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Alzheimer’s disease (AD) is characterized by the excessive deposition of extracellular
amyloid-beta peptide (Aβ) and the build-up of intracellular neurofibrillary tangles
containing hyperphosphorylated tau proteins. This leads to neuronal damage, cell death
and consequently results in memory and learning impairments leading to dementia.
Although the exact cause of AD is not yet clear, numerous studies indicate that oxidative
stress, inflammation, and mitochondrial dysfunction significantly contribute to its onset
and progression. There is no effective therapeutic approach to stop the progression of
AD and its associated symptoms. Thus, early intervention, preferably, pre-clinically when
the brain is not significantly affected, is a better option for effective treatment. Natural
polyphenols (PP) target multiple AD-related pathways such as protecting the brain from
Aβ and tau neurotoxicity, ameliorating oxidative damage and mitochondrial dysfunction.
Among natural products, the cereal crop sorghum has some unique features. It is one of
the major global grain crops but in the developed world, it is primarily used as feed for
farm animals. A broad range of PP, including phenolic acids, flavonoids, and condensed
tannins are present in sorghum grain including some classes such as proanthocyanidins
that are rarely found in others plants. Pigmented varieties of sorghum have the highest
polyphenolic content and antioxidant activity which potentially makes their consumption
beneficial for human health through different pathways such as oxidative stress reduction
and thus the prevention and treatment of neurodegenerative diseases. This review
summarizes the potential of sorghum PP to beneficially affect the neuropathology of AD.

Keywords: Alzheimer’s disease, sorghum, polyphenols, antioxidant, amyloid-beta, tau, mitochondrial dysfunction,
flavonoids

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by different
neuropathological features including excessive accumulation of Aβ peptides outside of neurons and
the hyperphosphorylated form of tau protein inside neurons (Duyckaerts et al., 2009). Currently,
more than 50 million people worldwide and more than 440,000 Australians are living with AD
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(Dementia Australia, 2018a; WHO, 2021). The number of
affected people worldwide is expected to reach 152 million
by 2050. According to the Australian Bureau of Statistics in
2017, AD was the first leading cause of mortality in Australian
women and second leading cause of mortality in all Australians
(Australian Bureau of Statistics, 2017). The estimated cost of
dementia in Australia was more than $15 billion in 2018 and
it will be more than $18.7 billion by 2025, and more than
$36.8 billion by 2050 (The National Centre for Social and
Economic Modelling NATSEM, 2016).

Despite advances in medicine and drug therapies, a disease-
modifying treatment of AD is still not available. Recently, the
new drug (Aduhelm) has been approved by the FDA as a
modulator of amyloid plaques in the brain but its efficacy
on memory and cognition is yet to be determined (Alexander
et al., 2021; Canady, 2021). Current drug interventions only
temporarily delay the progression of some of the cognitive
symptoms of AD. Acetylcholine is a major neurotransmitter in
the brain which has limited reserves in the AD brain where the
enzymes cholinesterase breaks down the beneficial acetylcholine.
Thus, cholinesterase inhibitors including acetylcholinesterase
and butyrylcholinesterase inhibitors (AChEI and BChEI) help
to attenuate the AD symptoms. The U.S. Food and Drug
Administration (FDA) has approved five symptomatic drugs for
the treatment of AD, including three cholinesterase inhibitors
(rivastigmine, galantamine, donepezil) and memantine and
memantine mixed with donepezil (Alzheimer’s Association,
2019). These treatments reduce the rate of progression of
cognitive decline by increasing the neurotransmitters in the
brain, but they are unable to prevent irreversible damage to
neurons (Sivaraman et al., 2019). Therefore, there is a serious
need to find a reliable intervention that can prevent or slow
AD progression.

Natural sources of antioxidants have been identified as a
promising preventive or therapeutic avenue for neuroprotection.
Polyphenols (PP) are the most abundant antioxidants in the diet
(Kulshreshtha and Piplani, 2016). Diets rich in PP are considered
neuroprotective due to their capacity to affect several cellular
pathways, that contribute to the pathogenesis of AD, will be
discussed below (Malar and Devi, 2014; Lakey-Beitia et al., 2015;
Omar et al., 2017).

Sorghum grain is a natural source of antioxidants with
strong anti-inflammatory activities (Burdette et al., 2010; Xiong
et al., 2019). The profile of PP of sorghum is unique and
epidemiological evidence have demonstrated these PP may
have specific health benefits such as superior chemoprotective
properties and strong anti-inflammatory activity which are
not provided by PP in other grains, such as rice, oats, and
wheat (Awika, 2011). In addition, several PP of sorghum
are thought to beneficially interfere with pathological changes
in AD, such as Aβ and tau accumulation in in vitro and
in vivo level (Rossi et al., 2008; Jabir et al., 2018) However,
research is yet to identify the effect of sorghum PP on
AD pathology.

This review will focus on the current evidence and potential
mechanisms for protective effects of sorghum PP on the
pathology of AD.

ALZHEIMER’S DISEASE AND ASSOCIATED
PATHOLOGICAL HALLMARKS

Dementia is a group of disorders characterized by progressive
cognitive impairment which affects daily living activities
(Roman, 2002). Dementia is considered as one of the most
serious health and social concerns of the century. It has major
impacts on individuals, carers, families, and societies.

Alzheimer’s disease is the most prevalent form of dementia
(Puglielli et al., 2003) with the clinical symptoms of progressive
memory decline and other cognitive functions, eventually
leading to an inability to do daily tasks and a reliance
on care (Long and Holtzman, 2019). It is pathologically
characterized by the accumulation of extracellular Aβ oligomers,
hyper-phosphorylation of intracellular neurofibrillary tangles
(NFTs; tau protein) and neuroinflammation in the brain
(Sadhukhan et al., 2018). Other primary changes of AD
include increased oxidative stress, mitochondrial dysfunction,
and neuroinflammation (Mecocci et al., 2018). A diagram
of the generally accepted hypothesis for AD is shown
in Figure 1.

Aβ Accumulation
According to the amyloid hypothesis (Hardy and Higgins,
1992), the primary cause of AD is the accumulation and
deposition of oligomeric or fibrillar Aβ peptides. The Aβ

peptide consists of 38–42 amino acids that are derived from
amyloid precursor protein (APP); a transmembrane protein that
has two competing pathways. In the non-amyloidogenic
pathway, it is cleaved by α-secretase, to produce the
secretory fragment sAPPα (see Figure 2). The candidate
enzymes for α-secretase which are from the a-disintegrin
and metalloprotease (ADAM) family include ADAM17,
ADAM9, and ADAM10 (Buxbaum et al., 1998; Lammich
et al., 1999; Fahrenholz et al., 2000; Asai et al., 2003).
Among these enzymes, ADAM10 is suggested as the most
physiologically relevant α-secretase in neurons (Anders
et al., 2001; Kuhn et al., 2010). In the amyloidogenic
pathway, APP is initially cleaved by β-secretase (BACE1),
then γ-secretase, resulting in the generation of Aβ peptides
(Gandy et al., 1994). The non-amyloidogenic pathway
is beneficial since sAPPα has neuroprotective activity
(Corrigan et al., 2011). In contrast, in the amyloidogenic
pathway, an over-production of Aβ and its accumulation
results in cytotoxicity (Chasseigneaux and Allinquant,
2012; Paroni et al., 2019). The length of the Aβ peptide
influences this toxicity, where Aβ42 (42 amino acids) is
more cytotoxic than Aβ40 and Aβ43 (Fu et al., 2017). This
is because Aβ42 has a higher hydrophobicity and thus
higher propensity to aggregate by hydrophobic bonding
into toxic oligomers compared with Aβ40 peptide (Vion
et al., 2018). Several inherited and environmental factors
such as APP, presenilin 1 (PSEN1), and presenilin 2 (PSEN2),
gene mutations, deficit Aβ clearance, oxidative stress and
mitochondrial dysfunction might be contributing factors to the
over-production and accumulation of Aβ (Mao and Reddy, 2011;
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FIGURE 1 | Alzheimer’s disease (AD) hypotheses (Swerdlow, 2018; Altinoglu and Adali, 2020). The six most common AD hypotheses include the amyloid cascade
hypothesis, tau hypothesis, neuroinflammation, cholinergic hypothesis, mitochondrial dysfunction hypothesis, and oxidative stress hypothesis which are explained
separately through the article. All the these mechanisms can interact with each other.

Hernández-Zimbrón and Rivas-Arancibia, 2015; Zuo et al., 2015;
Paroni et al., 2019). Although amyloid deposition is always seen
in AD patients, its pathogenic role is still unclear (Modrego and
Lobo, 2019). While many questions still remain unanswered
regarding the pathogenesis of AD, the amyloid hypothesis
is still the most accepted theory to describe the associated
neuropathological events.

Tau Proteins
Tau proteins are phosphoproteins present in all cells of the
central nervous system (CNS; Lionnet et al., 2018). The
main function of tau is the modulation of microtubule
stability which forms the main pathway for intracellular
protein trafficking (Mandelkow, 1998; Buée et al., 2000).
But in AD, abnormal hyperphosphorylation of tau leads to
its dysfunction, resulting in impairment of the transport
system, the cytoskeleton, intracellular signaling, and
mitochondrial integrity (Mandelkow, 1998; Iqbal et al.,
2005). Hyperphosphorylated tau proteins dissociate from
the microtubule (Figure 3) and bind with each other,
forming paired helical filaments (PHFs). These accumulate,
resulting in the characteristic NFTs seen in AD pathology
(Gamblin et al., 2003).

There are other alternative hypotheses where Aβ plaques and
NFTs may be formed independently and may be the products of
dementia and not the cause (Hardy and Selkoe, 2002; Selkoe and
Hardy, 2016). To date, there is no satisfactory hypothesis that can

fully explain the exact mechanism of Aβ and tau accumulation,
aggregation, and subsequent toxicity.

Neuroinflammation
The neuroinflammation is a response of the innate immune
system within the brain as shown by an increased level of
activated microglia and astrocytes, activated complement
proteins and cytokines (Heneka et al., 2015; Zhang and
Jiang, 2015). In AD, Aβ plaques and NFTs exacerbate
any chronic inflammatory state, resulting in the increased
action of cytokines (interleukin 1, tumor necrosis factor),
prostaglandins, growth factors, thromboxanes, and ROS.
These, in turn, enhance the APP processing, increasing Aβ42
levels in brain (Meraz-Ríos et al., 2013). Aβ also activates
proinflammatory cytokines and some pro-inflammatory
enzymes, such as cyclooxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS) and nuclear factor kappa B (NF-κB).
This Aβ-linked inflammatory response has been claimed to
lead the neuronal damage in AD (Meraz-Ríos et al., 2013;
Heneka et al., 2015; Zhang and Jiang, 2015). Accumulating
evidence suggests that neuroinflammation is a major
contributor of AD onset and progression (Heneka et al., 2010).
Long-term consumption of nonsteroidal anti-inflammatory
drugs (NSAIDs) can delay the onset or progression of
AD, which also supports the role of neuroinflammation in
AD (Ali et al., 2019).
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FIGURE 2 | Schematic of Aβ hypothesis. APP is sequentially cleaved via amyloidogenic or non-amyloidogenic pathways. In the non-amyloidogenic pathway, it is
cleaved by α-secretase, resulting in the production of the sAPPα. In the amyloidogenic pathway, APP is initially cleaved by β-secretase, then γ-secretase, resulting in
the production of Aβ peptides. Abbreviations: APP, amyloid precursor protein; PSEN1, presenilin 1; PSEN2, presenilin 2; Aβ, amyloid beta.

Oxidative Stress as Another Major
Contributor to AD Pathology
A growing body of literature indicates that oxidative stress
is another pathophysiological feature of the AD brain (Good
et al., 1996; Agostinho et al., 2010). Oxidative stress is the
imbalance between the formation and detoxification of reactive
oxygen species (ROS; Adwas et al., 2019). These ROS are
normally produced as by-products of oxygen metabolism
which utilizes both free radicals and non-free radical oxygen
intermediate species, such as hydrogen peroxide (H2O2),
superoxide (O−

2 ), hydroxyl radical (
•OH), and singlet oxygen

(1O2). These ROS are known to damage many biomolecules
including DNA, RNA, protein, and lipids (Pham-Huy
et al., 2008). Studies suggest that oxidative stress could:
(a) be a consequence of Aβ deposition; (b) induce the
production of Aβ; (c) be a combination of both: (a) and
(b) (Sonnen et al., 2008; Tamagno et al., 2012). ROS are
produced in vivo during oxidation and are involved in the

progression of various health problems including cellular
aging, mutagenesis, cardiovascular problems, diabetes, and
neurodegeneration (Halliwell and Gutteridge, 1999; Moskovitz
et al., 2002).

A high intake of foods rich in antioxidants may be beneficial
to attenuate the ROS-associated problemsbased on the result of
human dietary intervention studies (Lobo et al., 2010; Liu et al.,
2018).

Mitochondrial Dysfunction as One of the
Suggested Contributors of AD Pathology
Mitochondria are responsible for energy homeostasis in cells.
Their dysfunction may contribute to the progression of several
diseases including cancer, cardiovascular diseases, diabetes and
neurodegenerative diseases (de Moura et al., 2010; Wen et al.,
2016). A large body of research indicates that dysfunctional
mitochondria play an important role in the pathogenesis of AD
(Bhatti et al., 2017).
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FIGURE 3 | Schematic of tau hypothesis. Aggregate stress condition is a
condition in which Aβ aggregation alters the kinase/phosphatase activity that
can lead to hyperphosphorylation of tau resulting in PHF formation which
consequently leads to neuronal dysfunction and dementia (Verwilst et al.,
2018). Abbreviations: PHF, paired helical filament; NFT, neurofibrillary tangles.

The initial level of mitochondria functions as well as its
rate of decline influences AD onset and progression (Swerdlow
et al., 2014). When mitochondrial function falls below a
critical threshold, abnormal tau phosphorylation processes,
amyloid plaque generation, synaptic degeneration, and oxidative
stress can result (Lezi and Swerdlow, 2012). Several essential
mitochondrial functions such as biogenesis, fission/fusion,
and bioenergetics are also associated with AD. This makes
mitochondrial dysfunction an important factor to consider in
AD pathogenesis and its prevention (Lezi and Swerdlow, 2012;
Nicolson, 2014; Flannery and Trushina, 2019).

RISK FACTORS FOR ALZHEIMER’S
DISEASE

Risk factors are the specific conditions of an individual’s
lifestyle along with genetic, gender, and environmental factors
that determine the likelihood of developing AD (Alzheimer’s
Association, 2018). The risk factors of AD can be divided

into two main groups. Modifiable risks, are those that can
be reduced through specific actions such as lifestyle changes.
These risks contribute to 40% of AD cases (Livingston et al.,
2020). Non-modifiable risks are those that cannot be changed
including parental dementia, genetic risk factors and etc.
(Alzheimer’s Association, 2018).

Modifiable Risk Factors
There is compelling evidence that smoking, high blood pressure,
diabetes, high cholesterol, and obesity significantly increase the
risk of AD (Prince et al., 2014). Hormones (testosterone and
estrogen) can have a neuroprotective effect through regulating
Aβ, thus, age-related decline in these hormones can affect
cognitive ability and therefore increase the risk of developing
AD (Verdile et al., 2014). Traumatic brain injury (TBI) is also
reported to increase AD risk (Alzheimer’s Association, 2018).

Lifestyle factors including a healthy diet; adequate physical
exercise, good sleep hygiene and cognitive training have been
shown to reduce the risk of developing AD (Bauer and Morley,
2018). Conversely psychological factors (e.g., depression, anxiety,
and stress) and vascular risk factors contribute to an increased
risk of AD. A diet with high PP and high antioxidant activity
can thus be considered as an approach to assist the prevention
of chronic diseases, especially AD.

Non-modifiable Factors
Age is the main risk factor for AD. As people age, the risk of
AD increases exponentially, as shown in several population
based studies (Corrada et al., 2010). Apolipoprotein E (APOE)
ε4 allele is the major genetic risk factor, which increases the
probability of developing AD (Thakur et al., 2019). The effects
of APOE ε4 on cognitive ability are variable from person to
person (Prince et al., 2014; O’Donoghue et al., 2018). The APOE
gene is present in chromosome 19 (Dementia Australia, 2018b).
In humans, there are three common alleles: ε2, 3 and 4. Each
individual carries two apolipoprotein genes which can be the
same type (ε2, 2; 3, 3 or 4, 4), or a combination of two types
(ε2, 3; 2, 4; 3, 4; Dementia Australia, 2018b). Individuals with
at least one ε4 have a 2 to 3-fold risk of AD while those with
two ε4 alleles (4, 4) rarely escape the disease. Compared to the
other APOE alleles, the higher risk of developing AD in ε4 alleles
is associated with an earlier age of AD onset (Alzheimer’s
Association, 2018). This higher risk is three fold for one copy
of ε4 allele and 12 fold for two copies (Alzheimer’s Association,
2018). In contrast, APOE ε2 carriage has a neuroprotective
effect relative to APOE ε3 and APOE ε4. Carrying the
double-barrelled APOE ε4 combination is fortunately
uncommon, affecting only about 2% of the population,
whereas about 25% of people carry a single copy of APOE ε4
(Alzheimer’s Association, 2018).

NATURAL PRODUCTS TO EFFECTIVELY
COMBAT ALZHEIMER’S DISEASE

Nutraceuticals (‘‘nutrition’’ + ‘‘pharmaceutical’’) with diverse
compositions of plant secondary metabolites may hold great
potential forpreventing and treating chronic diseases such as
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AD. These secondary metabolites, below a toxic dosage, usually
do not have the side effects seen in synthetic drugs and are
more widely available through the agri-food system. Some
plant secondary metabolites such as PP perform beneficial
physiological acts through specific mechanisms such as targeting
enzymes and receptors. Epidemiological and preclinical studies
have shown the protective effect of nutraceuticals such as fatty
acids and polyphenolics (PP) found in fruits, vegetables, herbs,
and nuts against neurodegeneration, to improve memory and
cognitive function (Cole et al., 2005; Miller et al., 2017). In
light of the literature, dietary PP, one of the richest sources
of antioxidant activity in the human diet have become a topic
of great current interest as potential neuromodulator agents to
attenuate pathological hallmarks of AD. The rationale for this
is their potential protective activities such as blood-brain-barrier
(BBB) penetration capacity, oxidative stress attenuation, and Aβ

aggregation inhibition (Mendes et al., 2018). Taken together,
these potential therapeutic effects of PP indicate great potential
of this class of phytochemicals to be investigated as a protective
agent for AD (Panza et al., 2018).

Polyphenols and Their Anti-Alzheimer’s
Disease Potential
Polyphenols are naturally occurring compounds and secondary
metabolites of plants mostly produced in response to major
stress (Pandey and Rizvi, 2009; Isah, 2019). They protect plants
against biotic (living beings present in an ecosystem e.g., fungi,
bacteria, and protists), and abiotic (non-living components e.g.,
water, soil, air, sunlight, temperature, and minerals) stressors
(Rauf et al., 2019) acting as antioxidants, antimicrobials, and
photo-absorption molecules. Thus, they defend plants from
pathogens, ultraviolet radiation damage and predators such as
insect pests (Beckman, 2000). Moreover, they are involved in
the structural strength of plants during growth (Pandey and
Rizvi, 2009). Polyphenols have received special attention from
researchers due to their antioxidant activities which enable
them to scavenge free radicals formed during the pathological
processes of diseases such as cancer, cardiovascular diseases,
and neurodegenerative disorders (Lakey-Beitia et al., 2015).
They also have anti-inflammatory activity that is important in
reducing oxidative stress thus conferring potential protective
effects against the neurodegenerative process (Masci et al., 2015).

Polyphenols have demonstrated that they provide their
neuroprotection through antioxidant, cholinergic, Aβ, and tau
aggregation pathways in vitro and in vivo (Omar et al., 2017).
The PP attenuate Aβ toxicity and oxidative stress in neurons
by decreasing the Aβ aggregation and increasing the scavenging
of free radicals, as shown in animal and cell culture studies
(Dore et al., 1999; Agostinho et al., 2010; Mathiyazahan et al.,
2015; Bai et al., 2017; Hwang et al., 2017). Polyphenols donate
electrons to the free radicals to neutralize them, which is
important to decrease the levels of ROS within cells (Lobo et al.,
2010). Additionally, there is some evidence from cellular and
animal model studies that PP may inhibit the Aβ42 toxicity
(Bastianetto et al., 2008; Hugel and Jackson, 2015). Decrease in
the hyperphosphorylation of tau protein, the formation of NFTs,

and inflammation in in vitro and in vivo studies upon addition of
PP has also been demonstrated (Mendes et al., 2018).

The basic structure of PP includes two aromatic rings linked
through a pyran ring (Ross and Kasum, 2002). There structures
are very complex, with the two main categories of PP are
flavonoids and non-flavonoid compounds (El Gharras, 2009; see
Figure 4). Flavonoids contain 15 carbon atoms. They are soluble
in water and characterized by two benzene rings connected
through a three-carbon chain. Flavonoids are sub-divided
into anthoxanthins (flavones, flavonols, flavanols, isoflavonoids,
flavanones), and anthocyanins (Lakey-Beitia et al., 2015).
Non-flavonoid PP are phenolic acids, stilbenes, curcuminoids,
lignans, and tannins (Lakey-Beitia et al., 2015).

It has been hypothesized that the, the anti-amyloidogenic
activity of PP is due to their physicochemical features,
including the aromatic rings, molecular planarity, hydrogen
bond formation, internal double bonds, and molecular weights
below 500 g/mol (Lakey-Beitia et al., 2015). All these features
are important for the inhibition of the amyloidogenic APP
processing to reduce amyloid load, by activating α-secretase and
inhibiting β- and γ-secretase (Lakey-Beitia et al., 2015).

Several in vitro and in vivo studies reported that
PP-rich extracts from plants, like fruits and herbs, possess
neuroprotective activities (Dai et al., 2006; Rossi et al., 2008; Loef
and Walach, 2012; Hassaan et al., 2014; Dal-Pan et al., 2017;
Omar et al., 2017; Polito et al., 2018). For instance, in vitro,
in vivo and clinical studies showed the neuroprotective action
of berry fruits through their polyphenolic contents (Vepsalainen
et al., 2013; Wong et al., 2013; Subash et al., 2014). Other in vitro
and in vivo studies indicate that pomegranate which is also
rich in PP has the potential to attenuate AD progression by its
anti-inflammatory and anti-Aβ accumulation activity (Hartman
et al., 2006; Rojanathammanee et al., 2013). Moreover, extracts
of other PP-rich fruits such as apple, banana, orange, grape,
citrus fruit, and walnut have been also shown to inhibit Aβ

neurotoxicity and oxidative stress as demonstrated by several
in vitro studies (Chauhan et al., 2004; Heo et al., 2008; Toda
et al., 2011; Lian et al., 2016; Braidy et al., 2017a). In one animal
model study, PP-rich fruits such as Palm fruit could attenuate
oxidative stress (Subash et al., 2015). Of particular interest to
this current review is that several in vivo studies have reported
cognition and memory enhancement activities of grapes, citrus
fruit, walnut and buckwheat extracts (Wang et al., 2010; Choi
et al., 2013; Lian et al., 2016; Braidy et al., 2017a; Pandareesh
et al., 2018). in vitro investigation of the effect of a PP-rich
extract of perennial buckwheat reported attenuation of Aβ

toxicity in plasma (Liang et al., 2017). Another in vitro study
using PP-rich extract of the herb Patrinina villosa Juss has
shown a significant inhibitory effect on Aβ plaque aggregation
(Bai et al., 2017). A cell culture study on twenty different South
African medicinal PP-rich plants against AD reported the
effectiveness of Xysmalobium undulatum, Cussonia paniculata,
and Schotia brachypetala in decreasing the production of
Aβ in comparison to other investigated extracts (Thakur
et al., 2019). Moreover, based on the dietary intervention
animal study of Ingale and Kasture (Ingale and Kasture,
2017), PP rich extract of purple passionflower could enhance
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FIGURE 4 | Polyphenols classifications. PP are divided into two main groups of flavonoids and non-flavonoids (El Gharras, 2009; Lakey-Beitia et al., 2015).

cognitive function. Animal model studies, Capparis spinose,
Caesalpinia crista, Iris germanica, and Paeonia suffruticosa
could attenuate inflammation and Aβ aggregation through their
polyphenolic contents, and make positive changes in cognition
and memory (Costa et al., 2016; Gu et al., 2016; Borhani et al.,
2017).

In vitro studies have reported that dietary drinks such as
the crude juice of broccoli sprouts (Masci et al., 2015), tea
(Polito et al., 2018), coffee (Ishida et al., 2018), and red wine
(Dhir, 2018) are protective against Aβ-induced cytotoxicity
and apoptotic cell death. They have been shown to attenuate
mitochondrial dysfunction and hyperphosphorylation of
tau proteins through their polyphenolic content (Lakey-
Beitia et al., 2015; Sawikr et al., 2017; Polito et al.,
2018).

Whole grain consumption as part of a healthy diet has been
reported to be protective against several chronic diseases (Miller
et al., 2000; Slavin, 2003; Aune et al., 2016). The health benefits
of whole grains are in part due with their PP and the associated
antioxidant activity (Slavin et al., 1997; Miller et al., 2000; Slavin,
2003; Tian et al., 2019).

Among whole grains, sorghum has some unique features
that make it very attractive for neuroprotection studies. It is an
inexpensive and abundant grain with a wide range of varieties,
some of which are very high in PP content (including PP that are
very rarely found in other plant food) and antioxidant activity.
Several in vitro and in vivo studies have reported beneficial
effects of sorghum PP on chronic diseases such as diabetes
and cardiovascular disease, both of which are as risk factors of
AD (Kim and Park, 2012; Suganyadevi et al., 2013; Stefoska-
Needham et al., 2015; de Morais Cardoso et al., 2017; Moraes
et al., 2018).

SORGHUM

General Characteristics of Sorghum
Sorghum (Figure 5) is the fifth most-produced cereal crop in
the world (Awika and Rooney, 2004). It is adaptable to grow
in drought and hot climates. Thus, it is usually grown in warm
semi-arid and arid areas across the globe (de Morais Cardoso
et al., 2017). Sorghum grain has been mostly used as livestock
feed and in the biofuel industry (de Morais Cardoso et al., 2017).
Sorghum is gluten-free and low-fat while being high in protein
and fiber. It has a high antioxidant and anti-inflammatory
potential due to its bioactive compounds such as polyphenolics
(Awika and Rooney, 2004; de Morais Cardoso et al., 2017).

Classification of Sorghum
Sorghum grain has been classified into three different groups
based on extractable tannin content. Sorghum type I (low tannins
extracted by 1% acidified methanol), type II (tannins extractable
in 1% acidified methanol and not methanol alone), and type III
(tannins extractable in both acidified methanol and methanol
alone; Awika and Rooney, 2004).

Another common way of sorghum classification is based on
its grain color and its total polyphenols. Sorghum has varieties
with pigmented and non-pigmented precarps. White sorghum
has no tannins or anthocyanins and has a very low level of
total PP. Red sorghum (red pericarp) has a considerable amount
of extractable PP without any tannins. Black sorghum (black
pericarp) has a large amount of anthocyanins and finally, the
brown sorghum (pigmented testa, different degrees of pericarp
pigmentation) contains significant levels of tannins (Awika and
Rooney, 2004). The concentration of flavonoid in sorghum is
related to the pericarp color, pericarp thickness, and presence
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FIGURE 5 | Different genotypes of sorghum grain: black pericarp, red
pericarp, white pericarp, brown pericarp, and orange pericarp varieties.
Selection of the most potent varieties of sorghum is crucial for health and
medical-related purposes. Picture adopted from Barmac (2021).

of testa (Taleon et al., 2012). However both environmental
and genetic factors influence the phenolic level and profiles of
sorghum grain (Awika and Rooney, 2004).

Sorghum PP and Health Benefits
A limited numbers of studies such as Awika et al. (Awika
and Rooney, 2004; Yang et al., 2009; Awika, 2017; Girard
and Awika, 2018) and Cardoso (de Morais Cardoso et al.,
2017) have investigated the potential benefit of sorghum on
health and disease prevention. According to their findings,
sorghum should be considered as a health-beneficial grain, not
just a low-value cereal grain. Sorghum has shown a positive
impact on glycemic control, colonic microbiota, cholesterol
attenuation, cardiovascular disease, anti-mutagenicity, and
anti-inflammatory activity (Stefoska-Needham et al., 2015; de
Morais Cardoso et al., 2017) which are all risk factors of AD.
Below, we summarize information on the effect of sorghum on
some chronic disease and their relation to AD.

Sorghum Protects Thyroid Gland Function and
Combats Obesity
Sorghum is rich in manganese which is essential for thyroid
hormone homeostasis. It facilitates the proper regulation of
the thyroid gland promoting weight loss through regulating fat
metabolism (Kangama, 2017). Moreover, sorghum contains a
slow-digestible starch relative to other cereal crops which is
also helpful to control obesity through slow glucose release and
therefore modulation of food intake (Girard and Awika, 2018;
Hasek et al., 2018). These beneficial characteristics of sorghum
in controlling thyroid function (van Osch et al., 2004; Tan and
Vasan, 2009; Chaker et al., 2016) and obesity (Alford et al., 2018)
are considered as important risk factors of AD and thus can be
very useful in its prevention.

Prevention of Cancer
The sorghum bran layer is rich in antioxidants which may
reduce the risk of cancer by eliminating the possibility of free
radical damage to DNA (Kangama, 2017). Sorghum extracts

have been shown to have an antiproliferative effect on cancer
cells (de Morais Cardoso et al., 2017). Suganyadevi et al. (2011)
found that the red sorghum anthocyanin has anti-proliferative
activity on a breast cancer cell line (Devi et al., 2011).
Similar studies have shown the ability of sorghum extractto
inhibit of cell proliferation and increase cell cycle regulator
leukemia (Woo et al., 2012), breast (Park et al., 2012a), colon
(Suganyadevi et al., 2011), and liver (Suganyadevi et al., 2011)
cells. This characteristic is potentially beneficial to fight against
diseases in which excessive free radicals play a major role
including. AD (Kamath et al., 2004). The antioxidant and
neuroprotective activity of the red dye extract from sorghum
stem on cyclophosphamide-induced oxidative stress in rat brain
is attributed its high level of phenolic and antioxidant activities
(Oboh et al., 2010).

Managing Diabetes
Some varieties of sorghum grain possess a high amount of
tannins which interact with starch and inhibits its digestion
thus beneficially regulating blood glucose and insulin levels
(Kangama, 2017). It has been suggested that sorghum has
anti-diabetic and hypoglycemic effects through the regulation of
insulin sensitivity via peroxisome proliferator-activated receptor
gamma (PPAR-γ; Park et al., 2012b). Another study indicated
that the hypoglycemic effect of sorghum extract is associated
with hepatic gluconeogenesis not the glucose uptake of skeletal
muscle (Kim and Park, 2012). Sorghum also can reduce
both glucose and insulin responses (Poquette et al., 2014)
and promote glucose and insulin homeostasis (Moraes et al.,
2018). As diabetes could increase the risk of developing AD
and declining cognitive function, anti-diabetic agents such as
sorghum PP could potentially attenuate the AD pathological
pathways (Arvanitakis et al., 2004; Hölscher, 2011).

Anaemia Prevention
The high level of iron and copper in sorghum helps the
generation of red blood cells and improves the blood circulation
and growth of cells and decreases the probability of getting
anemia (Kangama, 2017). According to a population-based
study, anemia is also considered as a risk factor of AD in the
elderly and therefore preventing anemia would contribute to
decreasing the risk of developing AD (Beard et al., 1997).

Assisting With Digestion and Cardiovascular
Diseases Prevention
Sorghum assists with the proper function of the digestive system
through its dietary fiber content (Kangama, 2017). This helps
to control bloating, constipation, diarrhea, and excess gas.
Moreover, having a high level of fiber in the diet decreases
cholesterol uptake binding bile acids in the small intestine
and preventing them from entering the blood-stream which
is helpful for the prevention of cardiovascular which includes
atherosclerosis, and stroke (Knopp et al., 1999; Kangama, 2017).
Cardiovascular disease is considered an important risk factor for
AD and thus its prevention will help reduce its risk (Meyer et al.,
2000; Tosto et al., 2016; Tini et al., 2020).
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The Anti-Alzheimer’s Disease Potential of
Sorghum Polyphenolics
Some varieties of sorghum possess up to 6% (w/w dry basis) of
phenolic compounds which is the highest level in any cereal grain
(Su et al., 2017). Almost all classes of the phenolic compounds
are present in sorghum (Awika and Rooney, 2004) including
phenolic acids, flavonoids, tannins, and stilbenes (Tables 1, 2;
Vanamala et al., 2017). The bran fraction of sorghum has the
highest concentration of PP thus processing to remove the bran
(decortication), will notably decrease the potential health benefits
of the grain and therefore un-decorticated sorghum (whole
grain) is recommended for consumption (Girard and Awika,
2018; Ashley et al., 2019).

Based on the literature, almost all the polyphenolic
compounds of the various sorghum genotypes have antioxidant
activity which may be effective for the attenuation of AD
pathological hallmarks (Awika and Rooney, 2004). Among all
the PP of sorghum (Tables 1, 2), caffeic acid, trans-resveratrol,
quercetin, catechin, cinnamic acid, cyanidin, apigenin, and
kaempferol have gained the most attention for AD prevention
and treatment (Rossi et al., 2008; Jabir et al., 2018). Snow et al.
(2019) showed that PP exert their anti-AD properties primarily
through prevention of aggregation of Aβ fibrils and tau protein
NFTs. The presence of hydroxyl groups adjacent to aromatic
rings may enhance the inhibition of Aβ/tau aggregation (Snow
et al., 2019) by reducing the secondary folding of β-sheet
structures which are characteristic of Aβ plaques and NFTs.
For example, this property is found in proanthocyanidins,
which are highly effective in reducing plaques and tangles in the
brain as well as in improving short-term memory. Concluding
from this article, sorghum PP such as epicatechin, luteolin,
quercetin, etc. with adjacent hydroxyl groups can provide Aβ/tau
disaggregation (Figures 6, 7).

Collectively the functions of sorghum PP include a
combination of antioxidant, anti-amyloid, anti-tau, anti-
inflammatory, AchEI and BChEI activities (Rossi et al., 2008;
Omar et al., 2017; Jabir et al., 2018).

TABLE 1 | Reported flavonoids in sorghum (Vanamala et al., 2017).

Class Compound

Proanthocyanidins (3-Deoxyanthocyanidins)
Apigeninidin
Luteolinidin
7-methoxyapigenindin
5-methoxyluteolinidin
malvidin

Flavones apigenin
luteolin
tricin

Flavanones naringenin
eriodictyol
eriodictyol 5-glucoside

Flavonols kaempferol 3-rutinoside-7-glucuronide
quercetin 3,4’-dimethyl ether

Dihydroflavonols taxifolin
taxifolin 7-glucoside

Flavan-3-ols catechin
epicatechin
procyanidins

TABLE 2 | Reported non-flavonoid in sorghum (Vanamala et al., 2017).

Class Compound

Phenolic acids Protocatechuic acid, p-hydroxybenzoic acid, vanillic acid,
p-Coumaric acid, o-Coumaric acid, Ferulic acid, Gallic acid,
gentisic acid, Caffeic acid, Cinnamic acid, Hydroxybenzoic
acid, Salicylic acid, Syringic acid, Sinapic acid

Stilbenes trans-resveratrol, trans-piceid

In summary, sorghum has a diverse polyphenolic profile
depending on its genotype. According to in vitro and in vivo
studies, several PP of sorghum have the potential to act
as an anti- AD agent through different pathways such as
free-radical scavenging, inhibition of Aβ and tau aggregation.
The neuroprotection potential of important single PP of sorghum
is illustrated in the subsequent sections.

Flavonoids
Proanthocyanidins
Pigmented sorghums are rich in anthocyanins some of which
are rarely found elsewhere in plants kingdom (Su et al., 2017).
High levels of different anthocyanins were detected in a red
seed variety PI297139 (1,461.4 ± 98.7 mg/kg), followed by
two brown varieties PI221723 and PI35038 (1,376.4 ± 33.2,
937.3 ± 29.4 mg/kg, respectively) and a yellow variety PI229838
(574.8 ± 105.4 mg/kg; Su et al., 2017).

Anthocyanins are divided into the sugar-free
proanthocyanidins aglycons and the anthocyanin glycosides
(Khoo et al., 2017). The most common anthocyanins found in
the plant include cyanidin, delphinidin, pelargonidin, peonidin,
malvidin, and petunidin (Khoo et al., 2017). Anthocyanins have
several health benefits, where their intake is associated with
a lower risk of several chronic diseases due to vasoprotective
and anti-inflammatory activities (Lietti and Picci, 1976),
antioxidant (Ali et al., 2018), anticancer, chemoprotective
(Karaivanova et al., 1990), and hypoglycemic properties (Tsuda
et al., 2003). In addition, anthocyanins also are beneficial in the
progression/managing/controlling of cardiovascular diseases
and HIV-1 (Nakaishi et al., 2000; Stintzing et al., 2002; Cooke
et al., 2005; Jang et al., 2005; Julie Beattie and Duthie, 2005;
Talavéra et al., 2006).

Anthocyanins are a type of PP with the ability of crossing
the blood brain barrier (BBB; Belkacemi and Ramassamy,
2016). It is also reported that anthocyanins from anthocyanin-
enriched bilberry and blackcurrant extracts can regulates
the APP processing and spatial memory of a mouse model
of AD (Vepsäläinen et al., 2013). Additionally, they could
alleviate cognitive dysfunction and neuroinflammation
in APP/PSEN1 transgenic mice model of AD (Li et al.,
2020). According to the cell culture study of Belkacemi and
Ramassamy, a mixture of anthocyanins and proanthocyanidins
could beneficially affect various mechanisms involved
in AD development such as through inhibition of Aβ

toxicity and tau phosphorylation, prevention of oxidative
stress, and amelioration of mitochondrial dysfunction
(Belkacemi and Ramassamy, 2016).
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FIGURE 6 | Chemical structure of important flavonoids of sorghum with anti-AD activities. (A) Anthocyanidins (a: R1= R2 = OCH3: malvidin, R1 = OH, R2 = H:
cyanidin, R1=OCH3, R2 = H: peonidin, b: R1 = H, R2 = H, R3= H: apigeninidin, R1 = H, R2 = Glc, R3= H: apigeninidin-5-glucoside, R1 = H, R2 = H, R3=CH3: 7-
methoxyapigenindin, R1 = OH, R2 = H, R3= H: luteolinidin, R1 = OH, R2 = Glc, R3= H: luteolinidin-5-glucoside, R1 = OH, R2=CH3, R3= H: 5-methoxyluteolinidin), (B)
others (a: apigenin b: luteolin c: naringenin d: kaempferol e: quercetin f: taxifolin g: catechin; Awika et al., 2005; Lakey-Beitia et al., 2015; Vanamala et al., 2017;
Jabir et al., 2018).

The most common group of anthocyanins found in sorghum
are the 3-deoxyanthocyanidins (3-DXA) and their derivatives
(Hipskind et al., 1990; Figure 6A). Sorghum is the only
common dietary source of the 3-DXA. The percentage of the
3-DXA in sorghum is dependent on the genotype (Awika and

Rooney, 2004; Su et al., 2017). The recent animal study of
Arbex et al. (2018) suggested that 3-DXA have a significant
anti-inflammatory effect, thus protecting against one of the
main hallmarks of AD (Arbex et al., 2018). The 3-DXAs
are also reported to have antioxidant and anti-carcinogenic
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FIGURE 7 | Chemical structure of important non-flavonoids of sorghum with anti-AD activities (Lakey-Beitia et al., 2015; Girard and Awika, 2018; Jabir et al., 2018;
A: ferulic acid, B: caffeic acid, C: cinnamic acid, D: sinapic acid, E: resveratrol, and F: tannins).

activities (Fratianni et al., 2007; Suganyadevi et al., 2011;
Makanjuola et al., 2018). However, the data on the bioactivity
of 3-DXA are very limited (Dore et al., 1999; Mathiyazahan
et al., 2015). Also, there is lack of clinical trial data on the
neuroprotective activity of anthocyanins and specifically 3-
DXA.

Two main 3-DXAs of the sorghum are luteolinidin and
apigeninidin which are orange and yellow colored, respectively.
These two 3-DXAs which lack oxygen at the C-3 position are
very rare in nature and also differ from the more common
proanthocyanidins. The lack of oxygen at C-3 is associated with
their high stability in light, heat, and change in pH (Suganyadevi
et al., 2013; Figure 6A). Also, the molar absorptivity of the
3-DXA is higher compare to other proanthocyanidins except for
cyanidin-3,5-diglucoside and therefore 3-DXA will be absorbed
higher than other anthocyanins (Awika et al., 2004).

Flavones
Flavones are an important subgroup of flavonoids that are
abundant in plants, especially herbs and cereal grains such as
maize and sorghum (42–386 µg/g; Jiang et al., 2016). Common
flavones include apigenin, luteolin, tangeritin, and chrysin (Singh
et al., 2014; Kawser Hossain et al., 2016). Flavones have beneficial
functions not only for the plant but also for human health.
They possess strong antioxidant activity, which makes them
potentially beneficial for the prevention and treatment of several
chronic diseases including cancer, coronary heart disease, and
neurodegenerative disease (Martens and Mithöfer, 2005; Singh
et al., 2014).

Apigenin
Apigenin is present in several plants including sorghum with
the reported concentration of 0.36–2.09 µg per gram of dry
grain (Bradwell et al., 2018). This flavone from sorghum is

known to be a strong antioxidant (Makanjuola et al., 2018).
It has been shown to protect neurites and cell viability by
enhancing the cytokine and nitric oxide release in inflammatory
cells which may prevent or slow the progression of AD (Balez
et al., 2016). Several studies reported the anti-inflammatory
effects of apigenin in human and animal experiments (Liang
et al., 1999; Rezai-Zadeh et al., 2008; Zhang et al., 2014). In one
study, they induced inflammation by adding lipopolysaccharide
to human and mouse macrophages then checked the effect of
apigenin by PrimePCR array and through examining different
mechanisms. They identified major target genes regulated
by apigenin in lipopolysaccharide-mediated immune response
(Zhang et al., 2014).

According to the apigenin-treated animal study of Zhao et al.
(2013), in a double transgenic mouse model of AD, apigenin
ameliorated the APP processing and Aβ toxicity through the
regulation of BACE1 level and the reduction of Aβ deposition.
They also showed apigenin beneficially reduced oxidative stress
and reduced memory impairment, reduced of oxidative stress
through the Morris water maze performance test (Zhao et al.,
2013). It is also reported that oral administration of apigenin
ameliorated the learning and memory deficits of Aβ-induced
mice by attenuating oxidative damage, enhancing cholinergic
neuronal transmission, and maintaining the BBB integrity in the
cerebral cortex (Liu et al., 2011).

Luteolin
Luteolin is a flavone class of flavonoids found in several plants
including sorghum (Lin et al., 2008). The concentration
of luteolin in sorghum grain is (0.84–5.57 µg/g, dry
basis) depending on the variety and environmental factors
(Bradwell et al., 2018). Luteolin showed strong antioxidant
and neuroinflammation activities in in vitro and in vivo
studies (Paterniti et al., 2014; Kwon, 2017). Based on the
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animal model study of Wang et al. (2016) which was
performed through Morris water maze and probe tests,
luteolin (10 and 20 mg/kg) significantly attenuates spatial
learning deficiencies and memory impairment. Furthermore,
the animal behavioral tests study of Yu et al. (2015) found
that luteolin (200 mg/kg) attenuates Aβ-induced learning and
memory impairment through increasing the regulation of
the cholinergic function and attenuation of oxidative stress.
According to another in vivo study, luteolin could improve basal
synaptic transmission and enhance the long-term potentiation
(which is considered as a cellular correlate of learning and
memory) through high frequency stimulation in the dental
gyrus of the rat hippocampus (Xu et al., 2010). Moreover,
daily oral administration of luteolin (50, 100, and 200 mg/kg)
demonstrated a significant reduction of Aβ aggregation,
oxidative stress, and inflammatory reaction in the hypoperfused
rat brain (Fu et al., 2014).

Flavanones
Flavanones are a subgroup of flavonoids commonly available
in grains and especially sorghum and some fruits such a citrus
fruit (Tomás-Barberán and Clifford, 2000; Duodu and Awika,
2019). Common flavanones include hesperidin, naringenin,
isosakuratenin, and eriodictyol (Das et al., 2019).

Some varieties of sorghum such as yellow sorghum possess
high levels of flavanones mainly eriodictyol and naringenin;
up to 1,800 µg/g depending on genotypes and environmental
factors. The levels of reported flavanones in sorghum grain are
much higher than in citrus fruit (400–600 µg/g) which has
previously been considered as a main source of these compounds
(Duodu and Awika, 2019).

According to cell culture studies, flavanones have several
potential health benefits including neuroprotection potential
through scavenging ROS (Lu et al., 2010), inhibiting the H2O2-
induced neurotoxicity, increasing catalase activity, attenuating
the intracellular free Ca2+, and decreasing the mitochondrial
membrane potential (Hwang and Yen, 2008).

Naringenin
Naringenin is a compound that belongs to the flavanone group
of flavonoids. It is available in several plant food including citrus
fruits and sorghum (Manchope et al., 2017). Several in vivo
and in vitro studies reported anti-inflammatory and antioxidant
activity of naringenin (Heo et al., 2004; Manchope et al., 2017).
The study of Khajevand-Khazaei et al. (2018) suggested positive
effects of naringenin for the alleviation of lipopolysaccharide-
induced cognitive deficits in rats; through enhancing the spatial
recognition memory in Y maze, discrimination ratio in the
object discrimination task, and retention in the passive avoidance
test. Lipopolysaccharide and naringenin were administrated
daily in a dose of 167 µg/kg and 25, 50, or 100 mg/kg,
respectively (Khajevand-Khazaei et al., 2018). Naringenin is able
to pass through the BBB and thus can act on the CNS. It
has been shown to increase Aβ degrading enzymes through
increasing M2 microglia polarization and inhibiting Aβ42 -
induced M1 microglia activation in primary cultured cortical
microglia (Yang et al., 2019). Two other in vivo studies also
showed the ability of naringenin to improve learning and

memory function through alleviation of oxidative stress and
reducing apoptosis as evidenced by the Morris water maze test
conducted in a rat model of AD (Ma et al., 2013; Ghofrani et al.,
2015).

Flavonols
Flavonols are another subgroup of flavonoids which commonly
available in onions, leeks, broccoli, blueberries and also abundant
in cereal such as quinoa, barley, and sorghum (Awika, 2011;
Pérez-Chabela and Hernández-Alcántara, 2018).

Common dietary flavonols include myricetin, quercetin, and
kaempferol (Aherne and O’Brien, 2002). Flavonols are reported
to have several health benefits including inhibiting low-density
lipoprotein oxidation and thus reduced risk of atherosclerosis
and general cardio protection effects (Giovinazzo and Grieco,
2019), cancer (Ali et al., 2008; Szliszka et al., 2011), and
neurogenerative disease such as brain vascular atrophy, mild
cognitive impairment (MCI), and AD (Patel et al., 2008).

Kaempferol is found in a variety of plants including
sorghum (Przybylska-Balcerek et al., 2019). Epidemiological
evidence suggests a positive relationship between the high
intake of kaempferol and a reduced risk of developing several
chronic diseases such as cancer, cardiovascular disease, and
neurodegeneration (Calderon-Montano et al., 2011). Moreover,
many studies have demonstrated that kaempferol has a wide
range of pharmacological properties, including antioxidant
(Tatsimo et al., 2012), anti-inflammatory (Devi et al., 2015),
antimicrobial (Tatsimo et al., 2012), anticancer (Yoshida et al.,
2008; Chen and Chen, 2013), cardioprotective (Xu et al., 2006;
Choi et al., 2015), antidiabetic (Zhang and Liu, 2011; Alkhalidy
et al., 2018), and neuroprotective activities (Kim et al., 2010;
Calderon-Montano et al., 2011). An in vivo study by Cheng
et al. (2018) reported significant anti-neuroinflammatory effects
of kaempferol through high-mobility group protein 1 release and
decreasing the toll-like receptor-4/myeloid differentiation factor
88 which was induced by lipopolysaccharide in the brains of
mice. The effective doses of kaempferol were 50, or 100 mg/kg
for 7 days (Cheng et al., 2018). Kaempferol has also been shown
to have an anti-apoptotic activity in Aβ-induced neuroblastoma
cell lines which can be beneficial for the prevention and treatment
of AD (Kim et al., 2019). Another study in the transgenic
Drosophila model of AD indicated that administration of 10, 20,
30, and 40 µM of kaempferol for 30 days could delay memory
loss, reduce oxidative stress and AChE activity, and therefore is a
potential therapeutic agent for AD (Beg et al., 2018).

Quercetin, a flavonoid found in various foods including
sorghum, possesses strong antioxidant activity (Zhang
et al., 2011). It demonstrates anti-inflammatory activities,
the mechanism of which is through inhibition of the NF-κB
pathway (Comalada et al., 2005), anticancer activities through
a variety of mechanisms (Xing et al., 2001), attenuation of high
cholesterol (Lu et al., 2010), protection form viral infections
(Davis et al., 2008; Gonzalez et al., 2009), reduced risk of diabetes
(Vessal et al., 2003), and cardiovascular diseases (Kleemann
et al., 2011). Several of these effects can in turn potentially
reduce the risk of AD (Zaplatic et al., 2019). Pre-treatment
of hippocampal cell cultures with quercetin considerably
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attenuates Aβ-induced cytotoxicity, protein oxidation, lipid
peroxidation, and apoptosis (Ansari et al., 2009). Thus, quercetin
might be protective against Aβ toxicity by regulating oxidative
stress (Ansari et al., 2009). Moreover, quercetin deceases
ROS which is a major contributor to AD (Zaplatic et al.,
2019). It also decreases extracellular Aβ, AChE level, tau
toxicity, and microgliosis (Sabogal-Guaqueta et al., 2015).
Additionally, quercetin improved learning and memory function
in aged 3xTg-AD mice determined through the elevated
plus-maze test (Orhan et al., 2007; Sabogal-Guaqueta et al.,
2015).

Dihydroflavonols
Dihydroflavonols also referred to as flavanonols, are a subgroup
of flavonoids available in some plants including sorghum
(Gujer et al., 1986). Common dihydroflavonols include taxifolin,
dihydrokaempferol, and dihydromyricetin (Espargaro et al.,
2017; Sunil and Xu, 2019). They have several reported potential
health benefits including antiallergic and anti-inflammatory
activities (Ayoub et al., 2018). Moreover, they show strong
free radical scavenging activity and protect neuronal cells from
oxidative damage in vitro (Gong et al., 2009). Dihydroflavonols
also demonstrated the capacity to inhibit Aβ aggregation, a main
pathological hallmark of AD (Espargaro et al., 2017).

Taxifolin is a flavonoid with strong anti-inflammatory and
antioxidant activities (Topal et al., 2016; Wang et al., 2018).
It is available from different natural sources such as onion,
milk thistle, and sorghum (Sunil and Xu, 2019). It significantly
attenuated Aβ-induced cognitive impairment and neuronal cell
death which was measured through novel object recognition
tasks and the spatial memory in a mice model of AD (Wang
et al., 2018). The in vivo study of Saito et al. (2017) showed
the capacity of taxifolin in the improvement of cognitive and
cerebrovascular functions which was evaluated by the watermaze
test and monitoring the cerebral blood flow changes in the
cerebral amyloid angiopathy model of mice.

Flavan-3-ols
Flavan-3-ols are a subgroup of flavonoids available in several
natural sources including teas, apples, beer, wine, and cereals
like sorghum (Yao et al., 2004; Rao et al., 2018). Flavan-3-ols
have a variety of health beneficial effects including reducing
metabolic syndrome risk (Yang et al., 2012), antioxidant activity
(Castillo et al., 2000), anti-cancer characteristic (Lei et al.,
2016) and neuroprotective potential (Bastianetto et al., 2006).
Common flavan-3-ols are catechin, epigallocatechin, epicatechin,
epicatechin 3-gallate, epigallocatechin 3-gallate (EGCG), and
theaflavin (Yao et al., 2004).

Catechins are common in tea, cocoa, berries, and sorghum.
They have potent antioxidant and anti-inflammatory activities
as reported by several in vitro and in vivo studies (Higdon
and Frei, 2003; Abd El-Aziz et al., 2012; Zanwar et al., 2014;
Stohs and Bagchi, 2015). Apart from radical scavenging activity,
catechins modulate mitochondrial functions, activate survival
genes, and also fight against Aβ-induced cognitive deficit and
neurotoxicity through their antioxidant activity (Heo and Lee,
2005; Ban et al., 2006; Haque et al., 2008). Therefore, catechins

are receiving great attention as potential neuroprotective agents
(Mandel and Youdim, 2004).

Non-flavonoids
Phenolic Acids
Phenolic acids are the simplest naturally available PP (Tsao,
2010). The natural sources of phenolic acids include fruits,
vegetables, and cereals, especially sorghum (Klensporf-Pawlik
and Aladedunye, 2017; Ratnavathi, 2019). The phenolic acids
of sorghum are mostly benzoic or cinnamic acid derivatives
(Calviello et al., 2007). Phenolic acids are reported to have strong
antioxidant (Sroka and Cisowski, 2003) and anti-inflammatory
activities (Kang et al., 2015) as well as other health benefits
including neuroprotective activities (Saibabu et al., 2015).

Cinnamic acid is an aromatic carboxylic acid (see Figure 7)
with many beneficial effects. Several studies have shown the anti-
microbial, antioxidant (Sova, 2012; Guzman, 2014), anti-cancer
(De et al., 2011; Su et al., 2015), anti-atherogenic (Lapeyre
et al., 2005), anti-tuberculosis (De et al., 2012), and anti-fungal
(Tawata et al., 2014) effects of cinnamic acid. Cinnamic acid
treatment in a mouse model of AD significantly reduced the
Aβ plaque formation and improved the cognitive function
through PPARα activation to stimulate lysosomal biogenesis.
Additionally, cinnamic acid treatment improved the memory
and behavioral performance in themousemodel of AD (Chandra
et al., 2019). Interestingly, cinnamic acid derivatives have been
also reported to act as cholinesterase inhibitors thus may have
therapeutic effects on AD through this mechanism (Lan et al.,
2017; Chen et al., 2018).

Ferulic acid (FA) is the most abundant phenolic acid found in
sorghum and is also suggested to have strong anti-inflammatory
activity (Sosulski et al., 1982; Lempereur et al., 1997; Sgarbossa
et al., 2015; Ratnavathi, 2019). Due to its chemical structure
(Figure 7), FA possesses a strong free radical scavenging ability
(Srinivasan et al., 2007). The antioxidant effect of FA has been
shown to be effective against several chronic diseases such as
cancer (Rocha et al., 2012), cardiovascular (Ardiansyah et al.,
2008), diabetes (Jung et al., 2007), and cellular oxidative stress
(Calabrese et al., 2008). The efficacy of FA has been investigated
against several neurodegenerative pathologies, particularly in
AD. According to the finding, it could inhibit fibril formation
(Ono et al., 2005) and protect neurons against Aβ-induced
oxidative stress and neurotoxicity in vitro (Sultana et al., 2005).
Moreover, the in vivo study of Yan et al. (2001) demonstrated that
long-term administration of FA induces resistance to Aβ toxicity
in the brain likely through its antioxidant and anti-inflammatory.
These results indicate that FA at a dosage of 5.3 mg/kg/day
could be beneficial for the prevention and treatment of AD
(Yan et al., 2013).

Caffeic acid (CA) is a hydroxycinnamic acid derivative which
is commonly found in fruits, herbs, and grains, especially
sorghum. It has strong antioxidant and anti-inflammatory
activities (da Cunha et al., 2004; Gülçin, 2006; Priebe et al., 2014).
According to the in vivo study of Kim et al. (2015), CA was
administrated to a Aβ-injected mouse model of AD at an oral
dose of 50 mg/kg/day for 2 weeks. The cognitive impairment was
assessed by different behavioral tests. The result demonstrated

Frontiers in Aging Neuroscience | www.frontiersin.org 13 October 2021 | Volume 13 | Article 729949

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Rezaee et al. Sorghum Polyphenols and Alzheimer’s Disease

the ability of CA to enhance memory and cognitive impairment
through inhibition of lipid peroxidation and NO production
(Kim et al., 2015).

Sinapic acid (SA) is another phenolic acid present in sorghum
that is suggested to have anti-inflammatory and neuroprotective
activity (Yun et al., 2008; Zare et al., 2015). The neuroprotective
examination of SA (10 mg/kg/day for 7 days) in an Aβ-induced
mouse model of AD showed a strong attenuation of glial cell
activation and memory impairment in a passive avoidance task.
Moreover, SA attenuated neuronal cell death and cognitive
dysfunction through its antioxidant and anti-inflammatory
activities (Lee et al., 2012).

Stilbenes
Stilbenes are important group of non-flavonoid PP produced by
plants in response to major stress, especially, fungal infection,
and UV radiation (Varoni et al., 2016). Stilbenes contain
two benzene rings connected by ethanol or ethylene molecule
(Yu et al., 2005). Stilbenes are present in some plants such
as grapes, berries, and sorghum (Yu et al., 2005; Reinisalo
et al., 2015). According to the literature, they are protective
against cancer, cardiovascular disease and age-related disease
through their antioxidant and anti-inflammatory activities
(Reinisalo et al., 2015; Sirerol et al., 2016). More than
400 stilbenes are available in nature and the most well studied
ones are resveratrol, pterostilbene, piceatannol, and pinosylvin
(Sirerol et al., 2016).

Resveratrol, well known as a PP from grapes, is also found
in sorghum grain. It is one of the most studied stilbenes for
neuroprotection and AD prevention (Dal-Pan et al., 2017).
Resveratrol is classified as a non-flavonoid PP. There are two
isomers of this compound in plants, trans-resveratrol and
cis-resveratrol, along with their glucosides, trans-piceid, and
cis-piceid (Varoni et al., 2016). Clinical trials have shown
the beneficial effects of resveratrol on neurological disorders,
cardiovascular disease and diabetes biomarkers (Berman et al.,
2017). Currently, resveratrol is considered as a nutraceutical
due to its many therapeutic effects including the regulation of
caloric restriction, anti-inflammatory, and antioxidant activities
(Salehi et al., 2018; Banez et al., 2020). Numerous cell
culture and animal studies of resveratrol have demonstrated
its anti-inflammatory, antioxidant, anti-Aβ aggregation and
anti-abnormal tau phosphorylation properties (Savaskan et al.,
2003; Lagouge et al., 2006; Rege et al., 2015; Wang et al.,
2016; He et al., 2017). Antioxidant and anti-inflammatory
activity of resveratrol could increase the clearance of Aβ,
and modulate oxidative stress, neuronal energy homeostasis,
and apoptosis (Bastianetto et al., 2015). Resveratrol also
assists synaptic plasticity and neuroprotective kinases activities
(Bastianetto et al., 2015). It is also reported to provide its
neuroprotective activity through the activation of SIRT1, an
enzyme that deacetylates proteins related to cellular regulation
(Lagouge et al., 2006).

Tannins
Tannins are a group of non-flavonoid PP with many biological
activities specifically binding to precipitate proteins and other
organic molecules (Hagerman and Butler, 1989). They protect

plant from predation and also help plant growth (Ferrell and
Richard, 2006). They are distributed in many plants including
fruits, beverages and grains such as grape, coffee, tea, wine,
cacao and sorghum (Lamy et al., 2016). Brown colored sorghum
varieties are known to have a high antioxidant capacity due
to their higher tannin content, which is not present in all
genotypes of sorghum regardless of whether they are colored
or not (Awika et al., 2004). Tannins have strong antioxidant
and anti-inflammatory activities (Braidy et al., 2017b). They
are reported to reduce hyperphosphorylation of tau proteins in
in vitro study (Yao et al., 2013). Moreover, oral administration
of tannins in a transgenic mouse model of cerebral amyloidosis
demonstrated an improvement in object recognition and spatial
reference memory (Mori et al., 2012) and also they showed to
inhibit the β-secretase activity in vitro and therefore they have
significant preventative potential against AD (Mori et al., 2012).
Tannins also demonstrated a significant inhibitory effect against
AChE and BChE (Türkan et al., 2019). Additionally, the study
of Park et al. (2019) reported strong cognitive and memory
enhancing activities of tannins in a rat model via avoidance and
the water maze task.

CONCLUSION

Currently available medication for AD is extremely limited
in efficacy, therefore more studies should be conducted to
discover new preventative and therapeutic agents. Recently,
researchers have focused more on identifying treatments that
can attenuate AD pathological hallmarks, rather than focusing
on the treatments which only target the disease symptoms.
Available symptomatic treatments such as AchEIs just attenuate
symptoms temporarily by increasing the neurotransmitters in
the brain without altering the disease progression path. For
this purpose, studies on the effects of natural products such
as polyphenolic antioxidants on AD pathological hallmarks are
appearing in the scientific literature with increase regularity. One
of the most highly concentrated food sources of antioxidant
activity is sorghum grain which in colored gain varieties is due
to high levels PP including 3-deoxyanthocyanidins, not found in
any other common food.

To the best of our knowledge, there is no study on the effects
of sorghum PP on AD pathology, therefore, the present review
has illustrated the potential of sorghum PP as therapeutic agents
against AD pathological hallmarks. This review has highlighted
the unique chemistry and potential health beneficial properties of
sorghum PP that can be leveraged to promote this under-utilized
grain as a healthy food source.

As discussed throughout this review, numerous single PP have
been studied and have demonstrated potential anti-AD effects
in cellular and animal studies through a wide range of different
mechanisms. However, a mixture of PP as found in an extract
of sorghum grain could provide an additive or even synergistic
multi-target therapeutic efficacy (Wang et al., 2014; Caruana
et al., 2016; Andrade et al., 2019; Ayaz et al., 2019; Habtemariam,
2019).

Based on a variety of cell culture and animal model studies,
sorghum PP have demonstrated several beneficial properties
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against some of the cellular pathways that contribute to
AD pathogenesis. Among all the sorghum PP, caffeic acid,
trans-resveratrol, quercetin, catechin, cinnamic acid, cyanidin,
apigenin, and kaempferol have gained the most attention for
their potential for AD prevention and treatment. However, the
above-mentioned PP are not unique to sorghum.We hypothesise
that the unique sorghum PP such as 3-DXA, and the complex
mixtures of PP in sorghum grain extracts may collectively exert
powerful synergistic effects on the inhibition of neurotoxic
aggregation of Aβ and tau which initiate AD pathology.

Further studies to identify the specific mechanisms by
which sorghum PP provide any neuroprotective activities
are now necessary. One target mechanism is the antioxidant
pathway in which the PP-rich extract of sorghum might
reduce AD-associated oxidative stress. Both in vitro and
in vivo animal model studies should be performed to gain as
much evidence as possible before making recommendations
for follow-on clinical trials. Moreover, anti-amyloidogenic,
anti-tau/phospho tau, and anti-inflammatory mechanisms

related to AD require further investigation. The new knowledge
from these future studies may produce the high level of evidence
require to confirm that the PP-rich extract from sorghum
grain is a high efficacy preventative and therapeutic agent
against AD.
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