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Impairment of social cognition (SC) skills such as recognition and attribution of intentions
and affective states of others (Theory of Mind, ToM) has been evidenced in Alzheimer’s
Disease (AD). This study investigated the neuropsychological, neuroanatomical and
brain-functional underpinnings of SC processing to obtain an understanding of the
social neurophenotype in early probable AD. Forty-six patients with mild cognitive
impairment and mild probable AD underwent SC assessment including emotion
recognition (Ekman-60-faces task) and cognitive and affective ToM (Reading-the-Mind-
in-the-Eyes test and Story-based Empathy task). Linear models tested the association
between SC scores and neuropsychological measures, grey matter maps and large-
scale functional networks activity. The executive domain had the most predominant
association with SC scores in the cognitive profile. Grey matter volume of the anterior
cingulate, orbitofrontal, temporoparietal junction (TPJ), superior temporal, and cerebellar
cortices were associated with ToM. Social cognition scores were associated with lower
connectivity of the default-mode network with the prefrontal cortex. The right fronto-
parietal network displayed higher inter-network connectivity in the right TPJ and insula
while the salience network showed lower inter-network connectivity with the left TPJ
and insula. Connectivity coupling alterations of executive-attentional networks may
support default mode social-cognitive-associated decline through the recruitment of
frontal executive mechanisms.
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INTRODUCTION

Theory of Mind (ToM) is defined as self-originating inferences
about other people’s intentions, beliefs and emotions that
guide decision making and modulate behaviour in accordance
with established social standards (Baron-Cohen et al., 1985).
ToM can be further divided into cognitive ToM (attribution
of intentions/beliefs) and affective ToM (emotional states)
that are said to be controlled by partly independent neural
systems (Kalbe et al., 2010; Abu-Akel and Shamay-Tsoory,
2011). Moreover, a second affective component of ToM, known
as “cognitive empathy” (Dvash and Shamay-Tsoory, 2014),
introduced as an element of connection between the former two,
would be responsible for successful emotion recognition at the
basis of affective mental state attributions (Mier et al., 2010;
Mitchell and Phillips, 2015).

Impairment of ToM has been evidenced in Alzheimer’s disease
(AD) (Freedman et al., 2013; Moreau et al., 2016; Chainay
and Gaubert, 2020; Kessels et al., 2021), and may occur early,
even at the prodromal stage of disease (Bora and Yener, 2017;
Yildirim et al., 2020). However, this deterioration is not as
severe as that observed in other neurocognitive domains such
as for example in memory (Dodich et al., 2016). Furthermore,
AD displays significantly less severe social cognition deficits
compared with other forms of neurodegeneration, such as Lewy
body dementia (Heitz et al., 2016), or the behavioural variant
of fronto-temporal dementia (Bora et al., 2015). Therefore,
social cognition abilities have been proposed as useful cognitive
markers for discriminating among different forms of dementia
(Bertoux et al., 2016; Dodich et al., 2018).

The most prevalent behavioural framework posits that
detriments of ToM and social cognition in AD are a by-product
of cognitive dysfunction, particularly in the executive domain
(Dodich et al., 2016; Ramanan et al., 2017; Christidi et al., 2018;
Torres et al., 2019). Based on this outline, social cognition
impairment would initially hinder complex functions that
rely heavily on attention, reasoning and decision-making (i.e.,
detection of second-order false beliefs), compromising more
basic social functions (i.e., recognition of basic emotions)
at later stages (Castelli et al., 2011; García-Rodríguez et al.,
2012). Furthermore, the neural substrates sustaining ToM
and social cognition in AD are still poorly understood
and differ across cognitive or affective social skills (Poletti
et al., 2012). Research carried out in the general population
has identified a candidate neural network associated with
mentalising skills that encompasses the medial prefrontal
cortex (mPFC), temporoparietal junction (TPJ), posterior
superior temporal sulcus and precuneus (Gallagher and
Frith, 2003; Saxe and Wexler, 2005; Frith and Frith, 2006;
Schurz et al., 2014). Some of these regions have also been
found actively involved in supporting executive functions
in the prodromal to mild AD continuum (Habeck et al.,
2012). Moreover, most of these regions contribute to a
large-scale system known as default-mode network (DMN)
(Schilbach et al., 2008; Li et al., 2014). Although the DMN
is a “task-negative” network that deactivates during task
engagement, its computational hubs also contribute to

“task-positive” activation patterns in support of executive
control (Wade et al., 2018).

Early dysfunction of the DMN is a distinguishable
pathophysiological hallmark of early stage AD, even at the
prodromal Mild Cognitive Impairment (MCI) stage (Greicius
et al., 2004; Zhang et al., 2012; Badhwar et al., 2017). As a result,
additional executive/attentional resources might be required
to demonstrate an adequate social cognitive performance in
the presence of a down-regulated DMN. Limited neuroimaging
studies have investigated the neural substrate of ToM abilities
in the prodromal MCI and mild AD clinical phases, and
these studies have mainly focussed on cognitive ToM. A first
task-based fMRI study found reduced activation of fronto-
temporal and subcortical regions in amnestic MCI patients
during false belief tasks (Baglio et al., 2012). A second research
study explored volumetric indices of brain structure in AD
and found a significant association between mentalising skills
and volume of hippocampal and cerebellar regions (Synn et al.,
2018). A third study focussed on regional metabolic patterns
found an association between the left TPJ and ToM false-belief
reasoning in mild AD patients (Le Bouc et al., 2012). Lastly, a
SPECT perfusion study found an association between ToM (false
belief) and blood flow in the posterior cingulate (Takenoshita
et al., 2020). Although these studies have provided useful insights
on the possible neural underpinnings of ToM deficits in AD,
their considerable level of heterogeneity indicates that the overall
emerging pattern is still inconclusive.

The present study aimed thus to test the association
between ToM and associated social cognition abilities and
behavioural, structural and functional outcomes in order to
provide an integrative social brain/neurocognitive profile across
the prodromal to mild AD continuum and expand the limited
data available in the current literature on this population. To our
knowledge, this is the first comprehensive study to investigate
domain-specific cognitive and affective ToM correlates in early-
AD individuals through multi-task social cognition assessment
and multi-modality neuroimaging acquisition.

In the context of the above-mentioned findings on normal
individuals and AD patients, we hypothesised that ToM abilities
in early-AD would be associated with volumetric integrity of
fronto-parietal and limbic structures that represent the territory
where the DMN is expressed. We also hypothesised that social
cognition and complex ToM performance, at a functional level,
would be supported by executive and attentional networks (and
associated cognitive functions) in the presence of a vulnerable
DMN.

MATERIALS AND METHODS

Participants
Forty-six patients were recruited for this study from our
outpatient memory clinic neuropsychology services. All
participants included in this study met clinical criteria for a
diagnosis of MCI (n = 37, MMSE range 24–30) (Petersen,
2004; Albert et al., 2011) or mild stage probable AD dementia
(n = 9, MMSE range 21–23), following the National Institute on
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Ageing criteria (McKhann et al., 2011; Jack et al., 2018). Initial
diagnosis was confirmed for all patients through comprehensive
longitudinal clinical neurological and neuropsychological
assessment with support of structural magnetic resonance
imaging (MRI) scans and clinical monitoring occurring over a
period of at least four years.

A sample of 34 healthy controls (16 males and 18 females)
matched for demographic characteristics and who did not
meet any of the exclusion criteria set for the study was also
included for comparison of patients’ neuropsychological and
neuroimaging profiles. This sample of healthy participants was
not involved in the social cognition experiments and was
included for the sole purpose of demonstrating that the patterns
of cognitive deficits and neuroimaging abnormalities of patients
were typical of early AD.

Main exclusion criteria for all study participants were set
as follows, and were used to rule out the interfering effects of
other types of neurological conditions: presence of cognitive
fluctuations or neuropsychiatric symptoms compatible with
types of neurodegenerative dementia diagnosis other than
Alzheimer’s disease, acute/chronic cerebrovascular disease
or history of transient ischaemic attacks, uncontrolled brain
seizures or history of epilepsy, peripheral neuropathy disorders,
neuropsychiatric or other neural conditions not compatible
with our study as detected by MRI, cardiovascular and
gastroenterological conditions such as sick-sinus syndrome or
peptic ulcer, metabolic disorders such as abnormal levels of B12,
folates or thyroid-stimulating hormone, pharmacological
interventions such as pre-recruitment treatment with
memantine/cholinesterase inhibitors, psychotropic medication,
pharmacological components displaying important organic
adverse effects or medications used in other research protocols
and presence of major disabilities that could impact negatively on
cognitive or everyday life functions. All participants undergoing
chronic treatment for other severe non-neurological diseases
were on stable dosage during data acquisition.

Ethical approval was granted by the Regional Ethics
Committee (Protocol number 2014.08). Written informed
consent was obtained from all participants.

Social Cognition and
Neuropsychological Assessment
The Ekman 60 Faces (Ek-60F) test quantifies the participant’s
ability to recognise six basic human emotions from faces:
happiness, sadness, anger, disgust, fear and surprise. The
assessment consists of 60 black-and-white trials taken from the
Picture and Facial Affect series (Ekman and Friesen, 1976). One
point is assigned to every correct answer and the global score
is calculated by summing up all points for a maximum total of
60. A cut-off value of 37 has been established in a standardised
normative sample (Dodich et al., 2014). This test engages
recognition of facial expressions that prompts executive-related
decision-making processes. These rely on semantic processing of
visual cues and verbal descriptions and, in turn, allow labelling
and assimilation of others’ affective mental states (Phillips et al.,
2010; Circelli et al., 2013).

Secondly, the Reading the Mind in the Eyes Test (RMET)
consists of 36 close-up photographs of the eye region
(Baron-Cohen et al., 2001). The participant is asked to choose
the word that best matches the emotion or thinking process
reflected in the eyes’ expression among four alternatives. This
test provides a valid measure of mentalising skills, in particular
of the affective ToM component of emotional state recognition
and processing (Serafin and Surian, 2004; Vellante et al., 2013).

Lastly, the Story-based Empathy Task (SET) consists of
non-verbal cartoon-vignettes designed to assess the ability to
attribute intentions (Intention Attribution, SET-IA) or emotional
states (Emotion Attribution, SET-EA) to others. SET-IA and SET-
EA performance sub-scores were used as proxies of cognitive and
affective ToM, respectively. A third sub-section of this test serves
as a control condition. The task is composed by a total of 18 story
trials, 6 for each sub-task, and the instructions are to choose the
most suitable epilogue for each story. The global score (SET-GS)
is calculated by summing up all sub-scores (Cerami et al., 2014;
Dodich et al., 2015).

Additionally, each participant completed a comprehensive
neuropsychological testing battery for a detailed portrayal of
cognitive performance. The Mini-Mental State Examination
(MMSE) served as an overall indicator of cognitive performance.
Memory functioning was assessed with the Prose Memory test
(immediate and 10-min delayed recall) and with the Rey-
Osterrieth Complex Figure (10-min delayed recall) for verbal
and visuo-spatial long-term memory, respectively. The Category
Fluency test (3 categories, 1-min each) was used as test of
semantic memory. The Verbal Paired Associates Learning test
was also administered as an additional measure of verbal memory
assessing the interplay between episodic and semantic processing.
Semantic processing was further explored via the administration
of the WAIS-Similarities sub-test, and lexical recall was assessed
with the Confrontation Naming test. The Digit Span test (forward
and backward) was then administered to assess short-term
and working memory, respectively. Executive functions were
examined through the Stroop test to assess inhibition and
attention, the Letter Fluency test to assess cognitive control in
lexical access and the Raven’s Coloured Progressive Matrices
to assess abstract reasoning. The copy of the Rey-Osterrieth
Complex Figure was used as a measure of visuo-constructive
abilities. Finally, the Token test and the Digit Cancellation test
were used as measures of language comprehension and visual
selective attention, respectively. The selected cognitive battery
had been validated in the local memory clinic, showing to be
particularly sensitive to the impairment reflective of the early
stages of AD (Wakefield et al., 2014).

Magnetic Resonance Imaging
Acquisition and Processing
Neuroanatomical T1-weighted Turbo Field Echo images were
acquired with a Philips Achieva 1.5 T scanner with the following
parameters: Voxel size: 1.1 × 1.1 × 0.6 mm3; repetition time
7.4 ms; echo delay time 3.4 ms; flip angle 8◦; field of view
250 mm; matrix size 256 × 256 × 124. Functional resting-
state Echo-planar images were acquired with the following
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parameters: Voxel size: 3.28 × 3.28 × 6.00 mm3; repetition
time 2 s; echo delay time 50 ms; flip angle 90◦; field of
view 230 mm; matrix size 64 × 64. Two hundred and
forty volumes were acquired, preceded by 10 dummy scans
to allow the scanner to reach equilibrium; each volume
consisted of 20 slices acquired axially and contiguously, in
ascending order.

Structural voxel-based morphometry (VBM) analysis
was carried out with the most updated standard VBM
procedures available in Statistical Parametric Mapping (SPM)
12 software (Wellcome Centre for Human Neuroimaging,
London, United Kingdom). Firstly, scans were reoriented and
segmented into grey matter, white matter and cerebrospinal fluid
tissue density maps. Secondly, images were normalised to the
Montreal Neurological Institute (MNI) space and modulated.
Lastly, images were smoothed with an 8-mm full-width at half
maximum Gaussian kernel. Quantification of global tissue map
volumes was carried out with the get_totals script1 to calculate
total intracranial volumes and thus account for overall head
size variability (Peelle et al., 2012). Hippocampal volumes were
obtained through the STEPS automated process2 that allows
accurate multi-template segmentation of bilateral grey-matter
hippocampal contours from the native-space T1-weighted
images (Jorge Cardoso et al., 2013).

Resting-state functional scans were pre-processed via a
standard pipeline (Postema et al., 2019) that included the
following steps: slice timing, to standardise single-subject time-
related discrepancies within each volume; spatial realignment
to adjust for linear and rotational head motion; spatial
normalisation of images to an echo-planar imaging template
(during which voxel size was resized to 2 mm3); temporal
filtering (0.01 – 0.1 Hz) to reduce artefact-related signal not
associated with neural activity; and, finally, a 6-mm Gaussian

1http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
2http://cmictig.cs.ucl.ac.uk/nifyweb/

kernel smoothing to maximise signal-to-noise ratio. Images were
then elaborated with an independent component analysis (ICA)
to extract functional connectivity patterns reflecting major large-
scale brain networks (Beckmann et al., 2005). The GIFT toolbox
(v1.3i3) was used for this purpose. The Infomax optimisation
algorithm was chosen and the number of components to be
extracted was set to 20, as a reliable amount that typically
allows the extraction of the fundamental resting-state human
connectivity networks (Wang and Li, 2015).

Five networks were selected, namely, the anterior DMN
(aDMN), the posterior DMN (pDMN), the left and right
fronto-parietal networks and the salience network, due to
their established involvement in cognitive functioning (Bressler
and Menon, 2010). Component selection was carried out
independently (with 100% agreement) by three raters (JMVB,
MDM and AV) based on the visual recognition of their
topographical features. Sources of variability, such as in-scanner
motion parameters, were discarded during the ICA process by
separating maps that represent signal dependent neural networks
from artefact-related components.

Statistical Analyses
Demographics, social cognition and basic neuropsychological
scores were analysed with IBM SPSS Statistics 24 software for
Windows (SPSS Inc., Chicago, IL, United States). The Shapiro-
Wilk test for normality performed on the residuals of the outcome
variables of interest showed non-normal distributions for most
of the models. Firstly, Mann-Whitney U statistics was used
to compare the neuropsychological profile of our sample and
that of the healthy matched control group. A non-parametric
correlation model was run to establish the degree of association
among the various social sub-scores and quantify inter-test
reliability. Subsequently, a non-parametric partial correlation
analysis was carried out between social cognition and basic

3https://trendscenter.org/software/gift/

FIGURE 1 | Statistical whole-brain grey matter volumetric comparison between the participant sample (n = 46) and a control group (n = 34) showing atrophy in
medial temporal lobe structures consistent with a probable AD aetiology.
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neuropsychological scores. Significance was set at a Bonferroni-
corrected p (0.05/15) = 0.003.

An initial structural VBM whole brain t-test analysis was
carried out between the scans of the patient sample and those
of the sample of healthy matched controls. Voxel-based multiple
regression statistical models were then carried out testing the
association between social cognition indices and cerebral grey-
matter maps. An uncorrected cluster-forming threshold of
p < 0.005 was used and clusters surviving a Family Wise
Error (FWE) corrected threshold of p < 0.05 were retained
as significant. Peak region coordinates were transformed from
MNI space to Talairach stereotactic space with the Talairach
client software and Lancaster transformation method (Lancaster
et al., 1997, 2000). To maximise consistency, all extracted
large-scale network maps were modelled independently as a
function of the target proxies of social cognition, along the
same methodological lines as in the voxel-based morphometry
multiple regressions. Only patients were included in the social
cognition correlation models.

All inferential imaging models in the present study
were controlled for age (Fox and Schott, 2004); years of
education, as a proxy of cognitive reserve (Fratiglioni and
Wang, 2007); total intracranial volume, to account for
head size (Peelle et al., 2012), and normalised hippocampal
volumes (Jorge Cardoso et al., 2013), to control for a
distinctive marker of regional disease-related degeneration.
Neuropsychological partial correlation models were
controlled for age, years of education and normalised
hippocampal volumes. Details on exact p-values adopted
in each set of inferential models are reported at the
bottom of each table.

RESULTS

Whole brain comparison of baseline structural scans of
all patients with structural scans of age- and education-
matched healthy controls (mean age 74.73, SD 6.96,

TABLE 1 | Demographic characteristics and cognitive profile of the patient sample (n = 46) and healthy sample.

Variable Patient sample (n = 46) Mean/(SD) Healthy sample (n = 34) Mean/(SD) p-value

Demographic data

Gender, n (%) 17 M (37%): 29 F (63%) 16 M (47%): 18 F (53%) 0.52

Age (years) 75.33 (7) 74.73 (6.96) 0.73

Years of education 9.54 (3.86) 9.94 (3.99) 0.60

Neuropsychological data

MMSE 25.95 (2.61) 28.73 (1.39) 0.001*

Letter fluency 26.65 (12.24) 32.70 (11.23) 0.023*

Category fluency 27.61 (12.33) 36.64 (8.89) 0.001*

Prose memory immediate 6.61 (3.69) 9.91 (3.30) 0.001*

Prose memory delayed 7.09 (5.20) 12.79 (4.68) 0.001*

Rey-Osterrieth Complex Figure copy 25.27 (9.07) 32.23 (3.19) 0.001*

Rey-Osterrieth Complex Figure recall 6.15 (4.87) 13.42 (5.33) 0.001*

Digit span forward 5.33 (0.84) 5.70 (0.90) 0.05*

Digit span backward 3.66 (0.99) 3.85 (0.82) 0.20

Digit cancellation 42.65 (9.99) 50.26 (7.14) 0.001*

WAIS-Similarities 14.85 (4.66) 19.82 (4.47) 0.001*

Verbal Paired Associates Learning 8.05 (3.85) 11.63 (3.44) 0.001*

Confrontation naming 16.58 (3.33) 18.38 (2.01) 0.004*

Token test 31.43 (2.70) 34.12 (1.98) 0.001*

Raven’s Coloured Progressive Matrices 23.67 (5.97) 28.44 (4.0) 0.001*

*Non-parametric Mann-Whitney U significant results reported as p < 0.05. MMSE: Mini Mental State Examination. M: Male. F: Female.

TABLE 2 | Non-parametric correlations among social cognition measures.

Social cognition inter-domain correlations

Mean/(SD) RMET Ek-60F SET-GS

RMET 19.89/(5.86) -

Ek-60F 39.80/(8.95) ρ = 0.672/p = 0.001* -

SET – GS 13.48/(3.55) ρ = 0.348/p = 0.012* ρ = 0.493/p = 0.001* -

*Significant results are reported at a p (0.05/3) < 0.017 after correction for multiple comparisons.
Ek-60F: Ekman 60 Faces test; RMET: Reading the Mind in the Eyes Test; SD: Standard deviation; SET-GS: Story-based Empathy Task Global Score. Correlation models
were controlled for age, years of education and normalised hippocampal volume ratio.
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p = 0.73; mean years of education 9.94, SD 3.99,
p = 0.60) showed smaller grey matter volumes in bilateral
medial temporal cortices, supportive of a probable AD
aetiology (Figure 1).

Similar comparisons of functional brain networks
maps showed a profile of functional alterations
typical of probable AD (see Supplementary Material,
Supplementary Figures 1, 2, and Supplementary Table 1

for a detailed description and graphical representation
of these results).

Associations Between Social Cognition
and Neuropsychological Scores
Demographic and neuropsychological profile details are
summarised in Table 1. Statistical comparisons showed

TABLE 3 | Non-parametric correlations between social cognition and neuropsychological measures.

Social cognition correlations

RMETa Ek-60Fa SET-GSab

MMSE ρ = 0.518/p = 0.001* ρ = 0.554/p = 0.001* ρ = 0.404/p = 0.007

Letter fluency ρ = 0.607/p = 0.001* ρ = 0.442/p = 0.003* ρ = 0.361/p = 0.017

Category fluency ρ = 0.631/p = 0.001* ρ = 0.301/p = 0.050 ρ = 0.333/p = 0.029

Prose memory immediate ρ = 0.193/p = 0.215 ρ = 0.043/p = 0.786 ρ = 0.251/p = 0.105

Prose memory delayed ρ = 0.345/p = 0.023 ρ = 0.246/p = 0.112 ρ = 0.167/p = 0.283

Rey-Osterrieth Complex Figure copy ρ = 0.400/p = 0.008 ρ = 0.197/p = 0.205 ρ = 0.218/p = 0.160

Rey-Osterrieth Complex Figure recall ρ = 0.187/p = 0.230 ρ = 0.057/p = 0.715 ρ = 0.011/p = 0.946

Digit span forward ρ = 0.299/p = 0.052 ρ = 0.399/p = 0.008 ρ = 0.361/p = 0.017

Digit span backward ρ = 0.447/p = 0.003* ρ = 0.439/p = 0.003* ρ = 0.425/p = 0.004

Digit cancellation ρ = 0.577/p = 0.001* ρ = 0.551/p = 0.001* ρ = 0.388/p = 0.010

WAIS-Similarities ρ = 0.491/p = 0.001* ρ = 0.330/p = 0.031 ρ = 0.245/p = 0.113

Verbal Paired Associates Learning ρ = 0.199/p = 0.200 ρ = 0.077/p = 0.624 ρ = 0.054/p = 0.732

Confrontation naming ρ = 0.486/p = 0.001* ρ = 0.338/p = 0.027 ρ = 0.247/p = 0.110

Token test ρ = 0.383/p = 0.011 ρ = 0.496/p = 0.001* ρ = 0.209/p = 0.178

Raven’s Coloured Progressive Matrices ρ = 0.450/p = 0.002* ρ = 0.273/p = 0.076 ρ = 0.299/p = 0.051

*Significant results are only reported as p (0.05/15) < 0.003 after correction for multiple comparisons.
aCorrelation models were controlled for age, years of education and normalised hippocampal volume.
bThe SET-GS test showed no significant correlations.
Ek-60F: Ekman 60 Faces test; MMSE: Mini-Mental State Examination; RMET: Reading the Mind in the Eyes Test; SD: Standard deviation; SET-GS: Story-based empathy
task global.

FIGURE 2 | Positive correlations between residual grey matter volume and RMET outcomes.
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group differences compatible with a cognitive decline of the
probable AD type.

All social cognition scores were correlated among each other
(Table 2). Associations between social cognition scores and
basic neuropsychological scores are displayed in Table 3. Overall
cognitive performance, measured with the MMSE, was positively
correlated with the RMET (ρ = 0.518, p = 0.001) and the Ek-
60F tests (ρ = 0.554, p = 0.001). The RMET also correlated with
performance on the Letter Fluency test (ρ = 0.607, p = 0.001),
Category Fluency test (ρ = 0.631, p = 0.001), Digit Cancellation
test (ρ = 0.577, p = 0.001), Raven’s Coloured Progressive Matrices
(ρ = 0.450, p = 0.002), WAIS Similarities test (ρ = 0.491,
p = 0.001), the Digit Span Backward (ρ = 0.447, p = 0.003)
and the Confrontation Naming test (ρ = 0.486, p = 0.001). The
Ek-60F test was positively correlated with the Letter Fluency
test (ρ = 0.442, p = 0.003), Digit Cancellation test (ρ = 0.551,
p = 0.001), Digit Span Backward (ρ = 0.439, p = 0.003) and
with the Token test (ρ = 0.496, p = 0.001). Finally, none of
the SET scores showed significant correlations with scores on
neuropsychological tests.

Association Between Social Cognition
Scores and Grey Matter Volume
A positive association between RMET scores and grey matter
volume was found in the left anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC) (BA11), middle temporal gyrus,
middle occipital gyrus, thalamus, caudate and cerebellum; in the
right inferior lateral frontal cortex, inferior and middle temporal
gyri, temporoparietal junction (BA39), superior occipital gyrus;
and in the bilateral superior temporal sulcus (BA21/22) (Figure 2
and Table 4). While no significant results emerged from the
analysis of SET-GS scores, performance on the SET-EA sub-test
was positively associated with grey matter in the left cerebellum

(Figure 3 and Table 5). No significant volumetric associations
were found with the Ek-60F test.

Associations Between Social Cognition
Scores and Resting-State Brain MRI
Function
Outcomes from the multiple regression models between
large-scale network connectivity maps and social cognition scores
are displayed in Figure 4 and Table 6. No significant results were
found with the SET-GS or any of its sub-tests.

Firstly, the Ek-60F test showed a significant positive
association with strength of functional connectivity of the right
fronto-parietal network (r-FPN) in the right insula (BA13)
and TPJ (BA39/40). In contrast, this test displayed a negative
association with connectivity of the salience network in the
left TPJ (BA40) and of the pDMN in the left precentral gyrus
(BA6) and anterior prefrontal cortex (BA10). Similarly, a negative
association was found between the RMET and functional
connectivity of the aDMN in the right anterior prefrontal cortex
(BA9/10) and of the salience network in the left precentral gyrus
(BA6), claustrum and insula (BA13).

DISCUSSION

This study established the neuropsychological, structural
and functional connectivity associations of social cognition
and ToM abilities in the prodromal to mild stages of
probable AD.

Associations Between Social Cognition
Skills and Neuropsychological Profiling
Significant positive associations were found between
neuropsychological profiles and the Ek-60F and RMET, proxies

TABLE 4 | Grey matter clusters of significant correlation for the RMET.

Peak-based localisation (BA)a HS Cluster extent FWE corrected p-value* Z Score MNI coordinates

X y z

Anterior cingulate cortex (BA 32) L 6854 0.001 4.56 –20 21 –30

Inferior frontal gyrus (BA 45) R 4.52 58 33 4

Rectal gyrus (BA 11) L 4.20 –10 22 –28

Middle temporal gyrus (BA 21) R 1750 0.009 4.46 69 –28 –21

Inferior temporal gyrus (BA 20) R 3.86 62 –44 –27

Inferior temporal gyrus (BA 21) R 3.35 63 –54 –8

Superior occipital gyrus (BA 19) R 3918 0.001 4.46 42 –82 27

Angular gyrus (BA 39) R 4.30 48 –72 32

Middle temporal gyrus (BA 19) R 4.14 52 –80 6

Middle temporal gyrus (BA 22) L 2473 0.002 3.99 –69 –44 0

Cerebellum L 3.79 –51 –42 –33

Middle occipital gyrus (BA 37) L 3.60 –54 –66 –12

Thalamus L 1554 0.013 3.76 –14 –33 4

Caudate L 3.43 –12 9 10

*Threshold of significance defined at p = 0.005.
a Inferior frontal lateral cortex: Brodmann area 45. Orbitofrontal cortex: Brodmann area 11. Superior temporal sulcus: Brodmann areas 21/22. Temporoparietal junction:
Brodmann area 39.
BA: Brodmann area; FWE: Family Wise Error; HS: Hemispheric side; L: Left; MNI: Montreal Neurological Institute; R: Right; RMET: Reading the Mind in the Eye Test.
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FIGURE 3 | Regions that displayed a positive correlation between the SET-EA scores and grey matter volume.

TABLE 5 | Grey matter clusters of significant correlation for the SET-EA.

Peak-based localisation HS Cluster extent FWE corrected p-value* Z Score MNI coordinates

x y z

Cerebellum: Uvula L 2167 0.004 5.03 –20 –86 –33

Cerebellum: Declive L 3.40 –33 –78 –28

Cerebellum L 2.81 –28 –75 –52

*Threshold of significance defined at p = 0.005.
FWE: Family Wise Error; HS: Hemispheric side; L: Left; MNI: Montreal Neurological Institute; SET-EA: Story-based Empathy task: Emotion Attribution sub-task.

measures of recognition and processing of affective mental states
(Valle et al., 2015). Performance on both tests was associated with
overall cognitive levels, working-memory, executive functions
and selective attention scores. A link between socio-cognitive
abilities and global cognition has been consistently documented
in AD (Cuerva et al., 2001; Phillips et al., 2010; Freedman et al.,
2013; Torres et al., 2015). Selective attention is central to social
cognition, as it supports decision-making, elicited by processing
of verbal information that is typical of social interactions and
by visual recognition and labelling of facial expressions that
are central to activating affective connotations (Phillips et al.,
2010; García-Rodríguez et al., 2012; Circelli et al., 2013; Hot
et al., 2013). Therefore, selective attention modulates responses
arising from mental representations, including those of others
(Leslie et al., 2004). Moreover, memory decline in AD may
dictate a need for increased supply of attentional and executive
resources that would have to be channelled toward independent
cognitive processes occurring concomitantly during ToM tasks
(García-Rodríguez et al., 2012).

Performance on the Ek-60F was also correlated with verbal
comprehension, while the RMET showed associations with
proxies of semantic memory, language and executive functions.
Semantic memory mechanisms are essential for recognising and
attributing mental states in unfamiliar environments (Ciaramelli
et al., 2013). The association between social cognition and aspects
of language, semantic memory, comprehension and reasoning

may reflect the early ontogenesis of mentalising abilities in
support of communication during childhood development
(Miller, 2006). The inherent and indissoluble link between
communication and the social need of human collaboration
is of aid to understand the patients’ functional decline (Falk
and Bassett, 2017). A deteriorating relation between non-verbal
affective processing and verbal communication, in fact, may
signpost the onset of social disconnection between patient
and carer, and may lead to build-up of burden in the carer
(Martinez et al., 2018).

Our data provide support to the premise that executive
functions are closely linked to social cognition in AD (Ramanan
et al., 2017; Lucena et al., 2020). Firstly, performance on the
WAIS-Similarities test, which relies on verbal reasoning but
is also supported by executive processes (Woo et al., 2010),
was shown to be associated with affective ToM (Miguel et al.,
2017). Moreover, verbal reasoning is linked to cognitive ToM
scores when AD patients are asked to solve tasks based on
false beliefs (Zaitchik et al., 2004; Takenoshita et al., 2018).
Secondly, verbal fluency is associated with affective ToM in
non-clinical populations (Saltzman et al., 2000; Ahmed and
Stephen Miller, 2011), and AD (Laisney et al., 2013; Chainay
and Gaubert, 2020; Yildirim et al., 2020). Lastly, abstract
reasoning is also considered a proxy of executive functions
(Diamond, 2013), and has been associated with ToM in AD
(Cuerva et al., 2001). Consolidation of reasoning and attentional
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FIGURE 4 | Negative (Ek-60F, green; RMET, blue), and positive (Ek-60F, red) correlations between functional connectivity of the anterior default mode network
(aDMN), posterior default mode network (pDMN), salience network (SN), right fronto-parietal network (r-FPN) and social cognition scores.

functions may contribute to shape the internal thoughts used to
create social inferential representations linked to self-awareness
(Demetriou et al., 2018).

Associations Between Social Cognition
Skills and Brain Structure
The significant findings that emerged from the model of
affective ToM scores (RMET) showed consistency with known
neuroanatomical ToM core regions (Abu-Akel and Shamay-
Tsoory, 2011; Schurz et al., 2014; Van Overwalle et al., 2014).

Emerged as a crucial region associated with performance
on the RMET, the left ACC shows higher functional task-
based activation during ToM performance in MCI individuals
compared to controls (Baglio et al., 2012). Similarly, Sapey-
Triomphe et al. (2015) showed positive associations between
volumes of the left ACC and right OFC and proxies of affective
processing measured through an emotion recognition task. In
early-AD, alterations in the left ACC underpin deterioration
in self-awareness (Amanzio et al., 2011; Valera-Bermejo et al.,
2020), and sustain the creation of complex self-other brain
representations (Amodio and Frith, 2006). In addition to the
ACC, affective ToM was also associated with the left OFC. Since
patients presenting with selective focal damage of this region
manifest affective ToM deficits, it has been suggested that this

structure might be involved in social-related decision making
(Jonker et al., 2017). Lastly, the inferior frontal cortex, detected
in our results, has been found to show activation during affective
ToM tasks in healthy individuals (Schlaffke et al., 2015).

The right TPJ displayed the largest association with affective
ToM in the present study, an area considered essential for ToM
abilities (Saxe and Wexler, 2005; Perner et al., 2006; Aichhorn
et al., 2009; Schurz et al., 2014; Krall et al., 2015). Integrity
of the right TPJ, which in its parietal portion is also a key
node of the DMN, has shown to be predictive of ToM thinking
in ageing (Hughes et al., 2019). The contralateral portion of
the TPJ has also been particularly associated with ToM in
AD. Dermody et al. (2016) reported an association between
grey matter in the left TPJ and assessment of perspective-
taking empathetic processing in AD patients. Likewise, Kumfor
et al. (2017) found similar associations when evaluating
emotions, including clusters within the left TPJ. Moreover,
hypometabolism in the left TPJ is greater in AD patients than
in fronto-temporal dementia in relation to ToM performance
(Le Bouc et al., 2012).

Prefrontal and parietal areas may contribute, conjointly, to
the processes of self-perspective inhibition (for which the frontal
cortex may play a major role), and of affective recognition by
integrating inferential representations and creating attribution
of others’ beliefs (that would be instead sustained by the
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TABLE 6 | Clusters of significant correlation between social cognition scores and functional connectivity of the aDMN, r-FPN and salience network.

Peak-based localisation (BA) HS Cluster extent FWE corrected p-value* Z Score MNI coordinates

x y z

Right fronto-parietal network (r-FPN)

Ek-60F (+)

Inferior parietal lobule (BA 40) R 243 0.049 4.65 66 –36 32

Angular gyrus (BA 39) R 3.37 54 –62 26

Insula (BA 13) R 3.56 50 –38 22

Anterior default mode network (aDMN)

RMET (-)

Middle frontal gyrus (BA 9) R 256 0.040 4.06 24 34 24

Superior frontal gyrus (BA 10) R 3.75 22 58 20

Middle frontal gyrus (BA 9) R 3.72 22 42 20

Posterior default mode network (pDMN)

Ek-60F (-)

Precentral gyrus (BA 4) L 507 0.001 5.07 –48 –12 42

Precentral gyrus (BA 6) L 3.74 –50 –6 34

Precentral gyrus (BA 6) L 3.34 –34 –16 38

Superior frontal gyrus (BA 10) L 411 0.002 4.86 –20 52 28

Middle frontal gyrus (BA 10) L 4.63 –28 44 18

Salience network

Ek-60F (-)

Supramarginal gyrus (BA 40) L 275 0.024 3.83 –50 –48 36

Supramarginal gyrus (BA 40) L 3.56 –44 –42 34

Inferior parietal lobule (BA 40) L 3.56 –48 –52 44

RMET (-)

Precentral gyrus (BA 6) L 342 0.007 5.23 –32 –16 34

Insula (BA 13) L 3.47 –38 –8 26

Claustrum L 4.50 –30 –6 16

*Threshold of significance defined at p = 0.005.
(-) = negative correlation; (+) = positive correlation; BA: Brodmann area; Ek-60F: Ekman 60 Faces test; FWE: Family Wise Error; HS: Hemispheric side; L: Left; MNI:
Montreal Neurological Institute; R: Right; RMET: Reading the Mind in the Eye Test.

TPJ) (Saxe and Kanwisher, 2003; Le Bouc et al., 2012).
In this context, patients with prefrontal or temporoparietal
lesions have been shown to underperform during social
cognition and ToM tasks (Rowe et al., 2001; Samson et al.,
2004).

Associations with the occipital cortex have been evidenced
during ToM performance (Otti et al., 2015), and they may
reflect a prerequisite visual attribute processing to initiate
affective processing. Lastly, subcortical bilateral volumetric
associations between the cerebellum and affective ToM
(SET-EA) provide insights on the cumulative research that
demonstrates the substantial contribution of cerebellar
cortices to social cognition abilities (Schmahmann, 2019), a
contribution that seems to be crucial for high level abstraction,
mirrored-based motor tasks and executive processing (Van
Overwalle et al., 2014). In AD patients, there has been
significant evidence of cerebellar implications in ToM
functions, possibly as a structure that supports cognitive
coordination during switching between one’s own and others’

mental states (Baglio et al., 2012; Dermody et al., 2016;
Synn et al., 2018).

Associations Between Social Cognition
Skills and Brain Function
Patterns of resting-state connectivity showed associations with
affective recognition and processing in the main large-scale
networks supportive of cognition: DMN, r-FPN (central
executive) and salience network (Bressler and Menon, 2010). In
early-AD, selective pathological vulnerability is shown by the
DMN (Greicius et al., 2004; Broyd et al., 2009; Eyler et al.,
2019), that is the network most tightly associated with ToM
performance (Mars et al., 2012; Li et al., 2014).

Firstly, scores of emotion recognition and processing (Ek-60F
and RMET) were negatively correlated with strength of
functional connectivity of the anterior and posterior DMN in the
left and right dorsomedial prefrontal cortex, respectively. In this
context, social cognition impairment has been found in patients
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with mPFC lesions (Bird et al., 2004). In early AD, decreased
DMN connectivity within the mPFC might reflect redistribution
of cognitive resources to other cognitive networks that support
social cognitive functions.

Secondly, functional connectivity within the salience network
showed a negative association with emotion recognition and
processing (Ek-60F and RMET) in the left TPJ, left precentral
gyrus and insula. In this context, previous research has shown
that the left TPJ displays less connectivity during processing
of salient stimuli (Kucyi et al., 2012). Additionally, impairment
in the left TPJ has been associated with reduced mentalising
performance in AD (Le Bouc et al., 2012; Dermody et al., 2016;
Kumfor et al., 2017). Therefore, the salience network, essential
in brain functional organisation of internally/externally directed
thought processes (Corbetta et al., 2008) might have a modulatory
role by down-regulating inter-network coupling with the left
TPJ to foster functional shifting and facilitate increasing of
connectivity of other networks harboured within the right TPJ.
Networks in charge of modulating self-internal/others-external
attentional resources could adapt to sustain social cognition
performance (Lieberman, 2007).

Lastly, connectivity strength within the r-FPN showed a
positive association with emotion recognition (Ek-60F) in the
right TPJ and right insula. Increased bilateral activation of
these regions has been linked to affective and facial recognition
(Fusar-Poli et al., 2009), in addition to mentalising (Saxe and
Wexler, 2005). Our results shed light on the involvement
of the TPJ and insular cortex into a network supporting
affective recognition and processing during social cognition.
This intercommunication between social cognitive and executive
networks accentuates the crucial contribution of executive
functional resources in support of affective processing. In the
context of AD, Chen et al. (2019) found stronger functional
coupling between the salience and fronto-parietal network in
MCI patients. In addition, hypermodulation of the central
executive fronto-parietal network in the context of salience
alterations has been found in the MCI population (Chand
et al., 2017). Our results showed that lower connectivity of the
left insula in the salience network, but higher inter-network
connectivity of the right insula with the right fronto-parietal
network, were associated with social cognition performance.
Stronger inter-network connectivity between the insular hub of
the salience network and the executive fronto-parietal network
may be explained in the context of a dysfunctional DMN in early-
AD. The fronto-parietal network has been proposed to serve as
a supplementary system ancillary to the DMN in the regulation
of introspection and self-awareness based on executive reasoning
of complex social representations (Dixon et al., 2018). These
modulations in network dynamics might reflect a combination
of adaptive and maladaptive processes at play in support of
behavioural response in a system grossly depleted by advancing
neurodegeneration.

Limitations
A possible limitation may arise from the choice of combining
patients with different disease severity levels. To account for
differences in disease severity, a correction factor was included

in the analyses to control for the influence of severity of
neurodegeneration, i.e., a proxy of hippocampal integrity.
A second potential limitation may be our decision to implement
three different social cognitive measures that might not rely on
shared neural substrates. The presence of variable results across
the three instruments, however, may reflect the heterogeneous
nature of affective abilities and ToM, whereby the outcome
of the assessments is complementary rather than capturing a
single construct.

CONCLUSION

In summary, our results support a modular “social cognitive
network” that relies on multiple-network intercommunication
while engaging in social-cognitive tasks (Chiong et al., 2013).
Based on the present cognitive and neuroimaging data, we
suggest that patients in the prodromal to mild stages of
probable AD rely significantly on executive resources to
sustain affective recognition and processing as a possible
adaptive effect to support behavioural performance in
response to neurodegeneration. This finding could provide
insights about the lack of substantial social deficits in
early-AD. Brain executive networks, which are expressed
in neural territories relatively spared by AD pathology
in the early disease phases, may compensate for network
dysfunction affecting those systems sustaining mentalisation,
i.e., inherent DMN breakdown, providing the necessary
attentional/executive support to sustain the attribution of
self-other representations.

Differences in brain laterality, evidenced in regions
associated with affective social processing (Schurz et al.,
2014), demonstrated lower functional connectivity in the left
insula and TPJ but stronger connectivity in the right insula
and TPJ, establishing, therefore, the essential contribution
of right-sided brain resources for optimal socio-affective
performance in early-AD patients. We propose that the right
insular cortex, an integrative core region of emotion recognition
and processing (Kurth et al., 2010), may function as a structure
responsible for affective modulation that arbitrates network
coupling in the context of a possible compensatory up-regulation
of the central executive network during ToM performance,
supported by increased connectivity in the right TPJ. The
characterisation of a social cognitive profile in early-AD
could provide insights on the impact of neurodegeneration
over social cognition networks and provide a supportive
explanation for the heterogeneity of behavioural, structural and
functional social cognition results in AD compared with other
neurodegenerative conditions (Poletti et al., 2012; Christidi et al.,
2018; Cotter et al., 2018).
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