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Background: Progressive cognitive decline is the most relevant clinical symptom of
Alzheimer’s disease (AD). However, the rate of cognitive decline is highly variable
between patients. Synaptic deficits are the neuropathological event most correlated
with cognitive impairment in AD. Considering the important role of microRNAs (miRNAs)
in regulating synaptic plasticity, our objective was to identify the plasma miRNAs
associated with the rate of cognitive decline in patients with mild AD.

Methods: We analyzed 754 plasma miRNAs from 19 women diagnosed with mild
AD using TaqMan low-density array cards. The patients were grouped based on the
rate of decline in the MMSE score after 2 years [<4 points (N = 11) and ≥4 points
(N = 8)]. The differentially expressed miRNAs between the two groups were validated in
an independent cohort of men and women (N = 53) with mild AD using RT-qPCR.

Results: In the discovery cohort, 17 miRNAs were differentially expressed according to
the fold change between patients with faster declines in cognition and those with slower
declines. miR-342-5p demonstrated differential expression between the groups and a
good correlation with the rate of cognitive decline in the validation cohort (r = −0.28;
p = 0.026). This miRNA had a lower expression level in patients who suffered from more
severe decline than in those who were cognitively more stable after 2 years (p = 0.049).

Conclusion: Lower levels of miR-342-5p in plasma were associated with faster
cognitive decline in patients with mild AD after 2 years of follow-up.

Keywords: Alzheimer’s disease, cognitive decline, miRNA, miR-342-5p, biomarker

INTRODUCTION

Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that gradually destroys
memory and other thinking skills and, eventually, leads to complete dependency in daily life
activities (Long and Holtzman, 2019). The rate of cognitive decline is highly variable among
patients, with some having a faster course than others. Studies have demonstrated a strong
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association between the rate of cognitive decline and mortality
in AD patients (Hui et al., 2003). In addition, understanding
the physiopathological processes underlying this variability is
highly important because of the great potential benefits for the
development of effective therapeutic approaches.

Extracellular amyloid plaques (accumulation of amyloid-
β (Aβ) protein) and intracellular neurofibrillary tangles
(aggregations of hyperphosphorylated tau protein, P-tau) are
two main pathological hallmarks of AD. Although both of
these pathological characteristics are considered specific to
AD, none of them have demonstrated a good correlation with
the clinical symptoms (Jack et al., 2018). For example, the
accumulation of Aβ plaques, known as the first pathological
event of AD according to the “amyloid cascade hypothesis,”
peaks at the asymptomatic stage of the disease (Selkoe and
Hardy, 2016). It is widely accepted that neuronal injury,
particularly synaptic loss, is the AD neuropathological alteration
that most correlates with cognitive dysfunction (Jack et al.,
2018; Colom-Cadena et al., 2020). The measurement of some
proteins released in CSF, such as tau and neurofilament
light chain, can be used to assess neurodegeneration and has
shown a good correlation with cognitive decline (Jack et al.,
2018; Preische et al., 2019). However, they are not specific
to neuronal damage due to AD. In addition, the method
for obtaining CSF is invasive, which limits its use for the
concurrent monitoring of therapeutic trials and drug efficacy
and for longitudinal studies where multiple lumbar punctures
are needed. Therefore, searching for new biomarkers in the
circulatory system that can predict the rate of cognitive decline
and reveal neuropathological alterations specific to AD is of
great importance.

MicroRNAs (miRNAs) are small (typically 22 nt in size) non-
coding RNA molecules that regulate the activity of messenger
RNA targets by binding to their specific binding sites located
in the coding domain sequence or 3′-untranslated regions. This
union suppresses the translation of the mRNA or induces its
degradation (Brümmer and Hausser, 2014). miRNAs are present
in tissues and bodily fluids and play important roles in a wide
range of physiological and pathological processes, including AD
(Cogswell et al., 2008; Hébert et al., 2008; Boissonneault et al.,
2009). Circulatory miRNAs have shown high stability (Mitchell
et al., 2008; Turchinovich et al., 2011), making them ideal
biomarker targets. Increasing evidence indicates that miRNAs
play a pivotal role in the regulation of synapses and synaptic
plasticity (Hu and Li, 2017). Therefore, miRNAs are importantly
involved in cognitive functions such as learning and memory
(Wang et al., 2012). On the other hand, some studies have
revealed that deregulation of several miRNAs contributes to
synaptic and memory deficits in AD mouse models (Liu et al.,
2017; Wang et al., 2018; Song et al., 2019).

In the present study, we aimed to detect and validate baseline
circulating miRNAs that can be associated with the rate of
cognitive decline in patients with AD after 2 years of follow-
up. To this end, we selected a discovery cohort of women
with mild AD and assessed their cognitive loss during a 2-year
follow-up by the Mini-Mental State Examination (MMSE). The
miRNAs present in the plasma of these patients were subjected to

high-throughput miRNA expression profiling. Subsequently, the
candidate miRNAs were validated in an independent cohort of
men and women with mild AD via individual RT-qPCR methods.

MATERIALS AND METHODS

Study Population
The subjects were prospectively recruited from a sample
of outpatients who visited the Cognitive Disorders Unit at
Hospital Universitari Santa Maria in Lleida and Hospital
Clínic de Barcelona. The discovery cohort consisted of 19
women diagnosed with mild AD (MMSE score ≥20) and with
abnormal Aβ42 levels (≤600 pg/mL) from Hospital Universitari
Santa Maria in Lleida. The validation study consisted of 53
subjects with mild AD and abnormal Aβ42 levels from Hospital
Universitari Santa Maria in Lleida (N = 41) and Hospital
Clínic de Barcelona (N = 12). AD was diagnosed according
to the clinical criteria of the National Institute on Ageing and
Alzheimer’s disease Association (McKhann et al., 2011). Patients
with cognitive impairment caused by other conditions, such
as stroke, brain tumor, other neurodegenerative diseases, etc.
were excluded from the study. We also excluded male patients
from the discovery cohort to eliminate the sex effect in this
small population.

Demographic data and general medical aspects such as
hypertension, diabetes mellitus, hypercholesterolemia, stroke,
depression, and APOE4 status were also evaluated in all subjects.

The cognitive evolution of the patients was measured by
MMSE at baseline and after one and 2 years. The MMSE
is a screening questionnaire for the detection of cognitive
impairment (Folstein et al., 1975). It has 30 questions, and
each question to be answered is scored with points, with a
maximum possible score of 30 points. This questionnaire can
be used to estimate the severity of cognitive impairment and
to follow the course of cognitive changes in an individual
over time. Although the rate of progression is variable among
patients with mild AD, there is not any consensus regarding
the definition of patients with fast decline versus slow decline.
In a study by Stanley and collaborators, a 1.4 point/year (≈3
points/2 years) decline in MMSE was reported in patients aged
>74 years (Stanley et al., 2019). Therefore, based on the rate
of cognitive decline, we divided each cohort into two groups:
patients who had lost less than 4 points (named slow decline
in cognition, SDC) and those who had lost four or more points
(named fast decline in cognition, FDC) after a 2-year follow-
up.

Sample Collection, RNA Extraction and
Reverse Transcription
Blood samples were collected at baseline by venipuncture
into EDTA-containing tubes between 8:00 and 10:00 A.M. in
fasting condition. The samples were centrifuged at 2500 g
for 10 min, and plasma was separated, aliquoted and stored
at −80◦C until use. Total RNA was extracted from plasma
samples by using the mirVana PARIS RNA and Native
Protein Purification Kit (Cat. No. AM1556, Thermo Fisher
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Scientific) according to the manufacturer’s instructions. Isolation
of total RNA instead of small RNAs was recommended
by the manufacturer for miRNA expression profiling using
miRNA arrays. Briefly, 300 µl plasma was added to an
equal volume of 2× denaturing solution and then spiked
with 10 µl of 100 pM synthetic cel-miR-39-3p (478293_mir,
Thermo Fisher Scientific). The cel-miR-39-3p was added to
the samples as an external control in order to monitor
the RNA extraction efficiency. The phenol extraction was
applied, and finally, total RNA was eluted in 40 µl of 95◦C
nuclease-free water following the recommended protocol. Two
microlitres of RNA was reverse-transcribed to cDNA template
and amplified using the TaqMan Advanced miRNA cDNA
Synthesis Kit (Cat No. A25576, Applied Biosystems) and
according to the corresponding user guide (publication number
MAN0016122, revision C.0). The amplified cDNA product was
stored at –20◦C until use.

Profiling of miRNAs Using TaqMan
Low-Density Array (TLDA) Cards
The expression profiling of miRNAs in 19 plasma samples
was carried out by loading a 1:10 dilution of amplified
cDNA and TaqMan Fast Advanced Master Mix into two
microarray cards (TaqMan Advanced miRNA Human A
and B cards, Applied Biosystems), each containing 384
assays. The cards were run on a QuantStudio 7 Flex RT-
PCR system (Life Technologies) and amplified based on the
corresponding user guide (publication number MAN0016122,
revision C.0). The threshold values were determined by
QuantStudio software v-1.3. The data were processed with the
Relative Quantification tool (powered by Thermo Fisher cloud),
and their quality was evaluated based on the following criteria:
(1) RT-PCR products were considered below the detection
threshold and deleted if Ct ≥ 35 or if the Ct value were
reported as “Undetected” and (2) RT-PCR products with an
acceptable Ct range but an irregular amplification curve was
censored. After evaluation of the quality of the raw data
(Supplementary Figures 1, 2), they were normalized based on
the mean-centering method, which is the gold standard when
a high number of miRNAs are evaluated (Wylie et al., 2011;
Faraldi et al., 2019).

Validation of Differentially Expressed
miRNAs by RT-qPCR
The differentially expressed miRNAs from the microarray
experiment were validated in a new and independent cohort
that consisted of 53 AD patients. RT-qPCR was carried
out by using individual TaqMan Advanced miRNA Assays
and TaqMan Fast Advanced Master Mix that were loaded
on 384-well plates (Applied Biosystems). The samples
were run in duplicate for each assay. We normalized
these data using four endogenous controls (EC) (miR-
103a-2-5p, miR-22-5p, miR-1301-3p, and miR-425-3p)
and cel-miR-39 as an exogenous control. These ECs were
shown to be stable in the plasma samples of controls and

patients with or without pathophysiological changes in AD
(Dakterzada et al., 2020).

Target Analysis
We used TargetScan1 and miRDB2 tools to search for the
possible target genes of the differentially expressed miRNAs. The
biological targets of microRNAs in TargetScan are predicted by
searching for the presence of sites that match the seed region
of each miRNA (Bartel, 2009). In miRDB, miRNA targets are
predicted from interactive modeling of miRNA binding and
overexpression data (Liu and Wang, 2019).

Ethics Approval
The Clinical Investigation Ethical Committee (CEIC P16/109)
of Arnau de Vilanova University Hospital of Lleida approved
this study for the discovery cohort. All patients included in
the confirmatory cohort signed an internal written regulatory
document stating that residual samples used for diagnostic
procedures can be used for research studies.

Statistical Analysis
Quantitative variables are shown as the mean (standard
deviation) or median [interquartile range] according to the
normality of the data. Absolute and relative frequencies were
used to describe qualitative variables. We compared patient
characteristics according to the study groups (FDC and SDC)
in the discovery and validation cohorts. The t-test (or non-
parametric Wilcoxon signed-rank test) was used to compare
quantitative variables, and the chi-squared test was used for
qualitative variables. The differences in miRNA expression
between groups were evaluated using linear models for arrays
(Ritchie et al., 2015). Given the age differences between study
groups in the validation cohort, the linear models were age-
adjusted in this cohort. The p-value threshold defining statistical
differential expression was set at <0.05. miRNAs with significant
difference between groups and a minimum fold change of
1.25 (or 0.8 for downregulated miRNAs) were considered
as differentially expressed. All statistical analyses and data
processing procedures were performed using R software, version
3.5.2 (Vienna, Austria).

RESULTS

Patient Characteristics
The discovery and validation cohorts consisted of 19 and
53 patients with mild AD, respectively. In this regard, the
pilot study consisted of 11 patients with SDC and 8 patients
with FDC, while the validation cohort consisted of 32 SDC
and 21 FDC patients. In the validation cohort, patients
in the FDC group were older than those in the SDC
group. There was no other significant difference regarding
demographic data, comorbidities, AD core biomarker level

1http://www.targetscan.org/vert_72/
2www.mirdb.org
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TABLE 1 | Characteristics of the study population that participated in the discovery and validation cohorts.

Discovery cohort Validation cohort

SDC (−4,2] FDC [−9,−4] p-value SDC (−4,5] FDC [−16,−4] p-value

N = 11 N = 8 N = 32 N = 21

Demographic data

Sex, Female 11 (100%) 8 (100%) 10 (31.2%) 11 (52.4%) 0.211

Age 74.1 (5.43) 76.8 (6.02) 0.338 74.5 [71.5;80.0] 71.0 [66.1;75.0] 0.038

Comorbidities

Hypertension 9 (81.8%) 4 (50.0%) 0.319 19 (59.4%) 10 (47.6%) 0.576

Stroke 2 (18.2%) 0 (0.00%) 0.485 1 (3.12%) 1 (4.76%) 0.999

Diabetes mellitus 2 (18.2%) 1 (12.5%) 1000 7 (21.9%) 4 (19.0%) 0.999

Dyslipidemia 4 (36.4%) 4 (50.0%) 0.658 12 (37.5%) 8 (38.1%) 0.999

Depression 5 (45.5%) 2 (25.0%) 0.633 10 (31%) 6 (28%) 0.861

APOE4 carrier, Yes 6 (54.5%) 5 (62.5%) 0.999 13 (54.2%) 10 (55.6%) 0.921

Alzheimer’s parameters

Basal MMSE 21.3 (2.53) 24.5 (2.62) 0.017 23.0 (2.92) 23.8 (3.11) 0.348

1-year MMSE 22.2 (1.99) 22.2 (1.98) 0.942 22.4 (3.67) 19.7 (3.84) 0.016

2-year MMSE 19.8 (2.71) 18.6 (2.72) 0.36 22.1 (3.44) 16.7 (4.99) <0.001

Aβ42 453 (116) 471 (86.0) 0.689 419 (100) 461 (106) 0.162

T-tau 601 [501;772] 594 [407;688] 0.563 430 [306;692] 618 [456;861] 0.094

P-tau 89.6 [76.8;118] 93.3 [78.8;106] 0.804 66.8 [51.5;94.6] 87.0 [75.7;110] 0.161

SDC, slow decline in cognition; FDC, fast decline in cognition; MMSE, Mini-Mental State Examination; Aβ42, Amyloid beta 42; T-tau, Total tau protein; P-tau,
Phosphorylated tau protein. P-values were calculated by comparing FDC and SDC patients using t-test (or non-parametric Wilcoxon signed-rank test) for continuous
variables and chi-squared test for categorical variables.

or MMSE at baseline between patients included in each
cohort (Table 1).

Identification of miRNAs Related to the
Rate of Cognitive Impairment (TLDA
Experiment)
We identified 17 miRNAs that were differentially expressed
between the two groups (Figure 1A). The expression profile
of these 17 miRNAs was able to completely discriminate
between the two groups of the study (Figure 1B). Among
these 17 miRNAs, miR-25-3p (0.53 fold change), miR-496
(0.15 fold change), miR-342-5p (0.33 fold change), miR-193a-3p
(0.1 fold change), miR-483-5p (0.5 fold change), and let-7c-
5p (0.04 fold change) were downregulated in the FDC group
(Figure 1A, red dots and Supplementary Table 1). Eleven
miRNAs, including miR-30e-5p (2.01 fold change), miR-153-3p
(1.69 fold change), miR-497-5p (1.76 fold change), miR-196b-3p
(4.97 fold change), miR-148a-5p (2.83 fold change), miR-191-3p
(1.76 fold change), miR-652-3p (1.59 fold change), miR-431-
3p (3.01 fold change), miR-30d-3p (8.22 fold change), miR-
744-3p (4.34 fold change), and miR-27b-5p (1.99 fold change),
were upregulated in the FDC group (Figure 1A, blue dots
and Supplementary Table 1). Furthermore, all 17 miRNAs
had a good correlation with the rate of cognitive decline
(Supplementary Table 1).

From these 17 miRNAs, 16 were selected for validation in
an independent cohort. The sequences of all 17 miRNAs are
shown in Supplementary Table 1. We eliminated the miRNA
miR-193a-3p from the list of validation because it had a similar

expression pattern between two groups except for 3 outlier
patients in SDC group that had a lower expression than the other
members of group.

Validation of Differentially Expressed
miRNAs
Individual RT-qPCR probes were used for validation of the 16-
miRNA signature in an independent cohort of patients with
mild AD (N = 53). After evaluation of the quality of the data
(Supplementary Figure 3) and normalization, as explained in the
Methods section, miR-342-5p showed significant differences in
expression between the SDC and FDC groups (Supplementary
Figure 4). Then, we dichotomized the patients into high and low
expression of miR-342-5p groups, and our results revealed that
patients with low expression of miR-342-5p had a worse cognitive
evolution after 2 years of follow-up (p = 0.026) (Figure 2).

Predicted Target Genes for miR-342-5p
We investigated the potential role of miR-342-5p in the
pathological processes of memory loss in AD by searching
through its predicted targets. Interestingly, not only proteins
directly related to AD, such as beta-site amyloid precursor
protein cleaving enzyme 1, microtubule associated protein 1A
and tau tubulin kinase 1, but also the genes for many synaptic
proteins were among targets that may be regulated by this
miRNA (Table 2). Importantly, the ephrin A2 gene had the
best target rank in miRDB and the second best target rank in
TargetScan for miR-342-5p.
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FIGURE 1 | (A) Volcano plot of the distribution of 17 differentially expressed miRNAs at baseline between patients with FDC and SDC in the discovery study,
mapping six downregulated miRNAs (red dots) and 11 upregulated miRNAs (Blue dots) in the FDC group; (B) Heatmap of all differentially expressed miRNAs at
baseline between AD patients with FDC or SDC in the discovery cohort. Red is low expression and blue is high expression.

DISCUSSION

This study was designed to detect the association of miRNAs with
the rate of cognitive decline measured by the MMSE in patients
with mild AD using a hypothesis-free approach. We identified 17
miRNAs that were differentially expressed between women with
AD who suffered from a faster cognitive decline over 2 years and
those with slower cognitive decline. We validated these results in
an independent cohort of men and women with AD. Our results

revealed that miR-342-5p had a good correlation with the rate of
cognitive decline, and the patients with lower expression levels of
this miRNA had worse cognitive evolution after 2 years of follow-
up.

Importantly, many differential miRNAs in the discovery study
were previously associated with AD. For instance, miR-431-
3p has been reported to prevent Aβ-mediated synaptic loss
(Ross et al., 2018), and let-7c-5p, miR-483-5p, miR-342-5p, and
miR-191-3p have been associated with AD in several studies
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FIGURE 2 | The association between the mean MMSE score in patients with high and low expression of miR-342-5p at baseline and after 1 and 2 years of
follow-up. Patients with higher expression of miR-342-5p at baseline showed a slower cognitive deterioration after 2 years of follow-up compared with patients with
low expression of this miRNA.

(Takousis et al., 2019). In addition, miR-153-3p was reported to
inhibit the expression of amyloid precursor protein (APP) (Liang
et al., 2012; Long et al., 2012).

It is widely accepted that memory and cognitive impairment
in AD primarily result from synaptic failure. Gene array
experiments have shown alterations in genes involved in
neurotransmitter receptors and receptor trafficking, synaptic
vesicle trafficking and release, cell adhesion regulating synaptic
stability, post-synaptic density scaffolding, and neuromodulatory
systems in the early stages of AD (Scheff et al., 2007; Chang et al.,
2012; Berchtold et al., 2013). Although the association of miRNAs
with AD has been widely studied, there is scarce information
about the miRNAs related to the rate of cognitive impairment
and their role in the processes that underlie cognitive decline
in these patients. To date, some studies have been conducted to
determine the miRNAs important for the regulation of synaptic
structure and function and to study their dysregulation and
their effect on cognitive impairment in animal models of AD
(Liu et al., 2017; Wang et al., 2018; Song et al., 2019; Barros-
Viegas et al., 2020). For example, Song et al. (2019) found that
upregulation of miR-30b causes synaptic and cognitive deficits
in 5XFAD APP transgenic mice. miR-30b targets molecules such
as ephrin type-B receptor 2, sirtuin1, and glutamate receptor
subunit 2 that are important for maintaining synaptic integrity.
These investigators observed that WT mice treated with miR-
30b showed impaired spatial learning and memory retention
measured by the Morris water maze and novel object recognition
tests (Song et al., 2019). In a study by Barros-Viegas and
collaborators, overexpression of miR-31-5p in a 3×Tg-AD model
resulted in a better performance of animals in the T-maze,
novel object recognition and Barnes maze, which were used for

assessing spatial memory and short-term and long-term memory,
respectively (Barros-Viegas et al., 2020).

To our knowledge, this is the first study in which the
association of miRNAs has been evaluated with cognitive
evolution in patients with mild AD. In a targeted study
by Tan et al. (2014) the serum levels of several miRNAs
related to AD were evaluated in patients with AD and
healthy controls. They observed that serum levels of miR-
125b had a negative correlation with MMSE score in AD
patients (Tan et al., 2014). Wiedrick and collaborators assessed
the correlation of the CSF levels of 14 miRNAs that were
differentially expressed between AD and controls with MMSE.
They observed that in these profiles, miR-193a-5p showed
a higher correlation with MMSE (Wiedrick et al., 2019).
However, in contrast to our study, in none of these studies
assessed the association of miRNAs with the cognitive evolution
of AD during a given time of follow-up. In a study by
Mengel-From et al. (2018) the association between plasma
miRNAs and MMSE and Cognitive Composite Score (CCS)
was evaluated in healthy aged twins followed-up for 10 years.
They observed that miR-151a-3p, miR-212-3p, and miR-1274b
were associated with CCS in both the individual and paired
analyses. miR-548c-3p, miR-539-5p, miR-532-3p, miR-369-3p,
miR-548a-3p, and miR-27a-5p were associated with the MMSE
score (Mengel-From et al., 2018).

In the present study, we validated the differential expression
of plasma miR-342-5p between AD patients with FDC and
SDC. This miRNA had a good correlation with the rate of
cognitive decline evaluated by the MMSE. Interestingly, we found
the genes for many synaptic proteins, including ephrin A2,
syntaxin, synaptotagmin, synaptojanin, and neurogranin, among
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TABLE 2 | Possible target genes of miR-342-5p found in miRDB and TargetScan databases that are associated with AD or synaptic plasticity.

Possible target Gene symbol Biological role related to synaptic plasticity and
cognition (reference)

Database

AD associated targets

Beta-site APP-cleaving enzyme 1 BACE 1 Breakage of amyloid precursor protein and production
of Aβ protein (Cole and Vassar, 2007)

M & T

Tau tubulin kinase 1 TTBK1 Phosphorylation of tau protein (Taylor et al., 2019) M & T

Microtubule associated protein 1A MAP1A Stabilization of microtubules (Fifre et al., 2006) M & T

Synapse associated targets

Ephrin A2 and A5 EFNA2 and A5 Regulation of contact-dependent cell communication
(Chen et al., 2012)

M & T

Ephrin A3 and B1-B3 EFNA3 and B1-B3 Regulation of contact-dependent cell communication
(Chen et al., 2012)

T

Eph receptor A8, A10, and B4 EPHA8, A10, and B4 Regulation of contact-dependent cell communication
(Chen et al., 2012)

T

Eph receptor A1 EPHA1 Regulation of contact-dependent cell communication
(Chen et al., 2012)

M

Synaptic Ras GTPase activating protein 1 SYNGPA1 Role in dendritic spine synapse maturation (Clement
et al., 2012)

M & T

Insulin like growth factor 2 IGF2 Role in synaptogenesis and spine maturation
(Pascual-Lucas et al., 2014)

M & T

Synaptophysin SYP Regulation of synaptic vesicle endocytosis (Kwon and
Chapman, 2011)

T

Synaptopodin 2 SYNPO2 Role in dendritic spine stabilization (Yap et al., 2020) T

Synaptosomal-associated protein, 91 kDa SNAP91 Role in synaptic vesicle recycling (Vanlandingham et al.,
2014)

M & T

Synaptosomal-associated protein, 47 kDa SNAP47 Mediating synaptic vesicle fusion (Urbina et al., 2021) T

NMDA receptor synaptonuclear signaling
and neuronal migration factor

NSMF Regulating synaptic stability and neuronal degeneration
(Karpova et al., 2013)

M & T

Synaptic vesicle glycoprotein 2A and 2C SV2A and 2C Role in neurotransmission (Stout et al., 2019) T

Neurogranin NRGN Role in post-synaptic signaling (Díez-Guerra, 2010) T

Syntaxin 1 STX1 Mediating synaptic vesicle fusion (Lam et al., 2008) M & T

Vesicle-associated membrane protein 2 VAMP2 Mediating synaptic vesicle fusion (Lam et al., 2008) T

Vesicle-associated membrane protein 5 VAMP5 Mediating synaptic vesicle fusion (Lam et al., 2008) M & T

Synaptotagmin 2, 5, 6, 7, 9, 11, and 17 SYT2, 5–7, 9, 11, and 17 Mediating synaptic vesicle fusion (Wu et al., 2020) T

Synaptogyrin 3 SYNGR3 Regulation of neurotransmitter release (Raja et al., 2019) T

Synaptojanin 1 SYNJ1 Role in synaptic vesicle recycling (Harris et al., 2000) T

Synapsin 1 SYN1 Regulation of neurotransmitter release (Cesca et al.,
2010)

T

Regulating synaptic membrane exocytosis
3

RIMS3 Regulation of synaptic vesicle fusion (Wang et al., 1997) T

Bassoon presynaptic cytomatrix protein BSN Organizing neurotransmitter release site (Dresbach
et al., 2003)

T

Glutamate ionotropic receptor NMDA type
subunit 2A

GRIN2A Neurotransmitter receptor (Paoletti and Neyton, 2007) M

Neurexin 2 NRXN2 Trans-synaptic connector (Knight et al., 2011) T

Complexin 1 CPLX1 Mediating synaptic vesicle fusion (Maximov et al., 2009) T

Complexin 2 CPLX2 Mediating synaptic vesicle fusion (Maximov et al., 2009) M & T

AD, Alzheimer’s disease; M, miRDB; T, TargetScan.

possible targets of miR-342-5p. Some of these targets, such as
neurogranin, have been shown to have a good correlation with
the rate of cognitive decline in patients with AD (Portelius et al.,
2015; Headley et al., 2018). Therefore, it is possible that miR-342-
5p plays a part in the cognitive alteration of AD via the regulation
of some synaptic genes. However, this hypothesis should be tested
in cellular experiments and animal models of AD.

miR-342-5p was reported to regulate the proliferation and
differentiation of neuronal stem cells (Gao et al., 2017). Sun
et al. (2014) reported higher levels of miR-342-5p in APP/PS1,
PS1DE9, and PS1-M146 V mouse models than in the wild-
type mouse brain and suggested that miR-342-5p plays a role
in AD axonopathy by hampering the function of the axon
initial segment via downregulation of ankyrin G. Although it
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is challenging to compare our results with the results of other
studies in which different tissues and species and study designs
were used, our result is not in accordance with the results
presented by Sun et al. (2014) because we detected higher levels
of miR-342-5p in patients who were cognitively more stable
than those who were suffering from a more severe decline.
However, our results are in agreement with the study by Lugli
et al. (2015), who reported downregulation of miR-342-5p in
plasma exosomal samples of patients with AD compared with
non-demented controls.

This study has several strengths. We identified and validated
miRNAs related to the rate of cognitive evolution in two
independent cohorts. We only included mild AD patients with
pathological levels of Aβ42 in both cohorts to assure that assessed
cognitive decline is due to AD. Furthermore, we evaluated a high
number of miRNAs in the discovery study to identify all possible
candidates. Finally, the cognitive alterations of the patients were
followed-up for 2 years, while in previous studies (Tan et al., 2014;
Wiedrick et al., 2019), the association of miRNAs was assessed
with the cognitive status of the patients at baseline.

This study has some limitations. First, the discovery cohort
consisted of only female participants; however, we included male
subjects in the validation cohort to overcome the bias that
may have been caused by this issue. Second, the number of
participants in the both discovery and validation cohorts was
small, which may have affected the final result of our study. Third,
there was a significant difference regarding baseline MMSE
scores between FDC and SDC groups in the discovery cohort.
Finally, from 16 differential miRNAs selected for validation,
we only validated one miRNA. All aforementioned limitations
and variabilities related to the normalization method and
analytical platforms between two cohorts may have caused
this inconsistency. Therefore, this result does not rule out
the importance of other differential miRNAs in the cognitive
evolution of AD.

To our knowledge, this is the first study seeking to identify
miRNAs related to the rate of cognitive decline in patients with
mild AD among a large profile of miRNAs. We detected 17
miRNAs that were able to perfectly separate AD patients with
FDC from those with SDC. From this panel, we validated that
miRNA miR-342-5p was associated with the rate of cognitive
decline in an independent cohort, suggesting that uncovering
the role of miRNAs in cognition may be of interest in seeking
new biomarkers and furthering our understanding of the
neuropathological processes underlying cognitive decline in AD.
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