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Sleep quality changes dramatically from young to old age, but its effects on brain
dynamics and cognitive functions are not yet fully understood. We tested the hypothesis
that a shift in brain networks dynamics relates to sleep quality and cognitive performance
across the lifespan. Network dynamics were assessed using Hidden Markov Models
(HMMs) in resting-state MEG data from a large cohort of population-based adults
(N = 564, aged 18–88). Using multivariate analyses of brain-sleep profiles and brain-
cognition profiles, we found an age-related “neural shift,” expressed as decreased
occurrence of “lower-order” brain networks coupled with increased occurrence of
“higher-order” networks. This “neural shift” was associated with both increased sleep
dysfunction and decreased fluid intelligence, and this relationship was not explained by
age, sex or other covariates. These results establish the link between poor sleep quality,
as evident in aging, and a behavior-related shift in neural dynamics.
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INTRODUCTION

With the increasing proportion of older adults in the worldwide population (Beard et al., 2016),
there is a pressing need to understand the neurobiology of healthy aging. Sleep quality changes
dramatically from young to older age, and might be both causative and indicative of brain changes
in healthy aging (e.g., Feinberg et al., 1967; Scullin and Bliwise, 2015; Fjell et al., 2018). As people
get older, sleep becomes more fragmented (e.g., Bliwise et al., 2009), less efficient (Gadie et al.,
2017) and there is a decline in the quantity and quality of the “deep” stages of sleep, such as slow-
wave sleep (SWS) and REM sleep (Ohayon et al., 2004; Mander et al., 2017). Among older adults,
sleep problems have been associated with increased risk of developing cardiovascular disease (Wu
et al., 2018), dementia (Shi et al., 2018), and mental health problems (Roberts et al., 2000). An
outstanding question is how these variations in sleep quality are related to brain function and
cognitive performance, which also change with age.

One way to investigate the relations between sleep quality and brain functioning is by relating
sleep measures to resting-state functional connectivity. In recent decades, resting-state functional
connectivity, measured mainly with functional magnetic resonance imaging (fMRI), have proved
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effective in distinguishing various patient groups from controls
(e.g., Alzheimer’s disease, major depression, schizophrenia; see
for example Lee et al., 2013). Substantial work has also
used resting-state fMRI (rsfMRI) to examine the effects of
age on functional connectivity (Andrews-Hanna et al., 2007;
Grady, 2008; Ferreira and Busatto, 2013; Chan et al., 2014;
Geerligs et al., 2015; Grady et al., 2016) with consequences
for cognitive functioning (Tsvetanov et al., 2016; Bethlehem
et al., 2020). Nevertheless, a recent attempt to relate resting-state
functional connectivity to sleep quality, revealed no association
between functional connectivity within or between resting-
state networks and any objective or subjective sleep parameters
(Lysen et al., 2020).

Decades-long investigation of sleep dysfunction and cognitive
performance in healthy aging also yielded mixed results. Some
studies suggest a link between poor sleep and reduced cognitive
performance at older age (Feinberg et al., 1967; Hokett et al.,
2021). For example, using a large cohort of healthy older adults
(N∼1500, 65 + years old), Tsapanou et al. (2017) showed that
poor sleep quality and longer sleep duration were linked to
low memory performance. In another large-scale multicohort
study, sleep problems were associated with subjective cognitive
decline in multiple cognitive domains including memory,
naming, orientation and calculations (Tsapanou et al., 2019).
Furthermore, it has been shown that, for older adults, subjective
sleep problems in later life were predictive of cognitive decline as
indicated by their score in the Mini Mental Status Examination
(MMSE; Folstein et al., 1975). Nevertheless, others have indicated
that these relations might be more limited. In particular,
following a comprehensive review of seven correlational and
experimental domains, Scullin and Bliwise (2015) concluded
that in older adults, variability in sleep often does not relate to
cognitive functioning, and that solely improving sleep may not
reverse cognitive impairments.

The discrepancy between studies may be in part due to
methodological factors when investigating the effects of sleep on
brain and cognitive function in healthy aging. First, the relations
between sleep quality and the brain, as measured with fMRI,
might be affected by age-dependent confounding factors like
cerebrovascular reactivity and head motion (Power et al., 2012;
Tsvetanov et al., 2015; Geerligs et al., 2017; Lehmann et al.,
2017; Wu et al., 2021). While some of these confounds, like
neurovascular coupling, can be addressed by more sophisticated
modeling (Tsvetanov et al., 2021b), others like head-motion are
notoriously difficult to correct (Maknojia et al., 2019). Moreover,
the brain-sleep relations might not be fully captured by static
measures of functional connectivity. In particular, dynamic
fluctuations in activity and connectivity can support flexible
reorganization and coordination of neural networks (e.g., Allen
et al., 2014), prompting the extension of functional connectivity
to further include dynamic measures (e.g., Cabral et al., 2017;
Vidaurre et al., 2018). Nevertheless, the fundamentally limited
temporal resolution of fMRI, owing to the sluggish hemodynamic
response, precludes it from disclosing the potentially richer
dynamics in brain connectivity. Finally, another important aspect
to be considered is the multivariate nature of the relations
between sleep patterns, cognitive patterns, and the associated
neural mechanisms (Gadie et al., 2017).

In addressing these issues, we related transient resting-
state neural dynamics to sleep quality, cognitive performance,
and age, using a multi-level multivariate approach (Passamonti
et al., 2019; Tsvetanov et al., 2021a; Tibon et al., 2021). We
used magnetoencephalography (MEG) as a direct measure of
neural activity sampled at 1 kHz and higher. Unlike fMRI,
MEG is not affected by age-related changes in vascular factors
(Tsvetanov et al., 2015), and allows simpler and more robust
methods for correcting head-motion artifacts (e.g., Taulu and
Simola, 2006). We used measures of resting-state MEG dynamic
functional connectivity, inferred in our previous study (Tibon
et al., 2021) from a population-based adult-lifespan cohort (18
to 88 years of age1), using Hidden Markov Models. These
measures capture transient states of activity and connectivity
signatures lasting a few hundred milliseconds (HMM; Baker
et al., 2014; Vidaurre et al., 2016, 2017, 2018; Brookes
et al., 2018; Hawkins et al., 2020). In addition to MEG
scanning, these individuals also completed a self-report sleep
questionnaire (PSQI: Pittsburgh Sleep Quality Index; Buysse
et al., 1989) and a wide range of cognitive tasks. In the
current study, we used Partial Least Squares (PLS) to relate
patterns of neural dynamics to profiles of sleep quality and
cognitive performance.

Using similar methods, we have previously observed a “neural
shift,” expressed as increased occurrence of brain states involving
“higher-order” networks and decreased occurrence of brain
states that involve early visual networks. This neural shift
was associated with both increased age and decreased fluid
intelligence, suggesting that it likely reflects reduction in neural
efficiency rather than compensation (Tibon et al., 2021). In
light of the reduction in neural efficiency account, we predicted
that the neural shift will be associated with the level of sleep
dysfunction and that this association is distinguishable from
the effects of age.

MATERIALS AND METHODS

Participants
A flow diagram of the inclusion process is shown in Figure 1.
A population-based sample of 708 healthy human adults (359
women and 349 men) was recruited as part of Stage 2 of the
Cambridge Centre for Aging and Neuroscience (Cam-CAN;
see text footnote 1; Shafto et al., 2014). Ethical approval for
the study was obtained from the Cambridgeshire 2 (now East
of England-Cambridge Central Research Ethics Committee),
and participants gave full informed consent. Exclusion criteria
included poor vision (below 20/50 on Snellen test; Snellen,
1862) and poor hearing (threshold 35 dB at 1,000 Hz in
both ears), ongoing or serious past drug abuse as assessed
by the Drug Abuse Screening Test (DAST-20; Skinner, 1982),
significant psychiatric disorder (e.g., schizophrenia, bipolar
disorder, personality disorder), neurological disease (e.g., known
stroke, epilepsy, traumatic brain injury), low score in the
Mini Mental State Exam (MMSE; 24 or lower; Folstein et al.,
1975), or poor English knowledge (non-native or non-bilingual

1www.cam-can.org
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FIGURE 1 | Flow diagram of the inclusion process for the study.

English speakers); a detailed description of the exclusion
criteria can be found in Shafto et al. (2014), Table 1. Of
these, only participants who were considered for our previous

study (Tibon et al., 2021; N = 594, following the removal of
98 participants who did not have full neuroimaging data,
15 participants with poor MEG-MRI co-registration, and one
participant who had no visits to one of the HMM states) were
included. In addition, 30 participants who were included in Tibon
et al. (2021), but did not have full PSQI data (in all seven measures
of sleep quality), were excluded from the current study. Thus,
the final sample included 564 participants (age range 18–88; see
Table 1 for participants’ characteristics).

Sleep Measures
Sleep quality was assessed using the PSQI (Buysse et al.,
1989), a well-validated self-report questionnaire designed to
assist in the diagnosis of sleep disorders. The questions
are grouped into seven components including overall sleep
quality, sleep latency, sleep duration, sleep efficiency, sleep
disturbance, sleep medication use, and daytime dysfunction due
to sleepiness. Participants’ scores in these components were
used in our analyses. Each of the sleep components yields
a score on an ordinal scale, ranging from 0 (good sleep/no
problems) to 3 (poor sleep/severe problems), with higher

TABLE 1 | Sample Characteristics.

Demographics

Age Range: 18–88; Mean (STD) = 54.7 (18.2)

Sex 281 F (49.8%)

Education

Qualifications*

College or
University degree

A/AS levels or
equivalent

O levels/GCSEs or
equivalent

CSEs or equivalent NVQ or HND or
HNC or equivalent

Other professional
qualifications

59.8% 61.2% 75.2% 9.4% 14% 37.1%

Age when completing full time education Range: 14–36; Mean (STD) = 20.3 (3.8)

Sleep Measures

PSQI Total Score Range: 0–19; Mean (STD) = 4.84 (3.17)

PSQI Component Score

Quality Latency Duration Efficiency Disturbance Medication Daytime Dysfunction

Range 0–3 0–3 0–3 0–3 0–2 0–3 0–3

Median (IQR) 1 (1) 1 (1) 0 (1) 1 (1) 1 (0) 0 (0) 0 (1)

Cognitive Measures

FldIn Fac
Rec

Emo
Rec

MltTs Pic
Nam

MRSp MRCv VSTM StrRec VrbFl Snt
Rec

ProV StW

Range 12–44 14–27 47.5–
100

20.2–
960

0.5–
0.94

0.05–
0.85

0.92–3 0.5–
3.5

0–24 6–38 0.46–1 0–6 29–60

Mean
(STD)

31.83
(6.81)

22.91
(2.34)

86.76
(10.6)

300
(171)

0.78
(0.09)

0.19
(0.06)

1.84
(0.38)

2.44
(0.57)

12.98
(4.23)

20.73
(5.44)

0.89
(0.07)

4.54
(1.61)

53.85
(4.98)

Sleep medications reported

Cetirizine Hydrochloride; Diazepam; Nytol; Temazepam; Valium; Zimovane; Zopiclone.

Dosage ranging between “once a day” to “as needed.”

*Note that some participants reported having more than one qualification.
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scores reflecting greater dysfunction. Scores were obtained from
Gadie et al. (2017).

Cognitive Tasks
Thirteen cognitive tasks, performed outside the scanner, were
used to assess five broad cognitive domains, including executive
function (fluid intelligence, multitasking), memory (visual short-
term memory, story recall), language (spot the word, sentence
comprehension, picture-picture priming, verbal fluency, proverb
comprehension), processing speed (choice motor speed, choice
motor coefficient of variation) and emotional processing (face
recognition, emotion expression recognition). The tasks are fully
detailed in (Shafto et al., 2014). Task scores, also used in our
previous study (Tibon et al., 2021; see Table 1 for full details),
were obtained from Borgeest et al. (2018), in which missing data
(< 12% in all tasks) were interpolated using Full Information
Maximum Likelihood (Enders and Bandalos, 2001) across the full
Stage 2 sample (n = 708), as implemented in the Lavaan R package
(Rosseel, 2012).

Magnetoencephalography Resting-State
Data
MEG resting-state data included 4 temporal characteristics for 8
inferred brain states (i.e., 32 measures overall). The acquisition,
preprocessing, and analysis pipeline are fully described in Tibon
et al. (2021), and are summarized in Figure 2. In short,
MEG data were recorded from each participant while resting
in a 306-channel VectorView MEG system (Elekta Neuromag,
Helsinki). Each resting-state scan lasted 8 min and 40 s,
and the entire duration of the scan was included in the
analysis. The data were preprocessed using MaxFilter 2.2.12
software (Elekta Neuromag Oy, Helsinki, Finland) SPM122,
and the OHBA Software Library (OSL3), and co-registered to
each participant’s structural T1-weighted MRI. Source space
activity was then estimated for each participant at every
point of an 8 mm whole-brain grid comprised of 3,559 grid
points, using a single-shell lead-field model and a linearly
constrained minimum variance (LCMV) scalar beamformer
(Van Veen et al., 1997; Woolrich et al., 2011), parceled
into 38 regions of interest (ROIs; as in Colclough et al.,
2015), and summarized by the first principal component
across grid points within that parcel. The amplitude envelope
of each parcel’s time-course was then calculated using a
Hilbert transform.

Group-level exploratory analysis of networks (GLEAN4;
Vidaurre et al., 2017) was then applied to the temporally-
concatenated envelope data across all participants, in order to
infer 8 brain states via Hidden Markov Modeling (HMM).
As reported in Tibon et al. (2021), we selected a priori eight
states, as this number represents a reasonable trade-off between
a sufficiently rich but not overly complex representation of
network dynamics in resting-state MEG data (Baker et al., 2014).
HMMs describe the dynamics of neural activity as a sequence

2http://www.fil.ion.ucl.ac.uk/spm
3https://ohba-analysis.github.io/osl-docs/
4https://github.com/OHBA-analysis/GLEAN

of transient events, each of which corresponds to a visit to a
particular brain state. Each state describes the data as coming
from a unique 38-dimensional multivariate normal distribution,
defined by a covariance matrix and a mean vector. Therefore,
each state corresponds to a unique pattern of amplitude envelope
variance and covariance that reoccurs at different time points.
The HMM state time-courses then define the points in time
at which each state was “active” or “visited.” These estimated
state time-courses, represented by a binary sequence showing the
points in time when that state was most probable, were obtained
using the Viterbi algorithm (Rezek and Roberts, 2005). Using
these time-courses, the temporal characteristics of each state were
quantified according to four measures of interest: (1) Fractional
Occupancy (FO): the proportion of time the state was active; (2)
Mean Life Time (MLT): the average time spent in the state before
transitioning to another state; (3) Number of Occurrences (NO):
the number of times the state was active; and (4) Mean Interval
Length (MIL): the average duration between recurring visits to
that state. The spatial and temporal characteristics of the HMM
states are fully described in Tibon et al., 2021; Figures 2, 3). The
states include three distributed frontotemporoparietal networks
(FTP1, FTP2, FTP3), a higher-order visual network (HOV), two
early visual networks (EV1, EV2) and two sensorimotor networks
(SM1, SM2). The spatial maps associated with the states are
shown in Figure 3, Panel A.

Relating Brain States to Sleep Quality
and Cognition
For the brain-sleep analysis, we adopted a two-level procedure
(Passamonti et al., 2019; Tsvetanov et al., 2021a). In the first-
level analysis, we assessed the multidimensional relationships
between temporal characteristics of the HMM states and sleep
quality using PLS implementation in Matlab, the Mathworks
Inc. This analysis describes the linear relationships between
the two multivariate data sets by providing pairs of latent
factors, as linear combinations of the original variables that
are optimized to maximize their covariance. It is similar
to the canonical correlation analysis (CCA) used in our
previous study (Tibon et al., 2021), which instead maximizes
the correlation between the latent variables. Although both
CCA and PLS are useful to characterize relationships between
two datasets, PLS has been suggested as a more appropriate
tool for mixed datasets (Grellmann et al., 2015; Beaton
et al., 2019), as is in our case, with the continuous and
ordinal nature of the HMM and sleep data, respectively.
All variables were z-scored before being subjected to the
PLS analysis. First, we used a permutation-based PLS with
10,000 permutations (by shuffling subjects in the sleep dataset)
to relate the 4 temporal characteristics across all 8 HMM
states (Set 1, 32 variables) to the 7 sleep measures (i.e., the
seven components from the PSQI questionnaire: overall sleep
quality, sleep latency, sleep duration, sleep efficiency, sleep
disturbance, sleep medication use, and daytime dysfunction due
to sleepiness; Set 2).

Once we established the relationships between the HMM
brain measures and the sleep measures, we asked whether the
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FIGURE 2 | Overview of processing and analysis pipeline, adapted from Tibon et al. (2021).

relationship between the HMM profile and the sleep profile
(i.e., the relations between the participants’ scores on the latent
variables obtained by the PLS analysis) varied with age, using
a moderation analysis (see Tsvetanov et al., 2016, 2018, for
a similar approach with different measures). Specifically, we
constructed a second-level multiple linear model where HMM
scores (on the latent variable), age, and their interaction term
(HMM scores × age) were used as independent variables, and
sleep scores (for the paired latent variable) were used as the
dependent variable (all statistical tests were two-sided).

We then conducted another PLS analysis to relate the 32
HMM measures (Set 1) to the 13 cognitive measures (Set
2). This analysis resembles that in our previous study (Tibon
et al., 2021) but uses PLS (instead of CCA) and a somewhat
different sample (due to the exclusion of additional participants
for which sleep data were not available). Similarly to our
previous report, this analysis revealed a neural “shift” expressed
as decreased occurrence of “lower-order” brain networks, and
increased occurrence of “higher-order” networks, which was
associated with decreased fluid intelligence. The reason to repeat
this analysis in the current study was to obtain PLS scores
and loadings that would be comparable with those obtained by
the abovementioned PLS analysis, relating the HMM states to
the sleep measures. Using these comparable scores, we asked
whether the neural shift that was observed in our previous
study, is also related to the pattern of sleep quality observed
in the current study. To this end, we correlated both the

HMM loadings and the profile scores (in two separate analyses),
obtained by the first PLS analysis (i.e., which related HMM
states to sleep quality) with the HMM loadings and profile
scores obtained by the second PLS analysis (which related HMM
states to cognition). Significant correlations would indicate
that the pattern that was obtained for sleep quality and the
pattern that was obtained for cognition are associated with the
same neural pattern.

RESULTS

Relating Brain States to Sleep Measures
Our first step was to apply PLS to relate the 32 temporal
characteristics of the HMM states (four metrics for each of the
8 states) to the seven sleep measures. This analysis identified
one significant pair of latent factors (p = 0.01, based on a null
distribution of 10,000 permutations). Figure 3A presents the
loadings of this significant pair. For Set 1 (HMM data), the three
frontotemporoparietal states (FTP1, FTP2, FTP3), and one of the
sensorimotor states (SM1) showed positive loadings for the FO
and NO measures, and negative loadings for the MIL measure.
Furthermore, the first early visual state (EV1) showed negative
loadings for FO, MLT, and NO and positive loadings for MIL.
The second early visual state (EV2) displayed a similar pattern
to that of EV1 for NO and for MIL, but not for NO (in which
case the loadings for EV2 were positive). For the higher order
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FIGURE 3 | (A) Loadings obtained via the PLS analysis relating neural dynamics (HMM) measures with sleep measures. Solid outlines represent loadings greater
than | 0.2|, whereas dashed outlines represent loadings smaller than | 0.2| (see Smith et al., 2015 and Tibon et al., 2021, using the same cut-off value). Loadings for
network measures are shown in different colors, representing different types of states. HMM measures are indicated as FO (fractional occupancy, MLT (mean
lifetime), NO (number of occurrences), and MIL (mean interval length). The various states are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV
(early-visual) and SM (sensorimotor). Corresponding HMM state maps (obtained from Tibon et al., 2021) are inset. For clarity, loadings for each network are shown
separately, although in practice all equally contributed to a single PLS analysis. Loadings for the sleep measures are shown in gray (bottom-left panel). Sleep
measures are sleep quality, latency, duration, efficiency, disturbance, sleep medication use (Meds), and daytime dysfunction (DayDis). (B) Scatter plot of the bivariate
association between the loadings for the HMM measures obtained via the brain-sleep PLS analysis and the HMM measures obtained via the brain-cognition PLS
analysis. Different colors reflect different types of states (FTP, HOV, EV, or SM), and correspond to the same color coding used in Panel A. (C) Scatter plot of the
bivariate association between subject scores for the HMM brain profile obtained via the brain-sleep PLS analysis and the HMM brain profile obtained via the
brain-cognition PLS analysis. Each point represents the score for a given individual in the analysis. Age is color-coded such that darker colors represent younger
age. Two outliers were removed for the purpose of this visualization. This removal did not change the results (i.e., the correlation between these measures slightly
increased and remained highly significant, r = 0.81, p < 0.0001). In this plot, each data-point represents one participant, whereas in panel (B) above each data-point
represents one measure.

visual state (HOV) and the second sensorimotor state (SM2) most
loadings were lower than the threshold (±0.2), and those that
exceeded the threshold—NO for HOV and MLT for SM2—were
still relatively low. We therefore chose to exclude these states from
further interpretations.

For Set 2 (sleep data), all of the components showed positive
loadings (reflecting greater sleep dysfunction). The highest
loadings were obtained for sleep efficiency, followed by sleep
duration, and use of sleep medications. The lowest loadings

were obtained for daytime dysfunction due to sleepiness. Taken
together, poor sleep quality was associated with more and longer
occurrences of states involving frontotemporoparietal regions
and a state involving sensorimotor regions, and fewer, shorter
occurrences of an early visual state.

The results obtained with the PLS analysis identified a neural
shift that resembles the one related to cognitive decline as
observed in our previous study (Tibon et al., 2021). However,
before exploring this association further, we asked whether the
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relationship between the HMM brain profile and the sleep
profile differs across the lifespan, and whether it exists above
and beyond the relation between the HMM brain profile and
age. For this moderation analysis, we constructed a multiple
linear regression model that included participants’ scores for the
HMM profile, their age and the interaction (HMM profile× age)
as predictors, and participants’ scores for the sleep profile as
the dependent variable. The HMM scores were significantly
associated with sleep scores after accounting for the main effect
of age [β = 0.05, t(560) = 2.4, p = 0.017], demonstrating that
the established brain-sleep relationship was not driven solely
by age effects. The sleep scores were further associated with
age [β = −0.29, t(560) = −5.5, p < 0.001], verifying previous
findings of age-related decline in sleep quality (e.g., Gadie et al.,
2017). The interaction between age and HMM profile was not
significant [β = 0.01, t(560) = 0.63, p = 0.5]. We then repeated
the moderation analysis after including additional variables as
potential covariates. The results did not change in meaningful
way (see full details in the Supplementary Material).

Relating Brain States to Cognition
(Verification of Previous Findings)
Next, we applied PLS to relate the 32 temporal characteristics
of the HMM states (four metrics for each of the 8 states)
to the 13 cognitive measures. This verifies the results of our
previous study (Tibon et al., 2021), but uses a comparable
method and sample to those that were used here, to test the
association between HMM states and sleep. This analysis revealed
a significant pair of latent variables (p = 0.01), depicting a pattern
that highly resembled the pattern obtained in our previous study
(two additional significant pairs depicted a different pattern,
and were not explored further). The loadings obtained for this
pair are shown in Supplementary Figure 1, together with the
loadings obtained via CCA as in our previous study, in order
to allow direct comparison. Although some of the loadings
changed slightly, they were highly comparable with our previous
results. Thus, here too, we observed that greater involvement of
frontotemporoparietal states and reduced involvement of early
visual states are associated with decreased fluid intelligence.

Correspondence Between Brain Profiles
Our final step was to investigate whether the neural shift that
was associated with sleep dysfunction is the same as the one that
was associated with decreased fluid intelligence. To this end, we
correlated the HMM loadings obtained from the PLS analysis
that related the HMM states to sleep measures, with the HMM
loadings obtained from the PLS analysis that related the HMM
states to cognitive measures. The correlation between these
measures was highly significant, r = 0.83, p < 0.0001. However,
as shown in Figure 3B, some states were more similar across the
two PLS analyses than others. In particular, whereas the loadings
obtained for the frontotemporoparietal, high-order visual, and
somatosensory states were highly similar (r = 0.98, r = 92,
and r = 97, respectively), noticeable variations were observed
for the early-visual states (r = 0.64). Finally, we correlated
participants’ scores for the HMM profile obtained from the PLS

analysis that related the HMM states to sleep measures with their
scores for the HMM profile obtained from the PLS analysis that
related the HMM states to cognitive measures. The correlation
between these measures was also highly significant, r = 0.78,
p < 0.0001.

DISCUSSION

The results of our study show that transient neural dynamics,
particularly those of frontotemporoparietal and early-visual
states, are associated with sleep dysfunction. We found
that increased sleep dysfunction is associated with increased
occurrence of brain states involving “higher-order” networks and
decreased occurrence of a brain state that involves an early visual
network. Importantly, the same neural pattern was associated
with decreased fluid intelligence and increased age (originally
reported in Tibon et al., 2021, and verified in the current
study). In our previous study (Tibon et al., 2021), borrowing
from the approach that was applied to explain the posterior-
to-anterior shift with aging (PASA), commonly observed with
fMRI during task (Grady et al., 1994; West, 2000; Glisky et al.,
2001; Park et al., 2004; Raz and Rodrigue, 2006; Davis et al.,
2008; Park and Reuter-Lorenz, 2009; Grady, 2012; Nyberg et al.,
2012; Morcom and Henson, 2018), we considered two competing
accounts for the shift from “lower” to “higher” networks
that we have observed. The functional compensation hypothesis
suggests that greater activation of higher-order regions serves to
compensate for impairments in posterior brain regions, in order
to maintain levels of cognitive performance. Thus, under the
compensation account, we expect greater activation to correlate
with an attenuated age-related decrease in cognitive performance.
Alternatively, the inefficiency account suggests instead that the
increased activation in higher-order regions reflects reduced
neural efficiency or specificity. The crucial difference between
these two accounts is that, whereas the functional compensation
hypothesis predicts that the shift would correlate with better
cognitive performance, the inefficiency account predicts the
opposite pattern. Our previous findings that the neural shift
was associated with worse cognitive performance, suggested that
it represents reduced neural efficiency, thereby supporting the
latter account. The current study provides further support for the
neural inefficiency account by verifying the relations between the
neural shift and decreased cognition (observed in our previous
study) with another analytical approach, and by showing that the
neural shift is further related to another maladaptive pattern—
increased sleep dysfunction.

The relationship between brain dynamics and sleep
disturbance remained significant to other factors including
chronological age. While the brain profile was associated with
age (as was also demonstrated in our previous study, Tibon et al.,
2021), it was further associated with the sleep profile above and
beyond its relations to age. This suggests that the established
relationship between brain and sleep cannot be solely explained
by age. Notably, these results diverge from those obtained in a
recent study by Lysen et al. (2020), in which sleep parameters
were not associated with resting-state functional connectivity.
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Nevertheless, there exist important differences between the study
by Lysen et al. (2020) and the current study. Indeed, by using
dynamic measures of functional connectivity, the current study
includes another dimension that goes beyond the static measures
that were employed by Lysen et al. (2020). Another consideration
is that the hemodynamically convolved signal measured by
fMRI as in Lysen et al. (2020) is limited to low frequencies and
may be unable to detect the transient neural dynamics that we
observed here with MEG.

By using a novel data-driven method to infer brain states
from MEG data, we were able to overcome some of the
limitations of the more common use of fMRI to examine
functional connectivity, such as confounding effects of vascular
health, head motion, and the ability to examine only very
slow dynamics owing to low-frequency fluctuations of the
fMRI response. Moreover, by using multivariate analyses
to relate patterns of neural dynamics to patterns of sleep
quality and cognitive performance, we were able to investigate
multifaceted profiles that are not captured well by summary
measures and univariate analysis. Indeed, not all measures
were equally associated with the neural pattern. Specifically,
measures of fluid intelligence were highly associated with
increased occurrence “higher-order” brain states and decreased
occurrence of early visual brain states, whereas measures of
crystallized intelligence were not. The pattern of findings was
consistent with previous reports (Tibon et al., 2021). A novel
finding of the current study, was the association between
the observed neural pattern and overall increase in sleep
dysfunction. The strength of the association with individual
sleep measures varied: it was highly associated with sleep
duration, efficiency, and sleep medication use (loadings > 0.5),
moderately associated with sleep quality, latency, and disturbance
(loadings > 0.2), and only loosely associated with daytime
dysfunction due to sleepiness.

Using latent class analysis (LCA), Gadie et al. (2017)
were able to classify individuals into four different classes
representing “sleep types,” associated with distinct profiles of
“sleep symptoms.” The probability of an individual showing
the component profile associated with each class changed as a
function of age for three of these classes labeled “good sleepers,”
“inefficient sleepers,” and “delayed sleepers.” The component
profile of the class labeled “inefficient sleepers” resembled the
pattern observed in the current study (though notably, it was
also associated with increased sleep latency). This suggests that
while age is associated with a general reduction in sleep quality,
the neural shift observed in our study represents a more specific
pattern of reduction. Importantly, our study shows that the
relations between the neural shift and the sleep pattern cannot
be fully attributed to age as a moderating factor (i.e., in our
moderation analysis, these relations remained significant when
controlling for age). Thus, in addition to its relation to aging,
the neural shift is further associated with inefficient sleep patterns
that exist beyond age, throughout the entire adult lifespan.

An important factor that was associated with the neural shift
observed in the current study was usage of sleep medications
(3rd highest loadings). Interestingly, studies have shown that
some sleep medications are associated with changes in functional

connectivity. For example, in a study by Pflanz et al. (2015),
resting-state functional connectivity was investigated with fMRI,
following seven-day diazepam administration. The authors found
increased connectivity in response to diazepam administration in
the medial visual network and middle/inferior temporal network.
Furthermore, in a recent study (Frölich et al., 2020) with a
sample of older adults (aged 55–73), infusion of midazolam
resulted in increased rsfMRI functional connectivity between
the dorsal default mode network and the posterior salience
network. In the current study additional data regarding the
kind of sleep medications and/or the dosage that was used
are not readily available (the sparse data that were obtained
are reported in Table 1), nor can we infer any causal
relations between sleep medications and functional connectivity.
Therefore, potential associations between specific prescriptions
and neural patterns cannot be explored further. It is important
to note, however, that while it is unlikely that the neural
shift is solely explained by usage of sleep medications (as
other sleep measures also had substantial contribution), it is
still associated with this factor to some extent. These relations
between sleep medications and neural patterns should be
explored further in future studies, especially given our finding
that the neural pattern that is associated with increased use
of medications is linked to reduced cognitive performance and
neural inefficiency.

In the current study, we observed a strong correlation between
the loadings of the HMM measures obtained via the brain-
sleep PLS analysis, and the HMM measures obtained via the
brain-cognition PLS analysis, suggesting that they represent a
highly similar pattern. Nevertheless, not all HMM measures were
similarly comparable. In particular, while the HMM measures
describing the frontotempoparietal states were highly similar,
those describing the early-visual states were not. This is mainly
because the observed sleep pattern was only reliably related to
one of the early-visual states, whereas the observed pattern of
cognitive performance was associated with both. We speculate
that the reason for this discrepancy is that cognitive performance
depend more on the visual system than sleep quality, and are
therefore more strongly associated with particular neural patterns
that involve these regions.

One limitation of our study is that we used cross-sectional
data, which precludes direct inferences about aging. However,
we are not aware of any longitudinal MEG data on such
a large, representative population, thus our results could be
useful to generate hypotheses for future studies. The limitations
of the MEG methods used in this study are thoroughly
discussed in Tibon et al. (2021). In short, some properties
of the assumptions and application of the HMM approach
(e.g., group concatenation, Gaussian observation model, coarse
percolation of ROIs, and a priori specification of 8 states)
might result in oversimplification of the underlying neural
dynamics. Nevertheless, some level of simplification is necessary
for robust and interpretable modeling. Once the basic patterns
are established, the parameters of the models can be adjusted to
allow further optimization [see also discussion in Baker et al.
(2014) and Quinn et al. (2018)]. Moreover, the current study
used subjective reports of sleep quality. Although the PSQI
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questionnaire used for this purpose is well validated, it is yet to
be determined whether the neural pattern that we have observed
also correlates with objective measures of sleep quality (e.g.,
duration spent in Slow Wave Sleep; see review of various sleep
measures in Hokett et al., 2021). Finally, the answers to the sleep
questionnaire referred to the last month before the evaluation,
and may not accurately represent long-term sleep patterns.
Despite these limitations, our study verifies our previous findings,
and further offers novel insights on the relationships between
patterns of functional neural dynamics and sleep dysfunction in
cognitive aging.
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