anti-MBP antibody
levels are a key indicator of brain damage or demyelination
(Wa̧sik et al., 2020). South Korean scientists and German
scientists proved that the serum levels of anti-MBP antibodies
were higher in patients with primary open-angle glaucoma

(POAG) and normal-tension glaucoma (NTG). Therefore, anti-
MBP antibodies in serum produced by demyelination may
be a marker to distinguish between control participants and
patients with glaucoma (Joachim et al., 2008; Shin et al.,
2020).

Some experiments have suggested that demyelination may
play a role in the pathogenesis of glaucoma. Elevated peptidyl
arginine deiminase 2 and decreased arginyl methylation, which
mediate protein citrullination, were detected in POAG optic
nerve and glaucomatous DBA/2J mice. MBP is a major
citrullinated protein in the POAG optic nerve (Bhattacharya
et al., 2006). Citrullinated MBP lost the ability to maintain the
compaction of myelin sheaths and gave rise to large monolingual
vesicles, leading to demyelination (Boggs et al., 1997). Therefore,
they hypothesized that citrullination causes changes in the
dynamics of myelin components, leading to the initiation of
glaucomatous neuropathy (Bhattacharya et al., 2006).

Evidence That Contradicts an
Association Between Demyelination and
Glaucoma
Changes in the Morphology of Myelin Sheaths
Some researchers regard demyelination as a manifestation of
axon damage rather than an underlying factor. Kuehn et al.,
verified that the main pathogenic factor in the EAG model
established by S100B directly destroys the axons of the optic
nerve. The first change was optic nerve degeneration at 3 days
and the beginning of RGC loss at 14 days, while apparent
demyelination was detected at 21 days by LFB staining (Kuehn
et al., 2018). Researchers revealed that a decrease in PLP
gene expression and oligodendrocyte loss must follow rather
than precede axon loss in old DBA/2J mice (a secondary
glaucoma model induced by genetic elements and accompanied
by progressively increasing IOP). Next, they analyzed an acute
glaucoma rat model; half of the axons were lost 10 days after the
increase in IOP, while no loss of oligodendrocytes was observed at
this time (Son et al., 2010). In this case, oligodendrocyte loss is an
accompanying phenomenon. Consistent with these results, in the
model animals injected with N-methyl-D-aspartate (NMDA), the
RGC number was significantly decreased in the peripheral and
middle regions at 3 days after injury, and damage to the optic
nerves occurred at 14 days. Myelin sheaths were kept intact after
injury by LFB staining (Kuehn et al., 2017).

Frontiers in Aging Neuroscience | www.frontiersin.org 6 November 2021 | Volume 13 | Article 701322

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-701322 October 27, 2021 Time: 15:32 # 7

Xue et al. Optic Nerve Demyelination in Glaucoma

Ultrastructural Changes in Myelin Sheaths and Axons
Scientists have discovered different phenomena in the
same DBA/2J mouse optic nerves. A study showed that
myelin sheath thickness outpaced axon diameter increase,
leading to a decreased G-ratio. However, the researchers
did not interpret the results as an indication of early
demyelination and attributed this to the upregulation of
genes controlling myelin sheath synthesis. They believed that
hypermyelination in the DBA/2J optic nerves was protective
(Smith et al., 2018). In conclusion, changes in myelin need to be
investigated further.

Demyelination Could Be an Underlying
Factor in Glaucoma
At present, most experiments focus on an unmyelinated region
of the optic nerve with only few studies focusing on the myelin
sheath. Even the study of glaucoma that mentions myelin
sheath only describes the morphology of the myelin sheath.
There are very few in-depth studies on the relationship between
demyelination and glaucoma.

Based on the summary of the above literature, there is
insufficient evidence from clinical studies and translational
studies. Animal models are primarily used to explore whether
demyelinating is the underlying factor of glaucoma, but the
results are controversial. The possible reasons are summarized
as follows: (1) The different pathogenesis of the models
leads to significant differences in the results. Most of the
current basic studies use a single animal model, which only
reflects part of the pathogenesis of glaucoma (Reinehr et al.,
2016; Kuehn et al., 2017; Schnichels et al., 2021). (2) The
dynamic changes of the myelin sheath especially the precise
time point of demyelinating have not been comprehensively
studied. Most animal experiments only detect changes in
myelin sheath at the late stage, while the early changes have
been overlooked (Son et al., 2010). (3) The standardized and
reliable quantitation methods have not been well established.
The LFB and MBP staining are the most commonly used
methods because they are relatively simple and feasible. However,
LFB and MBP staining is a semi-quantitative technique that
does not allow absolute quantitation of the myelin sheath,
leading to differences in results (Khodanovich et al., 2018;
Kuehn et al., 2018).

CONCLUSION AND PERSPECTIVES

Vision loss from glaucoma causes significant inconvenience in
daily life. The incomplete understanding of the pathogenesis
of glaucoma limits our ability to alleviate injury to the
optic nerve and visual field defects (Weinreb et al., 2014).
Currently, reducing intraocular pressure is still considered the
only efficient approach to treat glaucoma (Weinreb et al.,
2014; Donegan and Lieberman, 2016). Disease progression
in glaucoma patients is difficult to prevent even though
the intraocular pressure can be reduced by medication or
surgery (De Moraes et al., 2017). Therefore, exploration of
new therapeutic directions for glaucoma is highly desirable.

Prevention/repair of myelin damage has become an essential
part of therapy for neurodegenerative diseases, which also
shows the potential to become an underlying therapeutic
approach for glaucoma.

After analyzing the existing research and issues, we found
several directions worthy of discussion: (1) Whether or not
demyelination happens in glaucoma patients, and where it
occurs, if yes. We could use various animal models in basic
experiments and establish standardized quantitative methods
to explore this issue. Clinically, imaging technology needs
to be further developed to examine the patients. (2) If
demyelination exists, whether it is helpful for the early
diagnosis of glaucoma. At present, early diagnosis relies on
structural and functional evaluation, mainly through optical
coherence tomography and perimetry. Further study on the
changes in DTI and VEP, or related antibodies and elements
in the serum such as anti-MBP antibodies, could help
us screen early glaucoma patients more comprehensively
and efficiently. (3) We could explore the mechanism of
demyelination and screen for optic neuroprotective drugs.
We would like to find the critical targets of demyelination,
such as muscarinic acetylcholine receptors and sphingosine
one phosphate receptors, which have been explored. We hope
to screen out drugs with high specificity and minor side
effects, laying the foundation for translational research and
clinical application.

In future, the exploration of whether demyelination is an
underlying factor in glaucoma will provide new directions for the
treatment of glaucoma.
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