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The occurrence and development of Alzheimer’s disease (AD) is a continuous clinical
and pathophysiological process, molecular biological, and brain functional change
often appear before clinical symptoms, but the detailed underlying mechanism is
still unclear. The expression profiling of postmortem brain tissue from AD patients
and controls provides evidence about AD etiopathogenesis. In the current study,
we used published AD expression profiling data to construct spatiotemporal specific
coexpression networks in AD and analyzed the network preservation features of each
brain region in different disease stages to identify the most dramatically changed
coexpression modules and obtained AD-related biological pathways, brain regions and
circuits, cell types and key genes based on these modules. As result, we constructed
57 spatiotemporal specific networks (19 brain regions by three disease stages) in AD
and observed universal expression changes in all 19 brain regions. The eight most
dramatically changed coexpression modules were identified in seven brain regions.
Genes in these modules are mostly involved in immune response-related pathways and
non-neuron cells, and this supports the immune pathology of AD and suggests the
role of blood brain barrier (BBB) injuries. Differentially expressed genes (DEGs) meta-
analysis and protein–protein interaction (PPI) network analysis suggested potential key
genes involved in AD development that might be therapeutic targets. In conclusion, our
systematical network analysis on published AD expression profiling data suggests the
immunopathogenesis of AD and identifies key brain regions and genes.

Keywords: Alzheimer’s disease, spatiotemporal specific coexpression networks, network preservation analysis,
immune response-related pathways, non-neuron cells, key genes

INTRODUCTION

As the most common form of dementia, Alzheimer’s disease (AD) is a major public health concern.
The occurrence and development of AD is a continuous clinical and pathophysiological process,
and the National Institute of Aging and Alzheimer’s Association (NIA-AA) research framework
categorizes AD into three continuous stages: preclinical, mild cognitive impairment (MCI), and
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dementia (Albert et al., 2011; McKhann et al., 2011; Sperling
et al., 2011). A large number of studies have pointed out that
in AD, changes in molecular biological processes and brain
function networks often appear before clinical symptoms, brain
metabolic homeostasis, such as nerve growth factor metabolic
pathway is impaired before clinical AD; a substantial proportion
of nondemented older adults have amyloid-beta accumulation
and amyloid plaque; lower functional connectivity was observed
before cognitive changes by using resting-state MRI (Price et al.,
2009; Sperling et al., 2011; Buckley et al., 2017; Pentz et al., 2020),
but the detailed underlying mechanism is still unclear.

Brain transcriptome analysis is considered a powerful method
for studying AD mechanisms, and many studies conducted to
date have focused on the expression profiling of postmortem
brain tissue from AD patients and controls (Blalock et al., 2004;
Mirnics et al., 2005; Haroutunian et al., 2009; Kim et al., 2012;
Zhang et al., 2013). In addition to finding differentially expressed
genes (DEGs) that are significantly changed in AD patients,
expression profiling can also provide more evidence about the
systematic molecular processes underlying the etio-pathogenesis
of AD. Based upon the associations between coexpressed gene
modules and AD traits, several previous studies identified
AD-related gene modules, which suggests that the biological
processes that these genes contribute to may be affected in
AD (Wang et al., 2016; Tang and Liu, 2019; Hu et al., 2020;
Kelly et al., 2020). By using spatial-temporal expression pattern
analysis, transcriptome data can also provide evidence about
specific brain regions and cell types that are possibly related
to AD (Wang et al., 2016). It has been reported that the
spatial-temporal pattern of gene expression in the brain shows
strong correspondence with brain function (Richiardi et al., 2015;
Anderson et al., 2018), so expression profiling of AD patients
may provide more information about brain functional changes
during AD development.

In the current study, we used published AD expression
profiling data to construct 57 spatiotemporal specific (19 brain
regions by three disease stages) coexpression networks in AD.
By analysing the network preservation features of each brain
region in different disease stages, the most dramatically changed
coexpression modules were identified. Based on these modules,
AD-related biological pathways, brain regions and circuits, cell
types and key genes were analyzed.

DATA AND METHODS

Gene Expression Profiling and Data
Normalization
Dataset GSE84422 was downloaded from the National
Biotechnology Information Center (NCBI) comprehensive
gene expression database.1 This dataset contains the expression
data of 1,054 brain tissue samples distributed in 19 brain regions
of 125 subjects (Wang et al., 2016). Based on their Clinical
Dementia Rate (CDR) score, subjects in GSE84422 were divided
into three groups: control group, CDR 0–0.5; mild group, CDR

1https://www.ncbi.nlm.nih.gov/geo/

1–2, severe group, CDR 3–5 (as shown in Table 1). The raw
microarray data were preprocessed by using RMA with quantile
normalization (Irizarry et al., 2003). According to different
platforms, hgu133a.db, hgu133b.db, and hgu133plus2.db are
used for ID conversion. The average expression value of the
probe set for each gene was used as its expression value.

Coexpression Network in Different Brain
Regions
Weighted gene coexpression network analysis (WGCNA) was
performed on dataset GSE84422 to identify the gene modules
with coordinated expression patterns for each brain region in
different disease severities (Zhang and Horvath, 2005). After
data normalization, the top 25% of the expressed genes in each
brain region at each disease stage were taken as input genes,
and coexpression networks were constructed using the R package
WGCNA (Langfelder and Horvath, 2008). Briefly, Pearson’s
correlation coefficients were calculated between all pairs of genes
after microarray data normalization. Next, the correlation matrix
was converted into an adjacency matrix using a power function
f(x) = xβ, where x was the element of the correlation matrix and
parameter β was determined such that the resulting adjacency
matrix was approximately scale-free (Zhang and Horvath, 2005).
The appropriate power value was estimated by a gradient test
(power value ranging from 1 to 20) and determined when the
scale independence value was equal to 0.85. The adjacency matrix
was subsequently transformed into a topological overlap matrix
(TOM), which captured both the direct and indirect interactions
between each pair of genes (Ravasz et al., 2002). Average linkage
hierarchical clustering was then employed to cluster the genes
based on the TOM. Finally, a tree cutting algorithm was used to
dynamically cut the hierarchical clustering dendrogram branches
into highly connected modules, each of which was assigned a
distinct colour code.

Module Preservation Analysis
For each brain region, the preservation of coexpression modules
across different disease stages was analyzed by using the R
package NetRep (Ritchie et al., 2016). Coexpression networks
of the control group were used as the discovery dataset,
networks of the mild and severe groups were regarded as the
tested datasets, and 10,000 permutations were performed. The
NetRep statistics module preservation using seven statistical
test methods, as recommended by the software, was applied.
Modules whose P-value was less than 0.0001 in all seven
methods were identified as strong preservation modules; those
with P-values less 0.0001 in 1–6 methods were identified as
weak preservation methods; and those with P-values not less
than 0.0001 in any method were identified as non-preservation
modules(NPMs).

Functional Enrichment Analysis
To identify the biological processes in which NPM genes are
involved, the Cytoscape plug-in ClueGO genes were used to
provide a system-wide view (Bindea et al., 2009). The set
including all NPM genes was used as the input gene set, and

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2021 | Volume 13 | Article 727928

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-727928 August 28, 2021 Time: 10:9 # 3

Guo et al. Network Analysis Suggests AD Immunopathogenesis

TABLE 1 | Brain regions and disease groups information of samples used in
co-expression analysis.

Region Full region name Microarray
Platform

Control Mild Severe

AC Anterior cingulate Affy 133 A and B 23 18 18

AMY Amygdala Affy 133Plus2 17 12 22

CN Caudate nucleus Affy 133 A and B 15 16 21

DPC Dorsolateral
prefrontal cortex

Affy 133 A and B 24 16 17

FP Frontal pole Affy 133 A and B 21 17 25

HIPP Hippocampus Affy 133 A and B 17 17 21

IFG Inferior frontal gyrus Affy 133 A and B 18 17 18

ITG Inferior temporal
gyrus

Affy 133 A and B 20 18 20

MTG Middle temporal
gyrus

Affy 133 A and B 22 14 22

NAC Nucleus accumbens Affy 133Plus2 17 12 22

OVC Occipital visual cortex Affy 133 A and B 21 18 14

PCC Posterior cingulate
cortex

Affy 133 A and B 18 15 24

PCG Parahippocampal
gyrus

Affy 133 A and B 15 14 20

STG Superior temporal
gyrus

Affy 133 A and B 17 19 20

PG Precentral gyrus Affy 133 A and B 21 20 19

PUT Putamen Affy 133 A and B 16 18 18

SFG Superior frontal gyrus Affy 133 A and B 23 18 19

SPL Superior parietal
lobule

Affy 133 A and B 20 14 16

TP Temporal pole Affy 133 A and B 19 16 23

the ClueGo parameters were set as indicated: GO biological
process, cellular component, and molecular function terms;
display pathways with P-values ≤0.05; GO tree interval, three
min level and eight max level; GO term minimum # genes,
5; threshold of 10% of genes per pathway; and a kappa
score of 0.9. Pathway P-values were adjusted with Benjamini-
Hochberg to 0.0100. The pathways were then represented, taking
advantage of Cytoscape’s complex visualization environment
as kappa score-based functional groups and named by the
most significant term of each group. For each NPM, a specific
pathway cluster enrichment analysis was performed by using
the online analysis tool DAVID (Huang da et al., 2009).
As recommended in DAVID, the cut-off for pathway cluster
enrichment was set at a score > 1.3. The representative
biological terms associated with significant clusters were
manually selected.

3-D Brain Region Module
3-D modules for brain regions affected by NPMs were formulated
by using Mango image processing software (Lancaster,
Martinez).2 The labels of brain regions were obtained from
the Talairach Atlas3 (Lancaster et al., 2000).

2http://ric.uthscsa.edu/mango
3http://www.talairach.org/

Cell-Type Enrichment Analysis
Cell-type enrichment analyses of NPM genes were performed
with the web-based tool Brain Expression Spatio-Temporal
pattern (BEST) in http://best.psych.ac.cn (Guo et al., 2019).
Cell type-specific expression profiles, which provide specific
expression gene sets for astrocytes, endothelial cells, microglia,
neurons, and oligodendrocytes, were obtained from http://www.
brainrnaseq.org (Zhang et al., 2016). Fisher exact tests (FETs)
were performed between each NPM and cell type, and the
negative logarithm of the FET P-value was defined as the
enrichment score.

Meta-Analysis of DEGs
Gene expression studies of AD that utilized tissue samples from
the middle temporal gyrus (MTG) and total temporal cortex
(TC) were searched in GEO by keyword searches and manual
selection. In total, six datasets were selected for meta-analysis:
GSE132903, GSE5281, and GSE84422 for MTG; GSE131617,
GSE36980, and GSE118553 for TC. Sample statuses in different
studies are heterogeneous, so only data of defined controls and
AD patients were used, and data from patients with probable
AD and other diseases were excluded. The sample information
is summarized in Table 3. Data quality control and meta-
analysis were performed with the online tool ImaGEO4 (Toro-
Dominguez et al., 2019). The maximum P-value method was
selected, allowed missing values (%) was set at 10, and the
adjusted P-value threshold was set at 0.05.

Protein–Protein Interaction Analysis
DEGs and NPM genes in MTG were combined in the MTG
gene set; DEGs in TC and NPM genes in ITG, MTG, and STG
were combined in the TC gene set. The two gene sets were
used as input data to perform protein–protein interaction (PPI)
analysis in the online PPI network analysis platform STRING
(Szklarczyk et al., 2019). The full STRING network was used
to generate the MTG and TC networks by adding evidence
edges between the input genes, and the minimum required
interaction score of edges was 0.4. The generated networks were
imported into Cytoscape, and the topological properties of the
nodes were calculated using the plug-in “Network Analyzer”
(Shannon et al., 2003; Assenov et al., 2008).

RESULTS

57 Coexpression Gene Networks of 19
Brain Regions in Three Different Disease
Stages
According to the topological structure of the coexpression
network, the differences in networks with different organizations
can be compared to analyze the spatial distribution of a
disease. Therefore, we divided the gene set selected from 19
brain regions into 57 expression matrices according to the
different brain regions and disease degrees, an unbiased gene

4http://bioinfo.genyo.es/imageo/
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coexpression network of expression matrices was constructed,
and coexpression modules were identified. The selection of
the soft threshold and clustering results of each coexpression
network can be seen in Supplementary Figure 1. The numbers
of coexpression modules in each network are shown in Figure 1.

Evidence of Preservation of the
Coexpression Network in 19 Brain
Regions
As shown in Figure 2, in the control groups, there were 233
coexpression modules in 19 brain regions; among them, 164 were
less preserved in the process of AD, accounting for 73.54% of the
total. Furthermore, eight modules in seven brain regions were
identified as not preserved. Three modules were non-preserved in
mild AD: the 12th in ITG (ITG-12), the 13th in SPL (SPL-13), and
the 13th in STG (STG-13). Three modules were not preserved in
severe AD: the 11th module in MTG (MTG-11), the 8th module
in PUT (PUT-8) and the 9th module in PG (PG-9). Two modules
are non-preserved in both mild and severe AD cases: the 12th
module of the PUT brain regions (PUT-12) and the 22nd module
of the PCG brain regions (PCG-22). Detailed gene lists of each
NPM are shown in Supplementary Table 1.

Functional Enrichment of the NPM Genes
We observed the functional distribution of the NPM genes
by GO term network analysis using ClueGo. Finally, these
genes were found to be enriched in 44 GO term groups
(constructed by 85 GO terms). As shown in Figure 3, most of
the enriched GO groups were related to the immune response,
and functions related to cell differentiation, vesicle transport,
and lipid metabolism were also involved. Functional enrichment
analyses were also performed for genes in each NPM, as shown
in Table 2. Genes in four NPMs were significantly enriched in
the functional pathway clusters, and the enriched clusters were
mainly related to the immune response.

Brain Region Distribution of
Non-preservation
Figure 4 shows the brain region distribution of the NPMs in
different disease stages. NPMs in mild stages are located in two
gyri of the temporal cortex (superior temporal gyrus, inferior
temporal gyrus) and a lobule of the parietal cortex (superior
parietal lobule). NPMs in the severe stage are located in the
temporal cortex (middle temporal gyrus), primary motor cortex
(precentral gyrus), and basal nuclei (putamen). NPMs in both
disease stages are located in the basal nuclei (putamen) and limbic
system (parahippocampal gyrus).

Cell-Type Enrichment of NPM Genes
Gene sets associated with five kinds of brain cells were used
in enrichment analysis of genes in each NPM. Figure 5 shows
the enrichment scores of the NPMs in different cell types.
According to the cut-off of 1.3 (equivalent to a P-value of 0.05
in FET), 2 modules were significantly enriched in astrocytes,
5 in endothelial cells, 4 in microglia, 2 in neurons, and 3

TABLE 2 | Pathway clusters significantly enriched by genes of non-preservation
modules (enrichment score > 1.3).

Non-preservation
modules

Annotation
cluster

Representative
annotation terms

Enrichment
score

ITG-12 1 Immune response 1.69

SPL-13 None

STG-13 None

MTG-11 None

PUT-8 1 Defense response to virus 10.78

2 Virus infection 1.85

3 Proteolysis involved in
cellular protein catabolic
process

1.51

4 Hydrolase 1.4

PG-9 1 Defense response to virus 5.76

2 Interferon-gamma-
mediated signaling
pathway

2.04

3 Negative regulation of
transcription from RNA
polymerase II promoter

1.90

4 CUB domain 1.79

5 Golgi apparatus 1.66

6 EGF-like domain 1.56

7 Complement pathway 1.43

PUT-12 None

PCG-22 1 Cholesterol metabolism 1.48

in oligodendrocytes. Strong significance appears in astrocytes,
endothelial cells, microglia, and oligodendrocytes.

PPI Network of DEGs and NPM Genes in
MTG and TC
Since all three temporal gyri are involved in disease development,
meta-analyses were performed to identify DEGs in the temporal
cortex or specific temporal gyrus. Finally, six data sets were
selected, and the results of the meta-analyses are summarized
in Table 3. Detailed information on the meta-analysis is shown
in Supplementary Tables 2, 3 and Supplementary Figures 2–
5. No overlap was observed between the DEGs and NPM genes,
but there were universal PPIs among them (as shown in Figures
6A,B). As shown in Table 4, 177 of 241 MTG genes (including
DEGs and NPM genes) can be found in STRING, 342 interactions

TABLE 3 | Datasets used in the meta-analysis.

Brain region dataset cases controls DEGs DEGs after
meta-analysis

MTG GSE132903 97 98 6,908 192

GSE5281 16 12 2,253

GSE84422 20 14 0

Temporal
cortex

GSE131617 58 13 0 62

GSE36980 10 19 258

GSE118553 45 26 2,475
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TABLE 4 | Summary of nodes in the PPI networks of MTG and TC.

MTG TC

DEGs NPM genes DEGs NPM genes

Total number 192 49 62 145

Numbers in PPI networks 137 40 44 97

Average degree 3.88 3.88 2.41 4.3

High degree genes (degree ≥ 10) Gene symbol Degree Gene symbol Degree Gene symbol Degree Gene symbol Degree

NOTCH1 31 SOX9 18 PSMC3 11 ISG15 20

GFAP 15 EZR 13 CXCL10 18

YAP1 14 NTRK2 11 STAT1 18

CXCL12 13 VCAN 10 GBP1 14

NEUROD1 12 CXCL11 13

DCN 11 PSMB10 12

ASCL1 11 GBP2 12

ABL1 11 ICAM1 11

COL1A2 10 MX1 11

MYH11 10 NEDD8 11

AGT 10

HERC6 10

IFIT1 10

FIGURE 1 | Modules number of co-expression networks in different sample sets. The number of co-expression modules that identified by Weighted gene
coexpression network analysis analysis is shown for each sample set.

between them can be found, significantly (P = 2.83E-14) higher
than the predicted interaction number 222, predicted by the
average interaction number in the STRING network. A total of
141 of 207 TC genes were found in STRING, and 262 interactions
were found among them, which was significantly (P = 0.00145)
higher than the predicted number of 216. The average degree,
degree distribution, and high degree genes (degree ≥ 10) are
shown in Table 4 and Figure 6C.

DISCUSSION

In the current study, we explored AD-related biological processes
by analysing the coexpression gene modules of different brain
regions in different disease stages. The coexpression network
features and key genes of AD peripheral blood or brain have
been reported in several previous studies (Seyfried et al.,
2017; Liang et al., 2018; Sweeney et al., 2018; Zhang et al.,
2018; Hu et al., 2020; Kelly et al., 2020; Soleimani Zakeri
et al., 2020). Among these studies, Wang et al. performed
a pan-cortical brain region genomic analysis, obtained and

ranked 44,692 gene probesets, 1,558 coexpressed gene modules
and 19 brain regions based upon their association with AD;
through these analyses temporal lobe gyri were identified as
sites associated with the greatest and earliest gene expression
abnormalities, abnormal expression was specific to cell type of
oligodendrocytes, astrocytes, and neurons, and neurobiological
pathways (included actin cytoskeleton, axon guidance, and
nervous system development) were enriched by abnormally
expressed genes and modules (Wang et al., 2016); however, the
changes in coexpression modules in sub-brain regions during
AD development have not been fully studied. We constructed
57 coexpression networks by using this expression dataset from
1,053 postmortem brain samples across 19 cortical regions,
evaluated network conservation during disease pathology (from
healthy to mild and severe AD stages) in each brain region,
and deduced disease-related biological processes based on the
network features.

As we expected, in the development of AD, there is a
wide range of coexpression pattern changes in the whole
brain. This suggested that dysfunctions of expression appear
in multiple brain regions, not only in brain regions that are
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FIGURE 2 | The preservation evidence of control co-expression modules in different disease stages and different brain regions. For each brain region, co-expression
networks in control group was compared with networks in mild and severe groups, co-expression modules are show as dots, which are sorted according to module
size and colored according to their preservation evidence. Blue: strong preservation evidence; yellow: weak preservation evidence; red: none preservation evidence.

traditionally associated with memory. We focused on the eight
most dramatically changed coexpression modules. Functional
pathway analysis suggested that genes in these modules are
mainly involved in the immune response instead of transmitters
or other pathways that directly affect neuronal function. These
results supported the neuroimmunopathogenesis of AD. In
recent years, AD has no longer been considered a neural-centric
disease, and the critical role played by neuroinflammation in
the pathogenesis of AD has been implicated in many genetic,

functional, and neuroimaging studies (Cao and Zheng, 2018;
Jansen et al., 2019; Kunkle et al., 2019; Passamonti et al., 2019;
Bis et al., 2020; Burgaletto et al., 2020).

The most dramatic coexpression pattern changes occurred in
seven brain regions. These results are consistent with previous
brain structure or functional studies. Coexpression patterns in
five regions began to change dramatically in the mild stage,
including two subregions of the temporal cortex, one lobule
of the parietal cortex, part of the dorsal striatum, and the
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FIGURE 3 | Functional GO groups enriched by genes in non-preserved co-expression modules. This figure illustrates the functionally grouped network that
constructed by GO terms (nodes) that associated to non-preserved co-expression module genes. The size of the nodes reflects the statistical significance of the
terms. The degree of connectivity between terms (edges) is calculated using kappa statistic and functional groups are defined using the kappa score. The name of
the group is given by the most significant term in the group and nodes in the same group are represented with same color.

parahippocampal gyrus in the limbic system. The associations
of structural or functional changes in such brain regions and
early AD pathology have been widely reported. It has been
reported that tau pathology spreads hierarchically from the
inferior temporal lobe throughout the cortex (Franzmeier et al.,
2019), and neural activity increases in the superior parietal lobule
of patients with MCI (Jacobs et al., 2012). Associations between
dysfunction of the limbic system or basal ganglia and early AD
have also been reported (Hopper and Vogel, 1976; Nestor et al.,
2003; de Jong et al., 2008; Botzung et al., 2019). In severe AD,
dysfunction spreads to the middle temporal gyrus and precentral
gyrus. The relationship between the middle temporal gyrus and
AD has been emphasized in many studies (Galton et al., 2001b;
Dong et al., 2021). Although it has not been fully studied, the
relationship between the precentral gyrus and AD has been
reported in several studies (Peters et al., 2009).

Considering the correlation between brain expression patterns
and brain functional connections (Richiardi et al., 2015;
Anderson et al., 2018), the expression changes suggested potential
connectivity changes in AD, and the evidence in the current study
corresponds to previous reports. Regional tau PET levels within

major functional networks showed a medial temporal limbic
network-specific distribution (Franzmeier et al., 2019), and
limbic network and striatal connectivity alternated in patients
with AD and MCI (Badhwar et al., 2017), and an increased
effectiveness of temporoparietal connectivity has been reported
in AD patients (Jacobs et al., 2012).

In addition to brain region distribution features, violent
coexpression pattern changes present a cell type-specific
distribution. In general, all NPM genes were most significantly
enriched in non-neuron cells (astrocytes, endothelial cells,
microglia, and oligodendrocytes), and only NPM genes in the
SPL and putamen showed an enrichment trend in neurons.
Considering the roles of glia in AD and the immune response
(Gonzalez-Reyes et al., 2017; Fakhoury, 2018; Leng and Edison,
2021), the enrichment of astrocytes and microglia may highlight
the immunopathology in AD. Oligodendrocytes are located in
the white matter, recent neuroimaging studies have implicated
micro- and macrostructural abnormalities in white matter in the
risk and progression of AD (Nasrabady et al., 2018), it’s reported
that age and severity of dementia were significantly associated
with white matter changes in AD patients (Kao et al., 2019),
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FIGURE 4 | The brain region distribution of non-preserved modules in
different Alzheimer’s disease stages. Modules that non-preserved in mild
stages are located in superior temporal gyrus (blue), inferior temporal gyrus
(red), and superior parietal lobule (red). Modules that non-preserved in severe
stage are located in middle temporal gyrus (red), putamen (green), precentral
gyrus (blue). Modules that non-preserved in both two disease stages are
located in putamen (red) and parahippocampal gyrus (green).

and white matter may also play an important role in the
pathogenesis and diagnosis of AD, besides of intact with gray
matter, demyelination of the white matter is reported to occur
prior to the presence of amyloid-β plaques and neurofibrillary
tangles in the presymptomatic stages of AD (Sachdev et al.,
2013). Oligodendrocytes may affect AD pathogenesis in
both neuropathological and immunopathological manners,
oligodendrocytes are regulated by Aβ oligomers in differentiation
and maturation (Quintela-Lopez et al., 2019), oligodendrocyte
precursor cells present antigens and may be involved in
perpetuating the autoimmune response (Kirby et al., 2019).
Endothelial cells participate in the formation of the blood brain
barrier (BBB), and Aβ influences endothelial mitochondrial
dysfunction pathways and contributes to the progression of
neurovascular dysfunction in AD. The enrichment results
in the current study also support BBB-related pathology in
AD (Parodi-Rullan et al., 2019). Additionally, the functional
enrichment analysis also suggested that the dysfunction of NPM
genes influences the maintenance of the BBB.

The temporal lobe, especially the MTG, is an important brain
area involved in cognition and memory (Kornblith et al., 2017;
Naya et al., 2017; Vaz et al., 2019) and has been a focus in AD
pathology (Galton et al., 2001a; Visser et al., 2002; Dickerson
and Sperling, 2008; de Flores et al., 2020). Several genes have
been reported to be differentially expressed in the temporal lobe
between patients with AD and healthy controls, but the results
of different studies are heterogeneous (Patel et al., 2019). In the
current study, we searched transcriptomics data of MTG or TC
and performed a meta-analysis. As shown in Table 3, articles in
both groups presented high heterogeneity. When the cut-off of

FIGURE 5 | Cell type enrichment of non-preserved modules in different brain
regions. The heatmap shows the enrichment results of five kinds of cell
type-specific genes in the eight non-preserved modules, the color in heatmap
illustrated the negative logarithm of P-value of the enrichment, from white
(-log(P-value) = 0) to red (-log(P-value) > 6). The significant cutoff is defined
as 1.3, which is equivalent to P-value 0.05.

DEGs was set as a P-value less than 0.05 and a fold change of more
than two or less than 0.5, both meta-analyses failed to identify
DEGs. This may be due to the high degree of heterogeneity
among the studies. When the cut-off was adjusted to a P-value
less than 0.05, some stable but not violent DEGs were identified.
None of these DEGs were in NPMs, but they were extensively
connected to NPM genes in PPI networks. This suggests that
AD pathology is not caused by drastic changes in a few genes
but is related to changes in the entire expression pattern. A large
number of genes were involved in the pattern change, but for a
single gene, the change was not dramatic.

Network topology analysis showed that the degree of NPM
genes was higher than that of DEGs, but this trend was not
significant. According to the hypothesis that disease genes tend to
have higher degrees in the network (Jonsson and Bates, 2006; Sun
et al., 2010), high degree genes were identified and may play more
important roles in the functional network and AD pathology.
Several high degree genes have been reported to participate AD
pathology related pathways or related to AD, ABL1,SOX9, STAT1,
PSMB10, NEDD8, HERC6, and IFIT1 have been reported as
participants of amyloid- or Tau-signaling (Jing et al., 2009; Chen
et al., 2012; Orre et al., 2013; Woodling et al., 2014; Li et al.,
2019; Vong et al., 2021); DCN, CXCL10, CXCL11, and ICAM1
play roles in amyloid plaque formation (Frohman et al., 1991;
Snow et al., 1992; Krauthausen et al., 2015); NOTCH1, GFAP,
YAP1, CXCL10,CXCL12, ASCL1, STAT1, GBP1, GBP2, and AGT
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FIGURE 6 | The protein–protein interaction networks constructed by differentially expressed genes and genes in non-preserved modules. (A) Protein-protein
interaction network constructed by middle temporal gyrus differentially expressed genes (blue nodes) and non-preserved module genes (yellow nodes).
(B) Protein–protein interaction network constructed by temporal cortex differentially expressed genes (blue nodes) and non-preserved module genes (yellow nodes).
(C) The degree distribution of different types of genes in protein-protein interaction network.

are altered expression in plasma, CSF, or brain of AD patients
(Kitamura et al., 1997; Galimberti et al., 2006; Laske et al., 2008;
Mateos et al., 2011; Xu et al., 2018; Cho et al., 2019; Meyer et al.,
2019; Oeckl et al., 2019; Kuan et al., 2021); AD association of
variants in or surrounding MYH11, NTRK2, PSMC3 and ISG15
have been detected (Chen et al., 2008; Roy et al., 2020; Blue et al.,
2021; Novikova et al., 2021). Relationships between AD and high
degree genes COL1A2, EZR, and VCAN haven’t been reported,
their roles in AD pathology need further study.

In conclusion, in the current study, we constructed 57
spatiotemporal specific coexpression networks in AD. By using
network preservation analysis, we observed universal expression
changes in all 19 brain regions. The eight most dramatically
changed coexpression modules were identified in seven brain
regions. Genes in these modules are mostly involved in immune
response-related pathways, this supports the immune pathology
of AD. The distribution of NPMs provides evidence of the
brain functional mechanism of AD. The cell type distribution
of NPMs also suggests the role played by the immune response
and BBB injuries. In addition to revealing information about
the potential etiopathogenesis of AD, our analysis suggested
potential key genes involved in AD development that might be
therapeutic targets.

Comprehensive analysis in this study provides new evidence
for the immunopathological mechanism of AD, reveals the
potential key brain regions, cells and molecular pathways in the
development of AD. It provides new clues for the mechanism and
intervention study of AD. In spite of above results, this study also
has some limitations. Analysis in this study is based on public
data, and the new results have not been verified in new samples
or animal models, subsequent studies are needed to validate their
stability. Our analyses only use expression data, genetic factors
(such as APOE genotype) and demographic factors (such as
gender and age) have not been considered, so the results should
be further validated in more diverse populations. Although
several high degree genes we identified have been reported
altered expression in AD patients, more systematic validation
and consequence functional researches should be performed to
confirm their value.
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