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Background: There are no obvious clinical signs and symptoms in the early stages
of Alzheimer’s disease (AD), and most patients usually have mild cognitive impairment
(MCI) before diagnosis. Therefore, early diagnosis of AD is very critical. This paper mainly
discusses the blood biomarkers of AD patients and uses machine learning methods to
study the changes of blood transcriptome during the development of AD and to search
for potential blood biomarkers for AD.

Methods: Individualized blood mRNA expression data of 711 patients were
downloaded from the GEO database, including the control group (CON) (238 patients),
MCI (189 patients), and AD (284 patients). Firstly, we analyzed the subcellular
localization, protein types and enrichment pathways of the differentially expressed
mRNAs in each group, and established an artificial intelligence individualized diagnostic
model. Furthermore, the XCell tool was used to analyze the blood mRNA expression
data and obtain blood cell composition and quantitative data. Ratio characteristics
were established for mRNA and XCell data. Feature engineering operations such as
collinearity and importance analysis were performed on all features to obtain the best
feature solicitation. Finally, four machine learning algorithms, including linear support
vector machine (SVM), Adaboost, random forest and artificial neural network, were used
to model the optimal feature combinations and evaluate their classification performance
in the test set.

Results: Through feature engineering screening, the best feature collection was
obtained. Moreover, the artificial intelligence individualized diagnosis model established
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based on this method achieved a classification accuracy of 91.59% in the test
set. The area under curve (AUC) of CON, MCI, and AD were 0.9746, 0.9536, and
0.9807, respectively.

Conclusion: The results of cell homeostasis analysis suggested that the homeostasis
of Natural killer T cell (NKT) might be related to AD, and the homeostasis of Granulocyte
macrophage progenitor (GMP) might be one of the reasons for AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, artificial intelligence, predictive diagnostics, blood
biomarkers

INTRODUCTION

Alzheimer’s disease (AD) is the most common chronic
neurodegenerative disease (Burns and Iliffe, 2009). According
to the World Health Organization, dementia affects 5–8 percent
of people over 60 years. As of September 2020, there were
about 50 million people with dementia, with 10 million new
cases per year worldwide (Word Health Organization, 2020).
Through establishing an individualized diagnosis model for
patients with AD in its early onset, it is expected to realize
early intervention for patients. At present, some studies have
reported artificial intelligence models for AD diagnosis (Lunnon
et al., 2013; Li et al., 2018; Way et al., 2018; Ludwig et al.,
2019; Stamate et al., 2019). For example, in a European cohort
study, a machine-learning approach identified 347 plasma
metabolites associated with early diagnosis in AD with an area
under curve (AUC) of about 0.85 (Stamate et al., 2019). In a
study of circulating non-coding RNA in patients with AD, 21
disease-related features were identified using RT-qPCR, and
18 strongly correlated features were extracted using statistical
learning methods to establish a machine learning model, with
an AUC of about 0.86 (Herrero-Labrador et al., 2020). In an AD
classifier based on texture features, the researchers modeled the
high-level semantic features of MRI with an accuracy of about
85% (So et al., 2019).

However, these studies are based on the dichotomous task,
ignoring the correlation degree of occurrence and development
of the control (CON), mild cognitive impairment (MCI), and
AD themselves, and the accuracy is not high. In this study,
we incorporated blood mRNA expression data to establish two
highly accurate artificial intelligence individualized diagnostic
models for CON, MCI, and AD classification problems.
Although a few studies analyze and/or predict these three
disease states simultaneously, most of these studies are based
on medical image data (Rogers et al., 2012). Furthermore,
we analyzed the blood cells composition corresponding to
blood mRNA profiles. We revealed some of the underlying
mechanisms during the early pathogenesis of AD by analyzing
the imbalance of five major groups of cells, including Epithelial,
Hematopoietic stem cells (HSC), Lymphoid, Myeloid and
Stroma. The overall landscape of blood cell imbalance lays

Abbreviations: PD, Parkinson’s disease; AD, Alzhaimer’s disease; MCI, mild
cognitive impairment; GEO, Gene Expression Omnibus; AUC, area under curve;
IPA, ingenuity pathway analysis; DEGs, differentially expressed genes.

a solid foundation for further mechanism research and
individualized therapy.

MATERIALS AND METHODS

Data Source and Preprocessing
We downloaded two sets of peripheral whole blood mRNA
expression profiles from the GEO database1, including GSE63060
and GSE63061 (Sood et al., 2015). These two sets of data were
detected by the platforms Illumina HumanHT-12 V3.0 and
Illumina HumanHT-12 V4.0, respectively. After deleting fuzzy
samples and finally keep 329 samples and 382 samples, a total
of 711 samples (Table 1). We have carried out standardized
processing in the quantity of the data set. The method is as
follows: We mark the sample as x, and the expression value
of the j_th gene in the sample as. First, calculate the sum
of the expression values of all genes in the i_th sample, and
then calculate the j_th gene in the i_th sample Divide by the

sum in turn
(
xij
/∑n

j=1 xij

)
, and finally multiply the obtained

value by 106. The specific calculation formula is as follows:

x
′

ij =

(
xij
/∑n

j=1 xij

)
∗ 106.

Identification of Differentially Expressed
Genes
The differential expression genes (DEGs) were recognized with
the limma Bioconductor package (limma package v.3.24.15)

1https://www.ncbi.nlm.nih.gov/geo/

TABLE 1 | Data distribution diagram.

Datasets Disease
type

Sample
numbers

Age [Median
(Range)]

Sex (%
male)

GSE63061 CON 104 73 (52−87) 40.38

MCI 80 74 (63−90) 51.25

AD 145 76 (58−88) 31.72

GSE63060 CON 134 74 (63−91) 39.55

MCI 109 79 (57−100) 40.37

AD 139 79 (59−95) 38.85
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in R (Smyth, 2005). The limma package use T-statistic as a
discriminant that can eliminate the irrelevant genes. Limma
package was use to findmarker by each two groups such as AD vs.
CON, MCI vs. CON, and AD vs. MCI. We used the FDR-method
correction for multiple testing.

Feature Importance Selection
We use recursive feature elimination cross-validation to
eliminate low importance. First, we choose a linear model to
calculate all feature coefficients. Then we make a loop to eliminate
low coefficient features until the number of features meets our
requirements. This method is provided in the RFECV function,
which is in the scikit-learn module in Python (Pedregosa et al.,
2011; Buitinck et al., 2013). We use the default parameters of
the RFECV function in the sklearn.feature_selection module,
dependent variables are all genes, and independent variables are
the results of the numerical transformation of CON, MCI, and
AD set to 0, 1, and 2, respectively.

Machine Learning Model
The machine learning models we use include linear models and
non-linear models. Among them, the linear model uses a linear
support vector machine (SVM) (Cortes and Vapnik, 1995), and
the non-linear model includes AdaBoost (Freund and Schapire,
1997), random forest (Liaw and Wiener, 2002), and Artificial
neural networks. Among them, linear SVM, random forest,
AdaBoost use the function of the scikit-learn module of Python,
Artificial neural networks use PyTorch module of Python. In
the above four models, we use default parameters for the first
three models; for Artificial neural networks, we use a feedforward
neural network composed of three hidden layers and one output
layer. The number of neurons in each hidden layer is 64, 32, and
16, respectively. The number of neurons in the output layer is
3, and the neurons in the output layer represent the probability
values of various samples.

XCell Analysis
XCell is a web analysis tool developed by the University of
California, enriched based on gene expression data2 to obtain the
Cell-Type score data (Aran et al., 2017). This method is based on
gene signature, which is used to infer 64 types of immune cells
and stromal cells.

Disease Ontology Semantic and
Enrichment Analysis
R (version 4.0.2) package DOSE (Yu et al., 2015) to analyze which
diseases are related to the final features that we found. There are
five functions in the DOSE package which we use is enriched
function. Using cumulative hypergeometric model to identify
which disease ontology that genes are mainly enriched in, where
k is the number of genes related to the disease ontology; r is the
number of all genes which are involved in all diseases that are
collected in the DOSE package, and s is the number of genes

2https://xcell.ucsf.edu/

which we have identified, the formula is as follows:

P = 1−
s−1∑
i=0

(
k
i

)(
r − k
k− i

)
(
k
r

)
Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (IPA) is a bioinformatics analysis
method. We use IPA method to locate features and annotate
functions. P-value < 0.05 was considered a statistically significant
threshold. Z-value greater than 0 is defined as active, and less than
0 is defined as suppressed. The activation z-score of a hypothesis
is calculated from the regulation directions and gene expression
changes of the genes in the overlap of data set and hypothesis-
regulated genes. It assesses whether there is a significant pattern
match between predicted and observed up- and down-regulation,
and also predicts the activation state of the regulator (z > 0:
activating, z < 0: inhibiting). The activation z-score is given by:

Zscore =
(N+ + N−)
√
N

with N+(N−) being the number of genes where the product of
net-effect and observed direction of gene regulation is greater
(less) than zero, and N = N++N− (Krämer et al., 2014).

RESULTS

Establishment and Analysis Process of
Individualized Diagnosis Model for
Overall Alzheimer’s Disease Patients
Based on blood mRNA expression profiles, we analyzed, screened
and obtained two sets of potential blood biomarkers for early
AD diagnosis and developed two different model frameworks
(Figure 1). Individualized blood mRNA expression data of 711
patients were downloaded from the GEO database, including
238 CONs, 189 MCIs, and 284 AD patients. Firstly, we analyzed
the subcellular localization, protein types and enrichment
pathways of the differentially expressed mRNAs in each
group, and established an artificial intelligence individualized
diagnostic model. Furthermore, the XCell tool was used to
analyze the blood mRNA expression data to obtain blood
cell composition and quantitative data. New ratio features
were established for mRNA and XCell data. Co-linearity and
importance analysis of all features were carried out to obtain
the optimal feature solicitation. Finally, four machine learning
algorithms, including linear SVM, Adaboost, random forest
and artificial neural network, were used to established models
for the optimal feature set and evaluate their classification
performance in test sets.

Next, we analyzed the effects of different mRNAs on
the levels of different disease groups (MCI and AD) in
terms of subcellular localization, coding protein type and
enrichment function. First, we normalized the data and then
identified 5,625 differentially expressed genes (DEGs) between
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FIGURE 1 | Diagram of the workflow in this study. A total of 711 individual peripheral blood mRNA data were included for modeling and analysis, including 238
control (CON), 189 MCI and 284 AD samples. For Model 1, we performed feature engineering, training and testing. For Model 2, XCell cell composition was first
decomposed from blood mRNA data, then feature ratios were calculated using XCell and mRNA features, respectively. We combined mRNA, XCell, mRNA-ratio,
and XCell-ratio to perform feature engineering. Four different algorithms were used for AI modeling. The models were evaluated on test data using AUC-ROC and
confusion matrix. The red arrows represent Model 1, and the green arrows represent the processes for Model 2.

the two groups (Supplementary Figure 1). Meanwhile, we
performed cross-evaluation in different datasets. In addition,
the results of the IPA show that DEGs in CON and MCI
and DEGs in CON and AD differ not only in gene type
but also in gene location. In the early stage of AD, the
abundance of proteins located in the plasma membrane by
DEGs is significantly up-regulated. In contrast, the expression
of proteins located in other regions is inhibited. Specifically,
the expression levels of Transmembrane receptor, G-protein
coupled receptor, Phosphatase, and Kinase in the MCI group
are increased. In addition, we also analyzed the same differential
genes with disease-related enrichment and enriched and
analyzed the up-regulated and down-regulated genes in the
disease group (MCI and AD)/normal group, respectively. The
upregulated genes are mainly enriched and associated with
senile diseases. The down-regulated genes can significantly
affect “Parkinson’s disease,” “Huntington’s disease,” “AD,” and
“Oxidative phosphorylation.” NDUFA4, NDUFB6, ATP5F1C,
CALM2, COX5B, COX4I1, and CYCS are also involved in the
three major neurodegenerative diseases, including Parkinson’s
disease, Huntington’s disease, and AD (Stelzer et al., 2016;
Adav et al., 2019).

Individualized Diagnostic AI Model
Based on Blood mRNA Expression Data
We used standard deviation distribution, Co-linearity analysis
(Figure 2A) and importance analysis (Figure 2B) to perform
feature engineering screening on the total mRNA features for
screening and to obtain the optimal feature set. In general,
starting from 5,625 features, we screened out the features with
a standard deviation less than 3 (retaining more than 75% of
the features), and then the remaining 4,219 features. After the
analysis of Co-linearity (Pearson correlation coefficient between
various features is calculated), the features with a correlation
greater than 0.9 are filtered out, leaving 1,598 remaining features.
Importance analysis results showed that the TOP 5 with the
highest contribution to tri-classification modeling are STAT6,
KLF6, FCER2, HLA-A, PPBP, etc. (Figure 2B). We quantified
the three states based on disease progression and assessed the
correlation between the selected features and the disease state.
Our results showed that SNRPB2, LPP, C7ORF43, HCG27, and
RGS14 (Top-5) were positively correlated with the development
of CON, MCI, and AD. Negative correlation features included
BUD31, GTF2H5, RPS23, MRPS17, and MRPL51 (Top-5)
(Figure 2C). After importance and correlation analysis (using an
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FIGURE 2 | The mRNA data-based feature engineering and AI-modeling of CON, MCI and AD. (A) Correlation of each feature, correlation threshold 0.9. (B) Filter
lower importance features, the y-axis represents the standard deviation, dashed line is the cutting threshold, the x-axis represents the features in order of importance
(ascending). (C) Correlation between features and labels, show top five features. (D–F) Confusion matrix of two independent test sets. (G–I) ROC curve of the model
developed by optimal feature in two independent test sets. (J) Compare the prediction accuracy on test set between different models and features.

iterative method, removing 1% of the features in each iteration),
optimal feature set was obtained for 355 mRNA features. We
used the SVM algorithm to model the optimal feature set and
then tested the model in two independent test sets, with the

final test accuracy of 91.84 and 91.38%, respectively, and the
average accuracy of 91.59% (Figures 2D–F). AUC values for
CON, MCI and AD groups were 0.9746, 0.9536, and 0.9807,
respectively (Figures 2G–I). Compared with the accuracy of
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optimal feature set (91.59%), the accuracy of SVM model
established by all features (1,920 mRNAs) and random features
(355 mRNAs) under SVM algorithm was 53.27 and 58.83%,
respectively (Figure 2J). In addition to SVM, we also evaluate
the classification performance of the models based on other
algorithms. The accuracy rates of Adaboost, Random Forest and
Artificial Neural Network test sets were 66.36, 62.62, and 80.56%,
respectively, lower than the optimal model obtained by the SVM
algorithm (Figure 2J).

During the Progression of Alzheimer’s
Disease, Both Blood mRNA and Blood
Cells Showed Significant Expression
Imbalance
To optimize the classification efficiency of the artificial
intelligence diagnostic model, we tried to include more
biological information of different mRNAs. With the progression
of AD, the composition of the various immune cells in the
blood gradually changes. XCell is a method for inferring
the quantitative abundance of 64 cell types based on mRNA
expression data. We used XCell to analyze the quantitative
level and composition of various cells in the blood and their
changing trend with the progression of AD. Our results
showed that the original blood mRNA expression profiles were
mainly composed of five cell categories (41 cell subtypes),
including HSC, Lymphoid, Myeloid, Epithelial, and Stroma.
With the progression of AD, the proportions of HSC, Lymphoid
and Myeloid in blood cells gradually decrease, while the
proportions of Epithelial and Stroma gradually increase
(Figure 3A). Figure 3B shows the absolute abundances of
some representative cells (from all 41 cell types) and their
relative abundances between the CON, MCI, and AD groups.
To study the imbalance of cell proportion, we further analyzed
the ratio of cell abundance. The top 10 cell ratios in CON,
MCI, and AD groups were mainly related to immunity (58.8%).
This result further suggest that AD disease is associated
with immune dysregulation and can be recognized from the
blood (Figure 3C; Ikeda et al., 2010). With the progression
of the disease, we identified a total of 33 pairs of cells that
showed a gradual change in the ratio. Most of them (27 pairs)
gradually rise, including melanoma/GMP, melanoma/B-cells and
melanoma/pro B-cells (Figure 3C, Red, Figure 3D, Up). The
ratio of six pairs of cells decreased gradually, including CD8+
naive T-cells/Plasma cells and CD8+ naive T-cells/Th1 cells, etc.
(Figure 3D, Down).

Cell-Related Imbalance Can Be Included
in the Feature Set to Participate in the
Model Optimization
We fused four types of features, including mRNA, mRNA ratio,
XCell, and XCell ratio for feature engineering to obtain the
optimal feature set and subsequent AI modeling to diagnose
CON, MCI, and AD (Figure 4A). Similar to the feature screening
method in the first modeling, we recalculated the Co-linearity
of each feature in the data, filtered out the remaining 956
features after the Co-linearity was greater than 0.9, and then

eliminated the insignificant features by iterative method (each
iteration removed 1% of the features), leaving 319. Finally, we
selected the features with a cumulative weight greater than 75%
to form a new optimal feature set. The optimal feature set
contained 119 mRNAs, 56 mRNA-ratio pairs, and 6 XCell-ratio
pairs. The mRNA ratio feature accounted for 60% of the top 20
importance rankings of the optimal feature set. Among them,
the CFLAR/FCXER2 ratio with high importance was gradually
increased in CON, MCI, and AD groups (Figure 4B). A previous
study reported that the CFLAR is a vital gene encoding apoptosis
regulator, and the FCXER2 is an important gene related to
immunity (Stelzer et al., 2016).

The inclusion of XCell-ratio features reveals the importance
of the imbalance of the proportion between different blood
cells in the modeling of CON, MCI, and AD. The most
essential XCell-ratio features for modeling included MV
colorectal cells/Osteoblast, CD8+ naive T-cells/Mesangial
cells and GMP/Osteoblast (Figure 4C). The optimal features
are closely related to the progression of AD, where SNTB2,
ATP6AP1/TRAPPC2L and CFLAR/FCER2 are positively
correlated with the progression of AD. In contrast, MRPS17,
AIF1 and GTF2H5 are negatively correlated with the progression
of AD (Figure 4D).

The Introduction of the Concept of
Proportion Imbalance Is Beneficial to the
Establishment of Artificial Intelligence
Individualized Diagnosis Model
The imbalance of mRNA ratio and cell ratio was observed
during the progression of AD. To evaluate the impact of the
imbalance on AD diagnosis, we incorporated four algorithms,
including linear SVM (linear model), Adaboost (non-linear
model), random forest (non-linear model) and Artificial neural
networks (non-linear model), to established artificial intelligence
models. The results show that the accuracy of SVM algorithm is
the highest. The accuracy of SVM, Adaboost, Random Forest and
artificial neural networks for the test set were 91.59, 66.36, 62.62,
and 80.56%, respectively. Compared with the optimal feature set,
the accuracy of the model based on the total features and 181
random features was lower, indicating that our method of feature
establishment, evaluation and screening is reasonable, effective,
and reliable (Figure 4E).

At present, the accuracy of the best model obtained by the
model in two independent test sets was 93.88 and 89.66%,
respectively, with an average accuracy of 91.59% (Figures 4F–H).
Notably, the average recall rate for AD patients in this set was
93.02%. Further analysis showed that the AUC values of the
CON, MCI and AD groups were 0.9524 (CON and other groups),
0.9651 (MCI and other groups) and 0.9807 (AD and other
groups), respectively (Figures 4I–K).

We also obtained a better tri-classification diagnosis model by
including cell ratio and mRNA ratio data. Compared with the
previously reported dichotomies, our model is more accurate and
stable. Since we have comprehensively considered the changes
in the occurrence and development of Con-MCI-AD, the model
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FIGURE 3 | XCell and XCell-Ratio analysis. (A) Stacked five cell types in the CON, MCI, and AD groups. (B) Representative cells from five cell types. The number is
original XCell score. (C) The union set of top-10 XCell-ratios in the con, MCI, and AD groups. All values are normalized by row. Red items,
non-Hematopoietic/Hematopoietic items show a gradual trend with AD progression. (D) Cell ratios show a gradual trend with AD progression.

obtained in this study covers a wider area and applies to more
potentially susceptible populations.

Cell Ratio Analysis Showed That There
Were Three Aspects of Immune
Disorders During the Progression of
Alzheimer’s Disease
To comprehensively analyze the imbalance of blood cell
proportion in the body, we matched the variation trend of

each cell with the progression of AD with the differentiation
process of pluripotent stem cells. Our results showed three
types of imbalances in the blood cells of patients with AD
progression (Figure 5).

First, the proportion of hematopoietic and non-hematopoietic
cells decreased gradually (Abnormal 1). The number of non-
hematopoietic cell types in the disease group (MCI and AD)
increased significantly compared with CON. MSC cells with
multi-organ differentiation potential showed a more substantial
increase in MCI patients than the CON. Its downstream, such as
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FIGURE 4 | The mRNA and XCell ratio data-based feature engineering and AI-modeling of CON, MCI, and AD. (A) Feature type correlation heat map, an overview of
the correlations between features after feature engineering. (B) Top 20 features importance (from optimal 181 features set). (C) XCell-Ratio of the top 20 in
importance. The numbers represent the abundance of different cells in CON, MCI and AD. (D) The 181 features relevance between features and labels. (E) Compare
the prediction accuracy on test set between different models and different features. (F–H) Confusion matrix of test set. (I–K) ROC curve of the SVM model
developed by optimal features.
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FIGURE 5 | Summary of this study: dysregulation of cell homeostasis during the development of AD. Based on blood mRNA expression profiles, we screened two
sets of deep learning models with AUC values greater than 0.95. There was a tripartite imbalance (orange color) in the relative abundance of blood cells in the
patients, including a gradual decrease in the ratio of hematopoietic to non-hematopoietic cells, a block in the conversion from CMP to GMP, and a gradual decrease
in the ratio of neuroprotective to neuroinflammatory cells. The values in the heat map represent the relative abundance of the XCell median for the disease. Our
findings have important implications for both early diagnosis and intervention in MCI and AD.

Endothelial cells and Mesangial cells, also showed similar trends.
However, hematopoietic cell-related items were significantly
downregulated in the disease group (MCI and AD). It has
been reported that hematopoietic microglia can ameliorate the
progression of AD by eliminating amyloid deposition through
cell-specific phagocytic mechanisms (Lampron et al., 2011).
Furthermore, hematopoietic cells and their associated factors
have potential therapeutic value in AD, and the downregulation
of the relative number of hematopoietic cells may be one of the
critical theories (Sanchez-Ramos et al., 2008; Lim et al., 2020).

Secondly, the differentiation of CMP to GMP was resisted
(Abnormal 2): in the hematopoietic cells, both Lymphoid

and Myeloid cells showed a trend of gradual decrease. The
Myeloid is the primary source of cells in the blood system.
The common myeloid precursor cell index was significantly
higher in the disease group (MCI and AD) compared with
CON. As the downstream of its differentiation, the proportion
of progenitor cells of granular macrophages decreased gradually.
We speculated that blocking the differentiation of CMP to GMP
might be closely related to the occurrence of MCI and AD.

Thirdly, the proportion of neuroprotective and
neuroinflammatory cells was gradually reduced (Abnormal
3). Next, we analyzed the immune system differentiated by
Lymphoid and Blood system differentiated by Myeloid. Our
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results showed that with the gradual development of AD,
the immune system and circulatory system both changed
from increasing to decreasing cell types. There is no apparent
difference between the two systems. However, most of the
progressively elevated cells are neuroinflammatory, including
Th1, NTK, and ADC. The neuroprotective cells declined
gradually, including Th2.

Compared with the CON group, the ratio of Th1 cells to
Th2 cells in the disease group (MCI and AD) was significantly
unbalanced. This conclusion is consistent with the results of
previous animal immunotherapy experiments, which showed
that Th1 cells decreased and Th2 cells increased in AD mice after
immunotherapy (Town et al., 2002; Cao et al., 2009; Marciani,
2016). Notably, various indicators of NKT cells were similar
to those of Th1 cells, suggesting that NKT cells also play an
important regulatory role in the onset and progression of AD.
However, no studies have confirmed that these cells play an
important role in the onset and progression of AD. Therefore,
NKT cells may be an important feature related to AD that has
been recently discovered. In conclusion, we believe that the
imbalance of homeostasis in GMP may be one of the important
causes of AD, and the imbalance of homeostasis in NKT cells
may be closely related to the occurrence and development of
AD (Figure 5).

DISCUSSION

In this study, we established a complete feature engineering
framework and an excellent machine learning model. We
identified a set of features with stable classification efficiency
based on the multidimensional data of mRNA expression profiles.

We found many mRNA features at the mRNA level that
were significantly up- or down-regulated during AD progression.
For example, the ATP5F1c gene is significantly down-regulated
in the disease group (MCI and AD) compared to the CON
group. The ATP5F1c was reported to play an important
role in mitochondrial oxidative phosphorylation (Stelzer et al.,
2016). The expressed level of mitochondrial electron transport
chain complex IV (COX) was significantly reduced in AD
patients. A previous study showed that genetic defects in the
Cox family might be associated with the genetic risk of AD.
In addition to the mRNA features, the mRNA ratio feature
accounted for 60% of the top 20 importance rankings of the
optimal feature set. Among them, CFLAR is an important gene
encoding apoptosis regulator. FCXER2 is an important gene
related to immunity (Stelzer et al., 2016). The importance of
CFLAR/FCXER2 was higher, and its ratio gradually increased in
CON, MCI and AD groups. We speculate that the occurrence
and development of AD may be due to neuronal death caused
by immune system abnormalities, and this process can be
found in the blood.

At the cellular level, we also identified some particularly
important features. For example, CD4+ and CD8+ (including
CD8+ naive T cells, CD8+ T cells, and CD8+ TCM) cells
were significantly lower in AD and patients with mild cognitive
impairment. CD4+ T cells are effective mediators of well-known

autoimmune diseases in the nervous system, such as multiple
sclerosis and narcolepsy, which are involved in developing
microglia (Pasciuto et al., 2020). Furthermore, we found a
significant increase in the expression of myeloid cells represented
by activated dendritic cells (ADC) in the disease group (MCI
and AD). In contrast, the expression of lymphocytes represented
by B cells was significantly reduced (Figure 3C). We found that
many cells associated with the immune system showed a gradual
increase during the occurrence and development of the disease
(Figure 3D). Among the cell proportion features with noticeable
progressive changes in expression, we found that almost all the
proportion features were related to myeloid cells or lymphocytes
(88.24%); among them, 58.8% were related to lymphocytes and
38.24% were related to myeloid cells.

We found that mitochondrial dysfunction in the brain tissue
of AD patients can be simultaneously detected in the peripheral
system (Johri and Beal, 2012), suggesting that AD may be caused
by abnormal gene expression or brain damage, as observed in
peripheral blood (Johri and Beal, 2012; Leuner et al., 2012;
Trushina et al., 2013; Pérez et al., 2017). DEGs in peripheral blood
may be one of the important causes of AD. Machine learning is
an important branch of artificial intelligence. The main difference
between this method and the traditional statistical learning
method is that the machine learning method usually does not
need a statistical hypothesis, which dramatically improves the
accuracy of training results and the adaptability of the model,
and is widely used in the study of the pathogenesis of AD (Farran
et al., 2013; Goecks et al., 2020).

Compared with traditional feature engineering, this paper not
only pays attention to feature selection but also pays attention to
the development of new dimension features. In the cell type score
obtained based on mRNA expression profile data, we found that
Th and NKT cells were different between the disease group (MCI
and AD) and the control group, with significantly fewer Th2
cells and significantly more Th1 cells and NKT (Figure 5). It is
suggested that the occurrence and development of AD are closely
related to immune system diseases, consistent with a previous
report (Cui and Wan, 2019), we should pay high attention to the
homeostatic dysregulation of NKT cells in AD. The features used
in our model are highly interpretable.

CONCLUSION

We find 5625 DEGs in CON, MCI, and AD, which are related
to the disease. The optimal feature set was obtained through
feature engineering screening, and the artificial intelligence
individualized diagnosis model established based on this method
achieved a classification accuracy of 91.59% in the test set.
The AUC of CON, MCI, and AD were 0.9746, 0.9536, and
0.9807, respectively. The relative abundance of five types of
cells, including Epithelial, HSC, Lymphoid, Myeloid and Stroma
in the blood of CON, MCI and AD patients was obtained by
mRNA expression profile analysis. We also included mRNA,
cell abundance and ratio information to establish an artificial
intelligence model. The diagnostic accuracy of the optimal
model in the tri-classification test set was 91.59%, and the
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diagnostic AUC of CON, MCI and AD were 0.9524, 0.9651,
and 0.9807, respectively. Based on the mRNA profiles, we
analyzed the ratio of different cells using XCell. As patients
progressively deteriorated from CON, MCI to AD, blood cells
displayed three aspects of imbalance, including a progressive
decrease in the proportion of hematopoietic cells, a block in the
differentiation of CMP to GMP, and a progressive decrease in
the proportion of neuroprotective/neuroinflammatory cells. Our
findings have important implications for both early diagnosis and
intervention in MCI and AD.

In this study, the composition of various cells in the blood of a
single patient was analyzed based on the blood mRNA expression
profile. Based on this, the balance between different mRNAs and
cells in blood was analyzed. For the imbalance of disease and cell
proportion in CON, MCI, and AD patients and their contribution
to the artificial intelligence model, this study provides new ideas
and results for the onset and progression of AD from both basic
and application perspectives. The 181 features are composed
of four dimensions, which can accurately classify CON, MCI,
and AD groups, suggesting that machine learning methods can
capture changes in blood biomarkers in AD patients. The results
of cell homeostasis analysis suggested that the homeostasis of
NKT cells might be related to AD, and the homeostasis of GMP
might be one of the possible reasons for AD.
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