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Frailty is an aging related condition, which has been defined as a state of enhanced
vulnerability to stressors, leading to a limited capacity to meet homeostatic demands.
Cognitive impairment is also frequent in older people, often accompanying frailty. Age
is the main independent risk factor for both frailty and cognitive impairment, and
compelling evidence suggests that similar age-associated mechanisms could underlie
both clinical conditions. Accordingly, it has been suggested that frailty and cognitive
impairment share common pathways, and some authors proposed “cognitive frailty”
as a single complex phenotype. Nevertheless, so far, no clear common underlying
pathways have been discovered for both conditions. microRNAs (miRNAs) have
emerged as key fine-tuning regulators in most physiological processes, as well as
pathological conditions. Importantly, miRNAs have been proposed as both peripheral
biomarkers and potential molecular factors involved in physiological and pathological
aging. In this review, we discuss the evidence linking changes of selected miRNAs
expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p,
as well as other miRNAs implicated in pathological aging, should be investigated as
potential biomarkers (and putative molecular effectors) of cognitive frailty.

Keywords: frailty, cognitive frailty, biomarkers, miRNA–microRNA, cognitive impairment, MCI (mild cognitive
impairment)

INTRODUCTION

The greatest achievement of public healthcare in the last several decades has been the large increase
in lifespan. Yet the increasing aging population has brought about new challenges to the health
system, with the mounting prevalence of geriatric conditions requiring a new general healthcare
system for people afflicted by physical and mental impairment (Beard et al., 2016; Howdon and
Rice, 2018).

In older people, frailty and cognitive impairment are commonly found together (Fabricio et al.,
2020). Frailty is a clinical syndrome with different definitions, generally referred as a state of
increased vulnerability to stressors that results from a decreased physiological reserve in multiple
organs and systems, leading to a limited capacity to meet homeostatic demands (Clegg et al.,
2013; Proietti and Cesari, 2020). Although frailty and cognitive impairment could be considered as
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distinct clinical states, converging evidence has shown a close
epidemiological association between these conditions (Halil et al.,
2015; Kiiti Borges et al., 2019; Miyamura et al., 2019). This
led to the generation of the term “cognitive frailty,” defined
as a heterogeneous clinical condition characterized by the
concomitant presence of both physical frailty and cognitive
impairment (Kelaiditi et al., 2013).

Nevertheless, the molecular mechanisms underlying cognitive
frailty are still largely unknown. microRNAs (miRNAs) are a large
family of conserved small (20–22 nucleotides) non-coding RNAs
involved in post-transcriptional regulation of gene expression.
Each miRNA targets hundreds of transcripts mainly repressing
translation or inducing mRNA degradation of target transcripts
through sequence-specific binding (Mohr and Mott, 2015).
Compelling evidence suggests that miRNAs are both involved
in physiological/pathological processes associated with aging
(Williams et al., 2017) and in the regulation of brain functions
(Kumar et al., 2017a; Nampoothiri and Rajanikant, 2017). Indeed,
miRNAs act in several biological functions, such as proliferation,
apoptosis, cell differentiation, embryogenesis, organogenesis,
signal transduction and metabolism (Alvarez-Garcia and Miska,
2005; Kloosterman and Plasterk, 2006). Thus, it should not be
surprising that miRNAs were recognized as key modulators of
virtually all physiological processes and, consequently, miRNAs
dysregulation have been reported in a multiplicity of diseases
(Figure 1; Condrat et al., 2020). In addition to their presence
inside the cells, miRNAs can be found also in extracellular fluids,
forming the so-called circulating miRNAs, which are supposed
to be involved in cell signaling and communication (Sohel,
2016). miRNAs presence in body fluids can be due to several
concomitant processes, including tissue damage, cell apoptosis
and necrosis, active release in exosomes and microvesicles, or
association with proteins (O’Brien et al., 2018).

In the present manuscript, after introducing the multiple
clinical aspects and the main cellular mechanisms proposed to
be associated with frailty and cognitive impairment, we designed
a narrative review on the studies in which miRNAs have been
proposed as peripheral circulating biomarkers for frailty or
cognitive impairment, with the final aim to identify miRNAs that
might be associated with cognitive frailty.

CLINICAL, CELLULAR, AND
MOLECULAR MECHANISMS OF
FRAILTY: THE POTENTIAL ROLE OF
miRNAs

Clinical Features of Frailty
Frailty is generally considered as a geriatric syndrome,
characterized by an excessive vulnerability to endogenous
and exogenous stressors, due to a decrease in physiological
reserves, thus leading to a high risk of developing adverse health
outcomes (Clegg et al., 2013; Proietti and Cesari, 2020).

The majority of studies are based on the definition of
frailty introduced by Fried and collaborators in 2001. The Fried
phenotype also known as the frailty phenotype model defines

frailty as a clinical syndrome in which three or more of the
following criteria are present: unintentional weight loss, fatigue
or self-reported exhaustion, weakness (poor grip strength), slow
walking speed, and reduced or absent physical activity (Fried
et al., 2001). This definition, exclusively considering the physical
domain, is most frequently used for determining “physical
frailty.” It should be mentioned that a key contribution to
physical frailty comes from sarcopenia, defined as a progressive
loss of skeletal muscle mass and strength (Ardeljan and
Hurezeanu, 2021). Sarcopenia and frailty often co-exist in older
patients, presenting a significant overlap of physical symptoms
(Martin and Ranhoff, 2020). Indeed, sarcopenia is viewed as
an essential correlate of the physical component of the frailty
phenotype, although frailty can also be present in the absence
of sarcopenia, suggesting the existence of several phenotypes of
frailty (Davies et al., 2018).

In the same year in which Fried published the clinical
criteria of physical frailty, other authors started to recognize that
frailty was not exclusively characterized by physical impairments,
but could be considered a more complex condition, involving
other functional domains. Indeed, Rockwood and Mitnitski
proposed the so-called Frailty Index (or Frailty Index of Deficit
Accumulation) (Mitnitski et al., 2001), which is based on the
concept that aging is a continuous process characterized by
several deficits (including diseases, signs, symptoms, laboratory
abnormalities, cognitive decline, and disabilities in activities of
daily living), the accumulation of which may lead to frailty.
Accordingly, the Frailty Index is defined as the proportion of
accumulated deficits, thus representing the probability of an
individual being frail (Martin and O’Halloran, 2020).

Other definitions of frailty exist, but the Fried Frailty Score and
the Frailty Index are the most frequently used in clinical practice
(Dent et al., 2016; Lekan et al., 2021).

More recently, a novel model of frailty has been proposed,
based on a multidimensional evaluation considering the
loss of harmonic interaction between multiple domains,
including genetic, biological, functional, cognitive, psychological,
and socio-economic dimensions, that ultimately leads to
homeostatic instability (Pilotto et al., 2008, 2020). This
multidimensional approach exploits the instruments of the
comprehensive geriatric assessment (CGA). Operatively,
CGA uses specific scales that explore functional disability,
cognition, depression, nutritional status, comorbidities, number
of drugs used, falls and pressure sores risk, cohabitation
status, social and welfare context. This view, considering both
multimorbidity and polypharmacy, allows for the evaluation of
multidimensional impairment of the subject and promises to
help the appropriateness of prescribing and intervention in frail
older adults (Pilotto et al., 2018).

The prevalence of frailty has been assessed in many studies
worldwide, although the results are highly variable, essentially
depending on the definition used for indicating frailty. Overall,
frailty has a prevalence estimated at around 11–16% in the
population 60 years and older (Rohrmann, 2020; O’Caoimh et al.,
2021). Frailty is more prevalent in women compared to men and
as expected, prevalence increased with age, being the highest in
subjects over 85 years (Collard et al., 2012; Rohrmann, 2020).
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FIGURE 1 | miRNAs in frailty and cognitive deficits. miRNAs play a major role in RNA silencing and post-transcriptional regulation of gene expression. miRNAs target
hundreds of transcripts to regulate various biological pathways and processes, repressing translation or inducing mRNA degradation of target transcripts through
sequence-specific binding. miRNAs are key modulators of almost all physiological processes and, consequently, miRNA dysregulation is seen in a multiplicity of
diseases, including frailty and cognitive deficits.

Cellular and Molecular Mechanisms of
Frailty
In the last years, great efforts have been made to discover the
molecular mechanisms underlying frailty. A gradual decrease
in physiological reserve occurs with physiological aging but, in
frailty, this decrease is accelerated, and homeostatic mechanisms
start to fail (Clegg et al., 2013). Although lifelong accumulation
of molecular and cellular damages is believed as a key element
of both physiological aging and frailty, the interplay among
dysfunctions in the brain, endocrine system, immune system,
and skeletal muscle functions is recognized as a main factor in
the development of frailty (Figure 2; Clegg et al., 2013). In the
following paragraphs, we resume the main systemic and cellular
processes recognized to be involved in frailty pathophysiology,
including changes in the immune system, cellular senescence, and
hormonal imbalance.

Changes in the Immune System and Related
Musculoskeletal Consequences
Aging is associated with dramatic changes in the immune system,
implying both immunosenescence (the decline in immune
function with aging), and inflammaging (a state of chronic

inflammation), which are considered to be main risk factors
for age-related diseases (Franceschi et al., 2000; Fulop et al.,
2015, 2018). Immunosenescence is characterized by altered T
and B cells responses due to a modified naïve/memory cell ratio.
Accumulation of memory T cells and reduction of peripheral
blood naïve T cells are observed as a result of developmentally
programmed thymic involution, increased serum levels of IgG
and IgA, and a poor response to newly encountered microbial
antigens (Pawelec, 2018). On the other hand, inflammaging
is characterized by increasing circulating pro-inflammatory
factors and decreasing circulatory anti-inflammatory factors
(Franceschi et al., 2018). Remarkably, frail people have both
immunosenescence (Lang et al., 2010) and inflammaging
(Soysal et al., 2016).

The immune system plays, directly and indirectly, a role in
age-associated muscle decline. Multiple immune cells have been
implicated in muscle repair and regeneration, by controlling
the local inflammatory responses and promoting muscle growth
through releasing growth factors (Xu et al., 2020). Moreover,
inflammatory cytokines have a major role in muscle homeostasis,
activating muscle breakdown to generate amino acids for
energy and cleave antigenic peptides. However, the overactive,
insufficiently regulated inflammatory response that characterizes
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FIGURE 2 | Common mechanisms underlying frailty and cognitive deficits. The high majority of mechanisms known to be involved in frailty were also implicated in
cognitive diseases, including oxidative stress, inflammaging, mitochondrial dysfunction, cellular senescence, neuroendocrine dysfunctions, and impaired neuronal
plasticity.

aging and frailty could result in loss of muscle mass and strength,
with an associated reduction in functional ability (Clegg et al.,
2013; Wilson et al., 2017). Accordingly, as already mentioned in
the introduction, sarcopenia is considered as a key component of
frailty as well as a predictor of morbidity, disability, and death in
older people (Cooper et al., 2012; Nascimento et al., 2018).

Cellular Senescence
Cellular repair and regeneration are key elements in tissue
homeostasis (Lazzeri et al., 2012). Aging is characterized by
the loss of tissue regenerative properties and the accumulation
of senescent cells, which is a defense mechanism preventing
genomic instability (Bisset and Howlett, 2019). Senescent
cells are non-dividing cells, highly metabolically active, that
gradually acquire a secretory phenotype called senescence-
associated secretory phenotype (SASP) (Cardoso et al., 2018).
SASP contains a variety of factors, including proinflammatory
and matrix modifying peptides, which negatively influence
tissue homeostasis and regeneration (Zampino et al., 2020)
and are causally linked to increased inflammaging (Korolchuk
et al., 2017). SASP has also been shown to be involved in
the pathogenesis of several age-related diseases and conditions,
including frailty (LeBrasseur et al., 2015; Schafer et al., 2020).

Senescence is associated with dysregulated mitophagy and
mitochondrial dysfunction (Chapman et al., 2019), leading to
enhanced levels of reactive oxygen species (ROS), which in
turn contribute to the development of senescent phenotype
(Korolchuk et al., 2017), age-related diseases, and frailty (El Assar
et al., 2020; Ferrucci and Zampino, 2020).

Hormonal Imbalance
During aging, hormonal axes suffer significant changes. The
endocrine system is considered particularly important in frailty,
because of its complex inter-relationships with the brain,
immune system, and skeletal muscle (Clegg and Hassan-Smith,
2018). Anabolic hormones, such as androgens and insulin-
like growth factor-1 (IGF-1), play a key role in stimulating
protein synthesis, muscle growth, and insulin secretion. Strong
evidence suggested that the levels of these hormones decline

with age (Bisset and Howlett, 2019) and their alteration have
been associated with frailty (Morley and Malmstrom, 2013).
Adrenocorticotropic Hormone (ACTH) and cortisol secretion
are also altered during aging and frailty leading to an impaired
ability to recover from stressful stimuli in older people (Yiallouris
et al., 2019). The dysregulation of multiple hormones has been
proposed as one potential mechanism underlying frailty since
preliminary evidence indicates that the cumulative burden of
hormone deficiencies in frailty may be more important than the
type of hormonal change (Bisset and Howlett, 2019).

miRNAs and Frailty
miRNAs are emerging as promising non-invasive diagnostic
and prognostic biomarkers, as well as potential therapeutic
agents (Vatic et al., 2020). Indeed, they could be used both
to help understand physiopathological processes, and as novel
therapeutic strategies allowing the simultaneous targeting of
different pathways (Cardoso et al., 2018).

The study of miRNAs is a growing area of interest in the
aging field. miRNAs regulate several biological events related
to the aging process but are also influenced by aging processes
themselves (Figure 1). At the same time, miRNAs have been
consistently linked with the main systemic and cellular processes
discussed above as associated with frailty. Indeed, some miRNAs,
defined as “inflamma-miRs,” are involved in inflammatory
pathways modulation and are differentially expressed during
inflammaging (Quinn and O’Neill, 2011; Boldin and Baltimore,
2012; Olivieri et al., 2013, 2017). miRNAs play a pivotal role also
in sarcopenia, regulating different aspects of muscle homeostasis
(Sannicandro et al., 2019; Kinser and Pincus, 2020; Yin et al.,
2020). Moreover, other miRNAs, the so-called senescence-
associated miRNAs (SA-miRs) are involved in crucial biological
processes of cellular senescence such as apoptosis, mitochondrial
metabolism, and mitochondrial dynamics (Bu et al., 2017; Geiger
and Dalgaard, 2017; Suh, 2018).

Several studies have reported differential miRNA expression
between young and older individuals without discriminating for
a frail phenotype (ElSharawy et al., 2012; Olivieri et al., 2012;
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Serna et al., 2012; Noren Hooten et al., 2013; Smith-Vikos
et al., 2016) reviewed in Chen et al. (2010) and Lai et al.
(2019). Conversely, to the best of our knowledge, only two
studies directly evaluated changes in blood plasma miRNAs in
frailty (Table 1).

Ipson and collaborators examined the changes of plasma-
derived exosome miRNA profiles in frailty, comparing young, old
robust, and frail individuals. They identified eight miRNAs that
were enriched in frailty: miR-10a-3p, miR-92a-3p, miR-185-3p,
miR-194-5p, miR-326, miR-532-5p, miR-576-5p, and miR-760
(Ipson et al., 2018). The second study evaluated the levels of three
inflammation-related miRNAs (miR-21, miR-146a, and miR-223)
and one miRNA related to the control of melatonin synthesis
(miR-483) in plasma samples of healthy adults, older robust,
and frail patients. Frail subjects had higher miR-21 levels than
controls, whereas miR-223 and miR-483 levels increased in both
aged groups (Rusanova et al., 2018).

Although very preliminary, these two studies identified
possible novel candidate biomarkers for frailty in old age.
Intriguingly, some of these miRNAs were also related to cellular
mechanisms involved in frailty pathogenesis. For example, miR-
21 is counted among inflamma-miRs and is known to target a
variety of molecules belonging to the NF-κB/NLRP3 pathways,
thus modulating the “switch on/off of inflammation (Olivieri
et al., 2013, 2021). miR-10a has been involved in inflammation
as well (Tahamtan et al., 2018), while expression of miR-
185-3p, miR-194-5p, and miR-760 have been associated with
cellular senescence and ROS production (Lee et al., 2014; Bu
et al., 2017; Xu et al., 2017; Suh, 2018; Li et al., 2020; Zhang
et al., 2021). miR-194-5p and miR-92a-3p were reported to
regulate muscle cell homeostasis (Morton et al., 2021; Shi et al.,
2021a).

Moreover, some of these frailty-related miRNAs seem to play
a major role also in neurons. Indeed, miR-326 inhibits neuronal
apoptosis and attenuates mitochondrial damage (He et al., 2020;
Huang et al., 2021). miR-532-5p showed a neuroprotective
effect reducing apoptosis, ROS production, and inflammation
in cerebral ischemia-reperfusion injury (Shi et al., 2021b), and
ischemic stroke (Mu et al., 2020), while mir-92a-3p, belonging
to the miR-17–92 family, is a synaptic-related miRNA (Siedlecki-
Wullich et al., 2021), involved in neural cells proliferation,
differentiation, and maturation (Zhang et al., 2013; Xia et al.,
2020).

COGNITIVE IMPAIRMENT: THE
POTENTIAL ROLE OF miRNAs

Clinical Features of Cognitive
Impairment
As we age, some cognitive abilities, such as language, vocabulary,
and verbal skills, remain largely unchanged but other abilities,
such as conceptual reasoning, memory, and processing speed,
can physiologically decline gradually over time (Harada et al.,
2013). Although general knowledge and crystallized intelligence
are mostly unaffected during aging, fluid intelligence, which

is the ability to learn and use new information and use it to
problem-solve, is more affected (Deary et al., 2009).

Cognitive disorders are a general umbrella term that describes
a group of conditions characterized by impairment in cognitive
abilities such as memory, problem solving, and perception
(Sachdev et al., 2013). Cognitive abilities are usually assessed
through the administration of specific tests, i.e., the mini-
mental state examination (MMSE) (Folstein et al., 1975) and
the Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005). Among cognitive disorders, mild cognitive impairment
(MCI) is increasing in attention by researchers, as demonstrated
by the introduction in the DSM-5. This entity can be identified
in presence of: (1) modest cognitive decline from a previous
level of performance in one or more cognitive domains, greater
than expected for age, without falling into the dementia range,
(2) no interference with capacity for independence in everyday
activities, (3) cognitive deficits not occurring exclusively in the
context of a delirium, and (4) cognitive deficits not explained by
another mental disorder (Ganguli, 2013; Sachdev et al., 2013).
MCI affects about 3–22% of the population over the age of 65
(Stokin et al., 2015; Sanford, 2017), symptoms may remain stable
for years, with some cases may revert to normality (Sachdev et al.,
2013), but it is estimated that about 50% of people affected by
MCI can progress to dementia, particularly Alzheimer’s disease
(AD) (Gordon and Martin, 2013).

Cellular and Molecular Mechanisms
Underlying Cognitive Impairment
Brain aging is the main predisposing factor for cognitive
impairment (Yankner et al., 2008). As for frailty, the main
mechanisms involved in cognitive disorders are also implicated
in physiological aging (Figure 2). However, while a decline
in cognitive features is expected during physiological aging,
differently from pathological aging associated with cognitive
decline, this does not result in any significant functional
impairment (Schirinzi et al., 2020).

The pathophysiological mechanisms of cognitive disorders
essentially comprise alterations of synaptic transmission,
oxidative stress, cellular senescence, and increased inflammation.

Alterations of Synaptic Function
The maintenance of synaptic function requires the preservation
of the proper synaptic structure, coordination of synaptic vesicle
release and membrane excitability, and integration of retrograde
signals from the postsynaptic terminal (Azpurua and Eaton,
2015). Aging is associated with physiological structural changes
in the brain, including the reduction of the number and function
of synapses in brain areas related to learning and memory
(Burke and Barnes, 2006; Lupien et al., 2009; Cuestas Torres
and Cardenas, 2020). However, beyond the physiological aging
processes, more generalized synaptic deficits can induce cognitive
disorders. The study of cellular mechanisms underlying cognitive
impairment highlighted the role of synaptic dysfunction and
synaptopathy, defined as an alteration of synaptic homeostasis
leading to a high risk of degeneration and synaptic loss
(Stephan et al., 2012; Skaper et al., 2017). Pathological changes
identified in synaptic dysfunction include plaque and tangle
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TABLE 1 | Summary of miRNAs associated with frailty and cognitive deficits.

miRNAs associated with frailty

Main findings Participants Sample Technologies Study

miR-10a-3p, miR-92a-3p,
miR-185-3p, miR-194-5p,
miR-326, miR-532-5p,
miR-576-5p, miR-760

Seven young control subjects (30.3 ± 5.3), seven robust older
subjects (76.0 ± 6.5), seven frail older subjects (85.6 ± 3.8)

Exosome
isolated from
the plasma

RNA-Seq Ipson et al., 2018

miR-21 22 control subjects (20.5 ± 2.4), 34 aged robust subjects
(76.6 ± 5.3), 40 aged fragile subjects (84.4 ± 5.6)

Plasma qPCR Rusanova et al.,
2018

miRNAs associated with cognitive impairment

Main findings Participants Sample Technologies Study

miR-7, miR-9, miR-125b,
miR-127-3p, mir-128,
miR-132, miR-134, miR-181a,
miR-323-3p, miR-382,
miR-370, miR-491-5p,
miR-874

Pilot study: 10 control subjects (71-85), 10 MCI subjects
(75-87). Main study: 20 young control subjects (21-50), 20 age
matched control subjects (71-85), 20 MCI subjects (75-87), 20
AD patients (63-89). Longitudinal study: 19 subjects (73-84)

Plasma qPCR Sheinerman et al.,
2012

miR-128, miR-132, miR-134,
miR-323-3p, miR-382,
miR-370, miR-491-5p,
miR-874

50 control subjects (50-82), 20 MCI subjects (51-82) Plasma qPCR Sheinerman et al.,
2013

miRNA-193b Age- and gender-matched control subjects, 43 MCI subjects
(23 females, 20 males, 63.8 ± 6.1), 51 AD patients (28 females,
23 males, 64.2 ± 6.5)

Exosome
isolated from
the serum

qPCR Liu et al., 2014a

miR-384 50 control subjects (28 females, 22 males, 63.9 ± 5.7 years),
32 MCI subjects (13 females, 19 males, 63.2 ± 6.1 years), 45
AD patients (18 females, 27 males, 64.2 ± 5.8 years)

Plasma, Serum qPCR Liu et al., 2014b

miR-200b 30 control subjects (75.2 ± 6.5), 32 MCI subjects (72.8 ± 6.1),
38 AD patients (76.2 ± 6.8)

Serum qPCR Liu et al., 2014c

miR-93, miR-143, miR-146a 123 control subjects (79.5 ± 6.8), 30 MCI subjects
(81.1 ± 6.8), 127 AD patients (79.3 ± 8.9)

Serum RNA-Seq
qPCR
validation

Dong et al., 2015

miR-107 81 control subjects (71.7 ± 5.4), 116 MCI subjects
(68.6 ± 5.3), 97 AD patients (70.1 ± 4.6)

Plasma qPCR Wang et al., 2015

miR-132, miR-206 76 control subjects (73.17 ± 6.16), 66 MCI subjects
(72.89 ± 7.59)

Serum qPCR Xie et al., 2015

miR-210 42 control subjects (23 males, 19 females, 62-85), 30 MCI
subjects (18 males, 12 female patients, 61-82), 26 AD patients
(12 males,14 females, 60-84)

Serum qPCR Zhu et al., 2015

miR-613 40 control subjects (22 females, 18 males, 63.2 ± 6.3), 32 MCI
(22 females, 20 males, 64.8 ± 7.2), 48 AD patients (26 females,
22 males, 65.5 ± 6.8)

Serum qPCR Li et al., 2016

miR-101, miR-103, miR-125b,
miR-191, miR-222

30 control subjects (70.4), 23 MCI patients (72.8) Plasma miRNA qPCR
array

Kayano et al., 2016

miR-455-3p, miR-4668-5p 14 control subjects, 16 MCI subjects, 10 AD patients Serum miRNA array
qPCR
validation

Kumar et al., 2017b

miR-30b-5p, miR-142-3p,
miR-200a-3p, miR-483-5p,
miR-486-5p, miR-502-3p

Pilot Study: six control subjects (66 ± 5), seven MCI subjects
(64.3 ± 6), seven AD patients (73.7 ± 5). Main Study: nine
control subjects (66 ± 3), eight MCI subjects (65.8 ± 7), 13 AD
patients (67.5 ± 8)

Plasma miRNA qPCR
array qPCR
validation

Nagaraj et al., 2017

miR-135a, miR-193b,
miR-384

Age- and gender-matched control subjects, 101 MCI subjects
(59 females, 42 males, 61.63 ± 7.32), 107 AD patients (66
females, 41 males, 74.15 ± 7.93)

Exosome
isolated from
the serum

qPCR Yang et al., 2018

miR-16-5p, miR-92a-3p,
miR-26b-5p, miR-106b-5p,
miR-93-5p, miR-20a-5p,
miR-320a, let-7a-5p, miR-484,
miR-615-3p, miR-18a-3p 5,
miR-7977, miR-17-5p,
miR-155-5p, miR-193b-3p,
miR-450a-1-3p, miR-887-5p

GSE63063: Cohort 1: 104 control subjects (65 +); 80 MCI
subjects (65 +), 142 AD patients (65 +). Cohort 2: 136 control
subjects (65 +), 109 MCI subjects (65 +), 139 AD patients
(65 +). GSE97760: 10 healthy controls (females, 72.1 ± 13.1),
nine AD patients (females, 79.3 ± 12.3). E-MTAB-6094: 13
control subjects (10 females, three males, 77.3 ± 6.2), 22 AD
patients (14 females, eight males, 79.4 ± 6.6)

Blood Meta-Analysis
of microarray
data

Bottero and
Potashkin, 2019

(Continued)
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TABLE 1 | (Continued)

miRNAs associated with cognitive impairment

Main findings Participants Sample Technologies Study

miR-206, miR-let-7b Discovery cohort: 31 control subjects (75.0 ± 4.7), 30 MCI
subjects (76.8 ± 4.0), 25 AD patients (84.6 ± 3.5). Longitudinal
cohort: six control subjects (74.0 ± 3.2), six MCI to dementia
subjects (77.3 ± 3.8), six stable MCI subjects (75.8 ± 3.6)

Plasma miRNA qPCR
array qPCR
validation

Kenny et al., 2019

miR-20a, miR-27a, miR-103a 215 control subjects (138 females, 77 males, 60.9 ± 9.9), 122
lower SMMSE score subjects (55 females, 67 males,
67.6 ± 9.7)

Serum qPCR Kondo et al., 2019

miR-92a-3p, miR-181c-5p
and miR-210-3p

14 control subjects (seven females, seven males,
68.29 ± 8.99), 26 MCI subjects (16 females, 10 males,
72.0 ± 8.49), 56 AD patients (41 females, 15 males,
77.77 ± 6.69),

Plasma qPCR Siedlecki-Wullich
et al., 2019

miR-140-5p, miR-197-3p,
miR-501-3p, miR-425-5p,
miR-532-5p, miR-378a-5p,
miR-411-3p, miR-181c-3p,
miR-497-5p, miR-214-3p

94 control subjects (71.79 ± 9.46), 21 MoCA < 23 score
subjects (72.29 ± 2.76)

Plasma RNA-Seq Gullett et al., 2020

miR-6764-5p, miR-6734-3p Discovery cohort GSE120584: 288 control subjects (age
71.7 ± 6.3 years, 151 males and 137 females), 32 MCI
subjects (age 75.5 ± 6.3 years, seven males and 25 females),
1,021 AD patients (age 79.2 ± 6.1 years, 307 males and 714
females). Validation cohort: four control subjects, five MCI
subjects, six AD patients

Serum/Blood Meta-Analysis
of microarray
data qPCR
validation

Qin et al., 2021

miRNAs in red were found in at least one frailty study and one study assessing cognitive function and miRNAs in blue were found in at least two studies assessing
cognitive function.
The participants column shows the demographic characteristics of the subjects included in the study in accordance with the data available in the cited works (mean age,
mean age ± SD, min–max age).
MCI, mild cognitive impairment; AD, Alzheimer’s disease; SMMSE, short Mini-Mental State Examination; MoCA score, Montreal Cognitive Assessment score.

formation, vascular pathologies, neurochemical deficits, cellular
injury, oxidative stress, mitochondrial changes, inflammation,
changes in genomic activity, disturbed protein metabolism
(Stephan et al., 2012).

Oxidative Stress and Cellular Senescence
Neurons are postmitotic polarized cells with significant energy
demands and mitochondria play a pivotal role in generating the
ATP required to support electrochemical neurotransmission,
synaptic plasticity, neural cell maintenance, and repair (Lejri
et al., 2019). Defects in mitochondrial dynamics and quality
control, together with inefficient mitochondrial transport and
distribution in synaptic compartments, have been implicated
in synaptic/neuronal degeneration and brain aging (Grimm
and Eckert, 2017; Raefsky and Mattson, 2017). Apart from
the production of energy, mitochondria are key modulators
of brain cell survival and death by controlling calcium
and redox equilibrium, producing ROS, and controlling
cell apoptosis (Mattson and Arumugam, 2018). Cellular,
biochemical, and molecular studies showed a clear link between
oxidative stress and cognitive dysfunction during aging and
age-associated neuronal diseases (Kandlur et al., 2020). Neurons
are particularly vulnerable to oxidative insults: ROS may
induce the activation of neuroinflammation and neuronal
death, with mechanisms involving glutamate excitotoxicity,
aspartate receptor signaling, and glucocorticoid receptor
activation (Grimm and Eckert, 2017). Oxidative injury can
alter brain plasticity, cell proliferation, neurogenesis, and

synaptic neurotransmission while enhancing neuronal death
and impairing normal synaptic neurotransmission (Castelli
et al., 2019). Moreover, mitochondrial dysfunctions and ROS
production trigger cell senescence of neurons and glial cells,
which in turn contributes to changes in morphological and
functional alterations associated with synaptopathy (Morley,
2018; Toricelli et al., 2021). Indeed, senescent cells secrete
pro-inflammatory SASP factors and disrupt the cell-cell contacts
needed for the structural and functional neuron–glial interaction
that maintains neuronal homeostasis (Chinta et al., 2015).

Inflammation
The central nervous system is traditionally thought of as an
immunologically privileged space, isolated from the immune
system, and separated from peripheral immune cells that
are unable to cross the blood-brain barrier. However, it is
now accepted that there is a wide and constant bidirectional
communication between the peripheral immune system and the
central nervous system (Engelhardt et al., 2017). Indeed, it has
been demonstrated that signals from a systemic inflammatory
condition may contribute to brain immune cell population
activation, which in turn may accelerate neuronal degeneration
and/or cognitive decline, leading to exacerbation of a clinical
condition (Perry, 2004). Although neuroinflammation serves
several fundamental roles in the brain structure and function,
chronic inflammation may instead cause an exaggerated response
(Tangestani Fard and Stough, 2019). Resident glial cells, including
microglia and astrocytes, become hyperactivated in response to
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inflammatory stimuli and sustain a high-level production of
proinflammatory cytokines, chemokines, secondary messengers,
and ROS (Shabab et al., 2017; Slota and Booth, 2019). This
altered inflammatory status may contribute to the onset of
cognitive impairment in older people and enhances the state of
vulnerability to environmental challenges (Brivio et al., 2019).

miRNAs and Cognitive Impairment
miRNAs have been shown to play a major role in the
brain as key regulators of neuronal development from neural
progenitor cells, cell migration, neuronal polarization, and
synapse formation (Nampoothiri and Rajanikant, 2017; Rajman
and Schratt, 2017; Esteves et al., 2020). miRNAs can also
modulate neuroinflammation (Thounaojam et al., 2013; Sarkar
et al., 2019; Slota and Booth, 2019), formation of ROS,
mitochondrial function, and cellular senescence (Bigagli et al.,
2016; Konovalova et al., 2019; Catanesi et al., 2020; Figure 1).
Accordingly, it has been suggested that cognitive dysfunctions
in aging may be predicted by selected alterations of miRNAs
expression (Danka Mohammed et al., 2017; Hernandez-Rapp
et al., 2017). Recently, the involvement of miRNAs in cognitive
disorders has been extensively studied, measuring their levels
in different body fluids, such as plasma, serum, urine, and
cerebrospinal fluid (Grasso et al., 2014; Basak et al., 2016).

Changes in miRNA expression have been correlated with
cognitive performance and decline.

Kondo and collaborators examined the association between
cognitive function and serum levels of six miRNAs (miR-let-7d,
miR-17, miR-20a, miR-27a, miR-34a, miR-103a) in 337 Japanese
subjects who had never been diagnosed with dementia. This
study identified a positive correlation between the serum levels of
miR-20a, miR-27a, and miR-103a and MMSE scores. Thus, low
serum miR-20a, miR-27a, and miR-103a levels were significantly
associated with cognitive deficits and were proposed as markers
of early-stage cognitive decline (Kondo et al., 2019).

A recent study utilized machine learning approaches as a
broad cognitive screening instrument to determine whether
miRNAs could be proposed as blood-based biomarkers
of cognitive aging (Gullett et al., 2020). Top 10 most
important miRNAs for predicting total cognitive performance
include miR-140-5p, miR-197-3p, miR-501-3p, miR-425-5p,
miR-532-5p, miR-378a-5p, miR-411-3p, miR-181c-3p, miR-
497-5p, miR-214-3p. Instead, three miRNAs (miR-140-5p,
miR-197-3p, miR-501-3p) were top-ranked predictors of
multiple cognitive outcomes (including fluid, crystallized, and
overall cognition).

Furthermore, several studies addressed alterations of miRNA
profiles in the blood of MCI patients and proposed miRNAs
as specific diagnostic and/or prognostic biomarkers of MCI
(reviewed in Piscopo et al., 2019). Overall, more than forty
miRNAs were reported to discriminate between MCI and
healthy controls in different studies, although only miR-206 was
consistently found as differentially expressed in at least two
reports (Piscopo et al., 2019). Specific studies on MCI patients
are reported in Table 1.

Moreover, a recent meta-analysis of six microarray datasets
identified 17 miRNAs as dysregulated in both MCI and AD

[miR-16-5p, miR-92a-3p, miR-26b-5p, miR-106b-5p, miR-93-
5p, miR-20a-5p, miR-320a, let-7a-5p, miR-484, miR-615-3p,miR-
18a-3p 5, miR-7977, miR-17-5p, miR-155-5p, miR-193b-3p, miR-
450a-1-3p, miR-887-5p, suggesting a key involvement in the
modulation of cognitive function (Bottero and Potashkin, 2019)].

Other miRNAs were instead proposed as early biomarkers of
MCI in the preclinical stage, or for prodromal AD. miRNA pairs
in the miR-132 family (miR-128/miR-491-5p, miR-132/miR-
491-5p, and mir-874/miR-491-5p) and the miR-134 family
(miR-134/miR-370, miR-323-3p/miR-370, and miR-382/miR-
370), although not differentiating MCI from AD, were proposed
as predictive markers for the onset of MCI (Sheinerman et al.,
2012, 2013). On the other hand, Kenny and collaborators,
based on a 4-year longitudinal evaluation, found increased miR-
206 levels in MCI patients at high risk of dementia (tested
with the Clinical Dementia Rating, CDR) and in MCI patients
with deteriorating MMSE scores. Indeed, stable MCI subjects
displayed little to no change in expression over the years,
while MCI patients who progressed toward dementia displayed
significantly higher levels of miR-206 (Kenny et al., 2019).
Moreover, while upregulation of miR-92a, miR-181c, and miR-
210 levels was reported in plasma of both MCI and AD patients,
the signature values in the plasma of the MCI patients that
progressed to AD were found to be significantly higher than
the values found in the MCI patients that did not progress
to dementia (Siedlecki-Wullich et al., 2019). Altogether, these
data suggest that plasma levels of miR-206, miR-92a-3p, miR-
181c-5p, and miR-210-3p could be used as molecular signatures
of AD progression in MCI. Finally, very recently, Qin and
collaborators, identified two miRNAs, miR-6764-5p and miR-
6734-3p, as remarkably upregulated in both MCI and AD subjects
compared to controls (Qin et al., 2021).

miRNAs reported in at least two studies as associated with
cognitive function are highlighted in blue in Table 1.

COGNITIVE FRAILTY: THE POTENTIAL
ROLE OF miRNAs

Cognitive Frailty: Definitions
Several shreds of evidence demonstrated that frailty and
cognitive impairment are intrinsically related, since frailty is
known to increase risk of cognitive decline, and cognitive
decline may increase risk of frailty and have an impact on
the trajectory of frailty (as recent reviews see Kiiti Borges
et al., 2019; Welstead et al., 2020; Bu et al., 2021). The
concept of simultaneous presence of frailty and cognitive
impairment or cognitive frailty was initially proposed in 2013
by the International Institute of Nutrition and Aging and
the International Geriatrics Association (IANA), defined by
the presence of physical frailty and cognitive impairment,
and exclusion of concurrent dementia (Kelaiditi et al., 2013).
Although the concept of cognitive frailty is well accepted and
has been shown to be associated with poor outcomes, there
is yet no consensus on the actual definition (Merchant et al.,
2021). Indeed, multiple definitions and terminologies have been
proposed, including Motoric Cognitive Risk Syndrome (MCR),
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defined as presence of both slow gait speed and subjective
cognitive complaints and absence of concurrent dementia or
mobility disability (Verghese et al., 2014), or Physio-cognitive
Decline Syndrome (PCDS), defined by slowness and/or weakness
and ≥ 1.5 SD below age/sex/education-matched norms in any
cognitive function domain (Chen and Arai, 2020). Moreover,
Ruan and collaborators proposed a new classification of cognitive
frailty, in which they distinguish “reversible” from “potential
reversible” cognitive frailty. Reversible cognitive frailty was
defined by the presence of physical/pre-physical frailty and
subjective cognitive decline and/or positive fluid and imaging
biomarkers of amyloid accumulation and neurodegeneration,
while potentially reversible cognitive frailty was defined by
the presence of physical/pre-physical frailty and cognitive
impairment (Ruan et al., 2015).

Nevertheless, recent evidence suggests that, regardless
of the specific definition, cognitive frailty is a target for
preventing disability and dementia through multi-domain
interventions, considering physical, nutritional, cognitive
as well as psychological domains, with the final aim to
modify the trajectory of frailty and cognitive decline toward
positive outcomes.

Even though epidemiological and clinical studies have
demonstrated a close relationship between frailty and cognitive
diseases, the common/concurring molecular mechanisms are
still largely unknown. Nevertheless, it has been proposed that
abnormalities in biological processes related to physiological
aging could play a major role in both conditions (Ruan
et al., 2015; Searle and Rockwood, 2015). In particular,
chronic inflammation, immunosenescence, imbalanced energy
metabolism, mitochondrial dysfunction, oxidative stress, and
neuroendocrine dysfunctions may be all involved in cognitive
frailty (Figure 2; Mulero et al., 2011; Robertson et al., 2013; Fulop
et al., 2018; Sargent et al., 2018; Fabricio et al., 2020; Ma and Chan,
2020).

Putative Role of miRNAs in Cognitive
Frailty
As regards the possible role of miRNAs in the pathogenesis
of frailty with cognitive impairment and/or their potential use
as biomarkers, to date, no studies are available considering
cognitive frailty as a single condition. Furthermore, as reported
above, there are only two studies analyzing changes in blood
miRNAs specifically in frail subjects, while more evidence has
been collected regarding cognitive impairment.

Although the limited information available makes it hard to
depict a comprehensive picture of possible common miRNAs
involved in both frailty and cognitive impairment, our review
effort identified two miRNAs which were reported to be
both differentially expressed in frail people and associated
with cognitive deficits: miR-92a-3p and miR-532-5p (Table 1).
Mature miR-92a-3p belongs to miR-17-92 cluster, located on
chromosome 13 in the human genome. The miR-17-92 cluster,
containing six miRNA precursors (miR-17, miR-18a, miR-19a,
miR-20a, miR-19b-1, and miR-92a), is highly conserved among
vertebrates and has fundamental roles during development

(Concepcion et al., 2012; Mogilyansky and Rigoutsos, 2013). miR-
92a-3p is a synaptic-related miRNA (Siedlecki-Wullich et al.,
2021), involved in neural cells proliferation, differentiation, and
maturation (Zhang et al., 2013; Xia et al., 2020). Intriguingly, it
has been recently identified as a peripheral biomarker in different
diseases, among which systemic lupus erythematosus (Kim
et al., 2016), schizophrenia (Ma et al., 2018), and amyotrophic
lateral sclerosis (Joilin et al., 2020). Moreover, miR-92a-3p was
reported to increase ROS in mice (Gou et al., 2018), to regulates
cartilage development and homeostasis (Mao et al., 2018), to
participate in age-related pathophysiological processes including
atherosclerosis and lipid metabolism (Loyer et al., 2014), cerebral
white matter impairment (He et al., 2017), and cancer (Reis et al.,
2020; Wang et al., 2021).

Mature miR-532-5p derived from pre-miR-532 which is
localized on chromosome X in the human genome. miR-532-
5p showed a neuroprotective effect reducing apoptosis, ROS
production, and inflammation in cerebral ischemia-reperfusion
injury (Shi et al., 2021b), and ischemic stroke (Mu et al., 2020).
Moreover it has been implicated in inflammation (Yan et al.,
2020), osteoporosis (Guo et al., 2020), as well as in tumor
progression (Kim et al., 2021; Yu et al., 2021).

CONCLUSION

In this review, we explored the possible use of miRNAs as
both potential biomarkers and molecular effectors of frailty and
cognitive impairment. We discussed the evidence linking changes
in circulating miRNAs expression with these clinical conditions,
with the final aim of shedding light on miRNAs that might be
associated with cognitive frailty.

One of the limits of this study is that evidence giving a clear
mechanistic link between frailty (or cognitive impairment) and
miRNAs is still missing. Moreover. to date, only two works
analyzed miRNAs expression in the plasma of frail patients, as
potential peripheral biomarkers of frailty (Ipson et al., 2018;
Rusanova et al., 2018). No further studies have been performed
to evaluate the molecular mechanisms leading to changes in
miRNAs expression in frail subjects, nor analyzing a possible
involvement of these miRNAs in frailty etiopathogenesis. The
same could be stated for studies linking miRNAs with cognitive
impairment. Nevertheless, some of the miRNAs found to be
differentially expressed in the blood of frail or cognitively
impaired subjects have been reported to play a key role in cellular
mechanisms associated with frailty and cognitive deficits, such as
cellular senescence, oxidative stress, mitochondrial dysfunction,
or inflammation (Thounaojam et al., 2013; Bigagli et al., 2016; Bu
et al., 2017; Suh, 2018; Tahamtan et al., 2018; Konovalova et al.,
2019; Sarkar et al., 2019; Slota and Booth, 2019; Catanesi et al.,
2020). This suggests that miRNAs could be considered more than
peripheral biomarkers, fostering the idea that miRNAs could be
mechanistically involved in the etiogenesis of both frailty and
cognitive impairment.

In this context, although more studies are needed, existing
literature may suggest a potential use of iR-92a-3p and miR-
532-5p not only as biomarkers of cognitive frailty, but also as
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in the context of the study of molecular mechanisms of frailty
and cognitive diseases. Besides miR-92a-3p and miR-532-5p,
other miRNAs consistently implicated in cellular mechanisms
underlying both frailty and cognitive dysfunction, such for
instance inflamma-miRs, SA-miRs, and miRNAs regulating
oxidative processes, could have potential as biomarkers and
molecular effectors of cognitive frailty as well.

In conclusion, although many works have proposed miRNAs
as biomarkers of frailty and cognitive decline, the study of
differentially expressed miRNAs in frailty is at its infancy, and
reports on cognitive frailty are still missing. The identification
of selected miRNAs differentially modulated in cognitive frailty
could pave the way for innovative diagnostic and prognostic
strategies, which may help the clinical management of people
suffering from this condition, improving their life expectancy and
quality of life. Furthermore, the study of miRNAs involvement in
etiological mechanisms of cognitive frailty represents a promising

tool for the identification of new targets for the development of
novel therapeutic approaches, thus modeling health trajectories
toward positive outcomes.
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