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The Neurovascular Unit (NVU) is an important multicellular structure of the central
nervous system (CNS), which participates in the regulation of cerebral blood flow
(CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier
functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two
pathologies with extensive NVU dysfunction. The cell types of the NVU change in both
structure and function following an ischemic insult and during the development of AD
pathology. Stroke and AD share common risk factors such as cardiovascular disease,
and also share similarities at a molecular level. In both diseases, disruption of metabolic
support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory
signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading
to cell death and neurodegeneration. Improved therapeutic strategies for both AD
and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other
diseases and are being recently investigated for their function in the development of
cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate
and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal
fluid, regulation of CBF, and other physiological functions. Humans express 15 CA
isoforms with different distribution patterns. Recent studies provide evidence that CA
inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD
pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude
sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors;
however, specific CA isoforms are likely to modulate the NVU function. This review will
summarize the literature regarding the use of pan-CA and specific CA inhibitors along
with genetic manipulation of specific CA isoforms in stroke and AD models, to bring
light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective
and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy
of CA inhibition and reduce side effects. More studies to further determine specific CA
isoforms functions and changes in disease states are essential to the development of
novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
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INTRODUCTION

Neurovascular dysfunction is an important, early and causative
event in the pathogenesis of both Alzheimer’s disease (AD) and
Stroke (Iadecola, 2010, 2017; Hachinski et al., 2019; Sweeney
et al., 2019a; Freitas-Andrade et al., 2020; Zlokovic et al.,
2020). Indeed, the Neurovascular Unit (NVU) has recently
gained a lot of momentum as a pharmacological target in
cerebrovascular pathologies and neurodegeneration (Iadecola,
2017; Sweeney et al., 2019a; Zlokovic et al., 2020). The NVU is
a functional multicellular structure composed of blood vessels
and different cell types surrounding them within the central
nervous system (CNS), and is instrumental in regulating CNS
homeostasis (Andreone et al., 2015; Iadecola, 2017; Sweeney
et al., 2019b; Freitas-Andrade et al., 2020). Important functions
of the NVU include regulation of cerebral blood flow (CBF) and
immunological surveillance, amongst others (Andreone et al.,
2015; Cortes-Canteli and Iadecola, 2020; Freitas-Andrade et al.,
2020). NVU dysfunction is observed in aging, AD and following
neurological pathologies such as stroke (Iadecola, 2017; Cortes-
Canteli and Iadecola, 2020; Freitas-Andrade et al., 2020; Sarvari
et al., 2020) and traumatic brain injury (Xing et al., 2012; Lok
et al., 2015), among others.

Stroke and dementia are the two most common neurological
disorders. They confer risks for each other and share some,
mostly modifiable, risk factors. Having a stroke doubles the
chance of developing dementia (Savva and Stephan, 2010; Kuźma
et al., 2018). Therefore, preventing stroke through management
of hypertension and other risk factors could also decrease the
incidence of dementia (Kuźma et al., 2018; Hachinski et al., 2019).

AD is the most common form of dementia and has been
historically characterized by extracellular amyloid beta (Aβ)
plaques and intracellular hyperphosphorylated tau tangles in
specific brain regions (Day et al., 2015; Castillo-Carranza et al.,
2017; Cortes-Canteli and Iadecola, 2020; Ojo et al., 2021).
Interestingly, Aβ and tau intermediate aggregation species,
such as oligomers, have been shown to have toxic effects
on multiple cell types of the NVU (Fossati et al., 2010,
2012b; Parodi-Rullán et al., 2019; Canepa and Fossati, 2020).
This toxicity, in association with the contribution of impaired
clearance of undesired material from the brain, may lead to
neurodegeneration and cognitive decline (Fossati et al., 2012b;
Boland et al., 2018; Da Mesquita et al., 2018; Nortley et al.,
2019; Provensi et al., 2019; Braun and Iliff, 2020; Carare
et al., 2020; Cortes-Canteli and Iadecola, 2020; Nedergaard and
Goldman, 2020; Parodi-Rullán et al., 2020; Quintana et al., 2021).
Importantly, up to 90% of AD patients also present with cerebral
amyloid angiopathy (CAA), defined as Aβ deposition around
the brain vasculature and/or within the vessel walls (Iadecola,
2017; Sweeney et al., 2019a; Zlokovic et al., 2020). CAA is also
common in the non-demented elderly population and constitutes
an important contributor to NVU dysfunction in both normal
aging and AD (Provensi et al., 2019; Cortes-Canteli and Iadecola,
2020; Ojo et al., 2021).

Stroke is classically defined as a neurological damage
attributed to an acute focal injury of the CNS by a vascular
cause, including cerebral infarction, intracerebral hemorrhage

(ICH), and subarachnoid hemorrhage (SAH), and is a major
cause of disability and death worldwide (Sacco et al., 2013).
The most common type of stroke is Ischemic Stroke (IS) which
occurs when atherosclerotic plaques and fatty deposits cause
vascular occlusions, interrupting blood flow in the brain. The
blood vessel most commonly occluded is the middle cerebral
artery (Kuriakose and Xiao, 2020). When IS occurs, it promptly
causes multiple detrimental cerebral injuries due to both the
lack of oxygen and glucose, as well as the associated pro-
inflammatory signaling (Faraco et al., 2007; Freitas-Andrade
et al., 2020; Kuriakose and Xiao, 2020; Sarvari et al., 2020).
Following this event, there is a reperfusion injury phase, which
occurs when oxygen and CBF are restored (Faraco et al., 2007;
Freitas-Andrade et al., 2020; Sarvari et al., 2020). Another type of
stroke is hemorrhagic stroke (HS), which occurs when a blood
vessel, providing blood to the brain, ruptures (Corraini et al.,
2017; Sarvari et al., 2020). HS is characterized by greater lesion
volume, higher intracranial pressure and induce more severe
brain injury than IS. Importantly, IS and HS affect different brain
regions (Corraini et al., 2017).

Shared risk factors between AD and stroke are reduced
CBF, cardiovascular diseases and age (Sarvari et al., 2020;
Ojo et al., 2021). Cardiovascular risk factors like obesity,
diabetes, hypertension and atherosclerosis have been
observed to exacerbate cerebrovascular pathology as well as
neurodegeneration, including AD (Girouard and Iadecola, 2006;
de Bruijn and Ikram, 2014; Cortes-Canteli and Iadecola, 2020;
Sarvari et al., 2020). The common underlying mechanisms
involved in both AD and stroke include neuroinflammation,
mitochondrial dysfunction, cell death, and blood brain barrier
(BBB) dysregulation, indicating that the NVU is a target for both
diseases (Fossati et al., 2012b; Alluri et al., 2014; Sekerdag et al.,
2018; Eldahshan et al., 2019; Provensi et al., 2019; Parodi-Rullán
et al., 2020). A vast amount of research has been invested into
discovering new treatments for AD and stroke. In AD, this has
recently led to the controversial FDA-approval of aducanumab
(Ferrero et al., 2016; Sevigny et al., 2017; Knopman et al., 2021).
However, more research needs to be done to develop successful
disease-modifying therapies for both disorders. The scientific
community is particularly encouraging the study of repurposed
drugs, approved by the FDA for other disorders, which could
be beneficial for AD and stroke, while allowing more rapid
translation to clinical trials.

This review will introduce the idea of potentially repurposing
carbonic anhydrase inhibitors (CAIs), many of which are
already FDA-approved for other indications, for prevention of
cerebrovascular and neurovascular pathology in AD and stroke
and highlight the impact of carbonic anhydrase (CA) modulation
in these two dominant neurological disorders.

CAs are a family of zinc metalloenzymes which catalyze the
reversible hydration of carbon dioxide to produce bicarbonate
and a proton (CO2 + H2O↔ HCO3

−
+ H+) (Supuran, 2011;

Mishra et al., 2020). This chemical reaction is essential for
many physiological processes, such as pH and ion homeostasis,
carbon dioxide transport, electrolyte secretion, gluconeogenesis,
lipogenesis, and ureagenesis, water and sodium reabsorption in
the kidney, bone reabsorption and calcification, cerebrospinal
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fluid formation and turnover, amongst other processes (Provensi
et al., 2019; Zamanova et al., 2019; Mishra et al., 2020). CAs
have been studied as a well-known pharmacological target for
many peripheral and CNS disorders (Bradwell et al., 1992; Ilies
et al., 2004; De Simone and Supuran, 2007; Supuran, 2008, 2018;
Akocak and Ilies, 2014; Provensi et al., 2019; Zamanova et al.,
2019; Mishra et al., 2020). Interestingly, many recent studies
revealed a common goal to further elucidate CAs involvement in
both AD and stroke.

Humans have 15 CA isoforms, all with different expression
patterns at a tissue and cellular level (Supuran, 2011; Provensi
et al., 2019; Zamanova et al., 2019; Mishra et al., 2020). Many
of these isoforms are expressed within the NVU and it has
been hypothesized that each is involved in different functions
(Draghici et al., 2014; Rasmussen and Boedtkjer, 2018; Provensi
et al., 2019; Zamanova et al., 2019). It is known that some
isoforms are extracellular, anchored to the plasma membrane
(CA-IV, CA-IX, and CA-XII, CA-XIV), while others are cytosolic
(CA-I, CA-II, CA-III, CA-VII, CA-XIII), two are found in the
mitochondria (CA-VA and CA-VB) (Boriack-Sjodin et al., 1995;
Nishimori et al., 2005), some are acatalytic isoforms (CA-VIII,
CA-X, and CA-XI) (Aspatwar et al., 2014), and one isoform is
secreted in saliva (CA-VI) (Nishimori et al., 2007; Alterio et al.,
2012; Patrikainen et al., 2014; Provensi et al., 2019; Zamanova
et al., 2019; Mishra et al., 2020). CA function has been linked
to AD pathology as well as stroke, but the specific isoforms and
the pathological mechanisms involved are not fully understood
(Wang et al., 2009; Draghici et al., 2014; Fossati et al., 2016;
Pollard et al., 2016; Solesio et al., 2018; Mishra et al., 2020). The
determination of each CA isoforms’ role in health and disease
should be a priority for the development of novel and effective
therapies in cerebrovascular pathology (Provensi et al., 2019;
Mishra et al., 2020).

CAIs were developed first as diuretics and have become
valuable in treating glaucoma, cerebral edema, epilepsy, as well
as high altitude sickness (Mincione et al., 2007; Supuran, 2008;
Ritchie et al., 2012; Akocak and Ilies, 2014; Zamanova et al., 2019;
Mishra et al., 2020). The FDA-approved CAIs methazolamide
(MTZ) and acetazolamide (ATZ) are the most studied pan-CAIs.
Their activity in the NVU will be one of the focuses of this review.
Other FDA-approved CAIs such as topiramate, which has some
selectivity for the mitochondrial CA-VA and CA-VB isoforms,
along with compounds with selectivity for CA-IX and CA-XII will
also be discussed (Scozzafava et al., 2000; Supuran, 2012; Andring
et al., 2020; McDonald et al., 2020). MTZ and ATZ, along with
topiramate, have been observed to have protective properties on
cerebrovascular pathology, as well as on mitochondria function,
an important target for NVU integrity (Wang et al., 2009; Price
et al., 2012; Fossati et al., 2016; Solesio et al., 2018; Salameh
et al., 2019). A substantial amount of literature on the FDA-
approved pan-CAIs indicates that they are safe and can pass the
BBB. However, the development of new compounds targeting
specific isoforms may improve the efficacy and reduce side
effects of the already existing pan-CAIs (Provensi et al., 2019;
Mishra et al., 2020).

This review will first illustrate the basic structure and functions
of the cells composing the NVU, specifically describing how

they become dysfunctional in stroke and AD. We will then
discuss the properties of multiple CA isoforms and highlight the
available evidence showing how CA inhibition may be protective
toward multiple dysregulated mechanisms in NVU-composing
cells, pointing to CAs as potential targets for both stroke and AD
therapy (Provensi et al., 2019; Mishra et al., 2020).

THE NEUROVASCULAR UNIT:
FUNCTION AND DYSFUNCTION IN
STROKE AND ALZHEIMER’S DISEASE

The Neurovascular Unit
The cell types that constitute the NVU (depicted in Figure 1)
and collaborate to perform its functions are endothelial cells
(ECs), pericytes, smooth muscle cells (SMCs), astrocytes, and
microglia (Iadecola, 2017; Freitas-Andrade et al., 2020), which are
functionally or physically connected to neurons (Andreone et al.,
2015; Cortes-Canteli and Iadecola, 2020; Freitas-Andrade et al.,
2020). The NVU is the morpho-functional unit including the
BBB, which is important for the transport of nutrients and oxygen
from the systemic circulation to the brain, for the clearance of
toxic waste from the CNS, for the connection between blood flow
and neuronal function, as well as for forming a physical barrier to
prevent the entrance of pathogens and other harmful entities into
the CNS (Sarvari et al., 2020).

Endothelial Cells
ECs are essential components of the blood vessel wall.
Cerebrovascular ECs form tight and adherent junctions with
each other to limit the entry of molecules and cells from the
peripheral circulation into the CNS (Reese and Karnovsky,
1967). Transporters expressed on the plasma membrane of
ECs specifically regulate what enters and exits the CNS. For
example, glucose enters the brain exclusively via transporters,
despite the brain being a highly metabolic organ responsible
for up to 25% of total glucose consumption in the body (Tang
et al., 2017; Parodi-Rullán et al., 2019). ECs also regulate blood
flow by releasing vasodilators and vasoconstrictors, such as
nitric oxide (NO) and endothelin-1, respectively (Morikawa
et al., 1994; Biernaskie et al., 2001; Freitas-Andrade et al.,
2020). Due to the fact that mitochondria are very abundant in
cerebrovascular ECs (Oldendorf et al., 1977; Sarvari et al., 2020),
these cells are particularly sensitive to oxygen deprivation (Pun
et al., 2009; Freitas-Andrade et al., 2020). Hence, pathological
conditions which cause oxygen-glucose deprivation (OGD) and
prompt excessive reactive oxygen species (ROS) production
trigger cerebral endothelial dysfunction, cell death and BBB
breakdown (Schreibelt et al., 2007; Pun et al., 2009; Lochhead
et al., 2010; Ghiso et al., 2014; Fossati et al., 2016; Parodi-
Rullán et al., 2019; Freitas-Andrade et al., 2020), pointing to
the mitochondria as critical targets for EC function and BBB
integrity. Efficient communication and exchange of materials
between ECs and other cell types of the NVU is essential for CNS
homeostasis (Andreone et al., 2015; Freitas-Andrade et al., 2020;
Sarvari et al., 2020).
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FIGURE 1 | The neurovascular unit. Drawing depicting the cell types that make up the NVU within brain capillaries. Brain capillaries are surrounded by pericytes, as
shown in this figure, while arteries and arterioles are surrounded by SMCs. Other important cells associated with blood vessels and important for BBB and
neurovascular functions, also represented in this drawing, are astrocytes and microglia. ECs, endothelial cells; SMCs, smooth muscle cells; BBB, blood brain barrier;
NVU, neurovascular unit; MCs, microglia cells, BM, basement membrane.

Cerebrovascular dysfunction has been observed in both AD
and IS (Fossati et al., 2010, 2012a,b; Guo et al., 2010; Lochhead
et al., 2010; Jiao et al., 2011; Shin et al., 2016; Freitas-Andrade
et al., 2020; Parodi-Rullán et al., 2020; Quintana et al., 2021).
Aging, as well as cardiovascular risk factors, such as hypertension
and diabetes, contribute to cerebrovascular pathology (Huang
et al., 1995; Girouard and Iadecola, 2006; Price et al., 2012;
Cortes-Canteli and Iadecola, 2020; Ojo et al., 2021). The
reduction of tight junction proteins such as zona occludin-1 (ZO-
1) and occludin is observed in models of stroke and AD (Marco
and Skaper, 2006; Jiao et al., 2011; Engelhardt et al., 2014; Freitas-
Andrade et al., 2020; Parodi-Rullán et al., 2020). An increase
in adhesion molecules expression, such as intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1), is observed in stroke, and recently, has been also
associated with AD (Cruz Hernández et al., 2019; Sarvari et al.,
2020). The reduction of tight junction proteins and the increase
in adhesion molecules triggers the recruitment of peripheral
immune cells into the brain and may be due to endothelial
activation by danger associated molecular patterns (DAMPs),
such as low glucose and oxygen, and aggregated proteins, like
Aβ and hyperphosphorylated tau (Canepa and Fossati, 2020;
Freitas-Andrade et al., 2020; Sarvari et al., 2020). An increase
in BBB permeability allows peripheral substances to enter the
CNS, leading to neuroinflammation and oxidative stress (Pun
et al., 2009; Turner and Sharp, 2016; Yang et al., 2019). Increased
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oxidative stress in ECs exacerbates mitochondrial dysfunction,
leading to apoptosis (Lochhead et al., 2010; Fossati et al., 2012b,
2016; Solesio et al., 2018; Parodi-Rullán et al., 2019). During both
ischemic injury and AD, ECs have been observed to decrease
NO production, causing dysregulation of CBF (Morikawa et al.,
1994; Biernaskie et al., 2001; Girouard and Iadecola, 2006;
Austin et al., 2013; Parodi-Rullán et al., 2019; Freitas-Andrade
et al., 2020). Interestingly, in endothelial nitric oxide synthase
(e-NOS) knockout (KO) mice, deficiency of NO reduces the
ability of ECs to neutralize ROS enhancing oxidative stress and
neuroinflammation, likely exacerbating AD pathology (Austin
et al., 2013). Accordingly, in models of AD and stroke, EC
dysfunction has been shown to enhance neuroinflammation
by increasing the production of ROS and enhancing BBB
permeability, amongst other cellular mechanisms (Parodi-Rullán
et al., 2019, 2020; Yang et al., 2019).

Pericytes and Smooth Muscle Cells
Pericytes and SMCs surround ECs within the vascular walls,
wrapping around capillaries and arterioles/arteries, respectively.
Both cell types have a vital role in the regulation of CBF and BBB
integrity (Sagare et al., 2013; Hall et al., 2014; Freitas-Andrade
et al., 2020). These cells regulate blood flow mainly through their
contraction or dilation, which control the diameter of the blood
vessel (Hall et al., 2014; Freitas-Andrade et al., 2020). Recently,
the role of blood vessels in the clearance of CNS interstitial
fluid and proteins has been thoroughly investigated (Aldea et al.,
2019; Carare et al., 2020). Intramural periarterial drainage (IPAD)
has been hypothesized as a route to drain the brain interstitial
fluid and soluble proteins from the CNS into the cervical lymph
nodes, by traveling along the capillaries and arterioles in the
opposite direction of blood flow, within the basement membrane
of the brain vasculature. The contraction of SMCs provides the
motive force for IPAD (Carare et al., 2008; Aldea et al., 2019).
This system is dysregulated in models of CAA and aging (Ojo
et al., 2021). Another brain clearance pathway, the glymphatic
system, has been observed to import cerebrospinal fluid along
periarterial space and export interstitial fluid along perivenous
spaces, in perivascular tunnels, formed by astroglial cells. This
pathway has been proposed to be important in the clearance and
regulation of toxic proteins in the brain such as tau and Aβ, and
to be mediated by astrocytic aquaporin-4 (AQP4) (Braun and
Iliff, 2020; Nedergaard and Goldman, 2020). Interestingly, the
glymphatic system is most efficient during sleep (Boespflug and
Iliff, 2018; Mestre et al., 2020).

During both stroke and AD, pericytes are observed to detach
from the BBB (Sagare et al., 2013; Freitas-Andrade et al., 2020).
In an AD mouse model, pericyte loss was observed to exacerbate
AD pathology (Sagare et al., 2013). The loss of pericytes decreases
vascular stability and decreases the ability for the NVU to
regulate CBF (Sagare et al., 2013; Hall et al., 2014). On the
other hand, a recent study concluded that Aβ induces pericyte-
mediated capillary constriction, reducing CBF (Nortley et al.,
2019). Pericytes have been observed to endure damage in models
of diabetes as well as obesity, which are both risk factors of
AD and IS (Price et al., 2012; Shah et al., 2013a). In cats
exposed to hypoxia, pericytes exhibited detachment from the

microvasculature (Gonul et al., 2002). Along with dysregulation
of CBF in models of AD and stroke, pericyte and SMC loss also
contribute to impaired clearance in models of AD and CAA
(Sagare et al., 2013; Aldea et al., 2019; Carare et al., 2020; Kim
et al., 2020; Ojo et al., 2021).

Astrocytes
Astrocytes are essential cells for the NVU and provide a physical
connection between blood vessels and neurons (Iadecola and
Nedergaard, 2007; Braun and Iliff, 2020). Astrocytic end-feet
wrap the blood vessels, helping to stabilize EC tight junctions
and regulate CBF (Iadecola and Nedergaard, 2007). Astrocytes
play a key role in providing metabolic and physical support to
the CNS, along with the regulation of CBF, as well as brain
clearance (Freitas-Andrade et al., 2020). AQP4 is a membrane
protein that functions in water exchange within the CNS. In
healthy individuals, AQP4 is a membrane channel localized at
the astrocytic end feet, and it is important for clearance of toxic
solutes from the brain (Smith et al., 2019). It is hypothesized
that AQP4 is a part of the glymphatic system, mediating fluid
exchange and the drainage of proteins, as well as the elimination
of liquid from the CNS (Iliff et al., 2012; Boland et al., 2018;
Braun and Iliff, 2020; Mestre et al., 2020). Despite the differential
contributions of the glymphatic system and the IPAD pathway
to the clearance of cerebral fluids and waste material are not
completely grasped, it is accepted that astrocytes play a pivotal
role in the exchange of fluids, based on studies showing that,
in AQP4 KO mice, cerebrospinal fluid influx as well as CNS
clearance were decreased (Iliff et al., 2012; Braun and Iliff, 2020).
Another essential function of astrocytes is glutamate uptake and
release, which is very important for the maintenance of CNS
homeostasis (Dejakaisaya et al., 2021; van Putten et al., 2021;
Verkerke et al., 2021). Astrocytes also have a critical role in the
brain antioxidant system maintenance and in the production of
glutathione, an important modulator of oxidative stress and aging
(Bains and Shaw, 1997; Venkateshappa et al., 2012; Howarth
et al., 2017; Verkerke et al., 2021).

In AD, astrocytes lose their polarization, detach from the BBB,
become reactive and release inflammatory cytokines (Liddelow
et al., 2017; Sweeney et al., 2019b; Cortes-Canteli and Iadecola,
2020). The crosstalk between astrocytes and microglia needs
further understanding, although it has been extensively shown
that they modulate each other’s activation state (Joshi et al., 2019;
McConnell et al., 2019; McAlpine et al., 2021). Astrocytes have
also been reported to lose their expression of AQP4 early in
AD (Smith et al., 2019). Differently, in stroke, AQP4 expression
correlates with cerebral edema, increasing neuronal damage
(Manley et al., 2000). In IS, astrogliosis is very significant due to
the presence of DAMPs during the initial/acute phase, as well as
the secondary/later phase of injury. A major indicator of gliosis
is an increase in the expression of glial fibrillary acidic protein
(GFAP) by astrocytes, observed in stroke as well as AD models
(Pekny and Lane, 2007; Oeckl et al., 2019; Freitas-Andrade
et al., 2020). Upon ischemic injury, neurovascular coupling is
lost, together with astrocyte mediated CBF (McConnell et al.,
2019; Freitas-Andrade et al., 2020). This results in a loop of
metabolic stress and inflammation, worsening mitochondrial
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dysfunction in vascular cells, and ultimately leading to BBB
breakdown (Girouard and Iadecola, 2006; Freitas-Andrade et al.,
2020; Radenovic et al., 2020; Sarvari et al., 2020).

Microglia
Although not directly attached to ECs, microglia mediate BBB
integrity (Eldahshan et al., 2019; Freitas-Andrade et al., 2020).
They are considered the resident immune cells of the CNS,
able to phagocytize neurotoxic substances, and, more recently,
they have also been reported to participate in a series of
cerebral homeostatic functions, including synaptic plasticity
and brain development (Badimon et al., 2020; Willis et al.,
2020). There are two well-studied activation phenotypes of
microglia, referred as M1 and M2, which are classified as being
pro-inflammatory and anti-inflammatory, respectively. The M1
phenotype is detrimental to the BBB, causing dysregulation of the
NVU, while the M2 facilitates the endocytosis and the clearance
of toxic substances and dying cells, limiting the amount of
oxidative stress and promoting a more suitable environment for
regeneration/healing, following CNS injury (Tang and Le, 2016;
Freitas-Andrade et al., 2020; Jiang et al., 2020). Recently, a protein
highly expressed in microglia, triggering receptor expressed on
myeloid cells-2 (TREM2), has been observed to protect from
neurodegeneration in models of AD. TREM2 is hypothesized to
be neuroprotective, associated with the M2 phenotype, although
there are variants that increase the likelihood of developing AD
(Ulland and Colonna, 2018; Gervois and Lambrichts, 2019; Zhou
et al., 2020). The protective mechanisms of TREM2 have also
been observed in IS (Gervois and Lambrichts, 2019).

Following IS or HS, microglia transition into a reactive state,
causing the release of pro-inflammatory cytokines, exacerbating
neuroinflammation and neurovascular dysfunction (Eldahshan
et al., 2019). Microglia activation is also observed in models of
AD and is now considered one of the major hallmarks of the
disease (Villegas-Llerena et al., 2016). Inflammasome activation
has been observed to occur in aging, neurodegeneration, as well
as in stroke (Mohamed et al., 2015; Liddelow et al., 2017; Hu et al.,
2019; Yang et al., 2019). In the brain, inflammasome activation
occurs in many different cell types. Particularly, microglia, being
the most sensitive cells to pathogen associated molecular patterns
(PAMPs) and DAMPs, trigger the activation of caspase-1 and the
release of cytokines IL-1β along with IL-18 (Hu et al., 2019). The
cytokine receptors on vascular cells are then activated, triggering
detrimental processes which cause NVU dysfunction and
disruption of neurovascular coupling (Eldahshan et al., 2019).
Among other cells, microglia have also been observed to secrete
metalloproteases (MMPs), such as matrix metallopeptidase-2
(MMP-2) and matrix metallopeptidase-9 (MMP-9), which have
been reported to be activated in AD and IS, degrading the
basement membrane, therefore increasing BBB permeability and
NVU dysfunction (Lorenzl et al., 2003; Hernandez-Guillamon
et al., 2010; Yang and Rosenberg, 2015; Turner and Sharp, 2016;
Montaner et al., 2019; Freitas-Andrade et al., 2020; Sarvari et al.,
2020; Carcel-Marquez et al., 2021).

Basement Membrane
The basement membrane is an essential part of the BBB and
is composed of numerous proteins such as laminins, collagen,

nidogen, and heparin sulfate proteoglycans (Carare et al., 2020).
The different proteins that make up the basement membrane
are secreted by the cell types composing the NVU such as ECs,
pericytes and astrocytes. These different proteins support cell-
cell interactions, and thus BBB integrity (Carare et al., 2020;
Freitas-Andrade et al., 2020).

Destruction of the basement membrane is severely apparent
after middle cerebral artery occlusion (MCAO) (Sarvari et al.,
2020). This degeneration occurs through different mechanisms
of neuroinflammation such as ROS production as well as MMP
secretion (Mohamed et al., 2015; Yao, 2019; Freitas-Andrade
et al., 2020). Furthermore, the secretion and activation of MMPs
interferes with the composition of the BBB, causing it to become
leaky, and further exacerbating already existing oxidative stress
and neuroinflammation (Fujimura et al., 1999; Hernandez-
Guillamon et al., 2010; Montaner et al., 2019; Kang and Yao,
2020). Basement membrane composition and structure has also
been observed to change in models of CAA (Morris et al., 2014).

Neurons
Blood vessel-coupled-neurons communicate with ECs and other
cells of the NVU to modulate vascular structure, dilation or
constriction, and to provide nutrients based on neuronal need
(Andreone et al., 2015; Iadecola, 2017; Kaplan et al., 2020).
Neurovascular coupling is essential to maintain the proper influx
of nutrients and the proper efflux of toxic waste from the brain
(Girouard and Iadecola, 2006; Andreone et al., 2015; Kaplan
et al., 2020). Neuronal activity has been observed to participate
in both angiogenesis and neurovascular coupling (Girouard and
Iadecola, 2006; Huneau et al., 2015).

Upon CNS injury and cell death of NVU cells, dysregulation
of neurovascular coupling occurs (Iadecola, 2017; Sweeney et al.,
2019a; Freitas-Andrade et al., 2020; Kaplan et al., 2020). The
absence of communication between the CNS and the systemic
blood circulation ultimately leads to metabolic failure, oxidative
stress, mitochondrial dysfunction and synaptic loss (Freitas-
Andrade et al., 2020; Kaplan et al., 2020). It is therefore
conceivable that, when cerebrovascular integrity and function are
preserved, neurodegeneration is less severe and CNS homeostasis
is better maintained.

CARBONIC ANHYDRASES

CAs are a family of zinc metalloenzymes catalyzing the reversible
reaction CO2 + H2O 
 HCO3

−
+ H+. All four species in this

chemical reaction are essential for CNS homeostasis. Therefore,
it is expected that CAs influence CNS and further NVU
function. The CO2 hydration reaction can occur spontaneously
(uncatalyzed), but the reaction rate is too slow for the dynamic
of living cells. Consequently, CA is ubiquitously spread in all
living organisms, including humans, where it accelerates this
reaction millions of times, making the interconversion of CO2
and HCO3

− almost instantaneous. In humans, there are 15 CA
isoforms, either acatalytic (CA-VIII, CA-X, and CA-XI) with
exact function presently unknown, or catalytically active. The
latter are found in the subcellular locations where CO2/HCO3

−

interconversion is required, from the site of production in
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the mitochondria (mitochondrial CA-VA and CA-VB), moving
into the cytosol (CA-I, CA-II, CA-III, CA-VII, CA-XIII), then
to the plasma membrane (CA-IV, CA-IX, CA-XII, CA-XIV)
and finally extracellularly (CA-VI secreted in saliva (Supuran,
2008; Zamanova et al., 2019; Mishra et al., 2020). As genetic
manipulation and selective inhibitors (Supuran et al., 1998;
Ilies et al., 2003; Smaine et al., 2007; Supuran, 2008; Güzel
et al., 2009; Winum et al., 2009; Alterio et al., 2012; Akocak
et al., 2016; Angeli et al., 2020) have become more available,
there has been an increase in studies to determine the cell-
specific function of different CA isoforms (Ghandour et al., 1992;
Sly and Hu, 1995; Kida et al., 2006; Pan et al., 2006, 2012;
Imtaiyaz Hassan et al., 2013; Shah et al., 2013b; Akocak and
Ilies, 2014; Angeli et al., 2017; Waheed and Sly, 2017; Haapasalo
et al., 2020; Mishra et al., 2020). One of the most ubiquitously
expressed and catalytically active isoform is CA-II, having a
turnover rate for CO2 hydration approaching diffusion limit
(Kcat = 1.4 × 106 s−1). It is a cytosolic enzyme and has the
widest distribution in the human body, being expressed in cells
from virtually every tissue or organ. In the brain, it is found in
large amounts in oligodendrocytes and epithelium of the choroid
plexus. Subjects suffering from CA-II deficiency syndrome,
a human autosomal recessive disorder, display osteopetrosis,
bone fragility, renal tubular acidosis, and, importantly, cerebral
calcification and cognitive defects, developmental delay and
usually a short stature (Sly and Hu, 1995; Supuran, 2008;
Zamanova et al., 2019; Mishra et al., 2020). This isoform
has been observed to translocate to the mitochondria, upon
aging and neurodegeneration in a Purkinje cell degeneration
mouse model (Pollard et al., 2016). This study also showed that
C. elegans exposed to CA-II have a shorter lifespan, suggesting
that high CA-II levels are involved in cell life/cycle-limiting
mechanisms. Future studies need to further elucidate why and
how this occurs.

CA-I isoform was first identified in red blood cells, where
is five to six times more abundant than CA-II, although it has
only about 15% of the CA-II activity (Supuran, 2008; Zamanova
et al., 2019; Mishra et al., 2020). CA-I is the most abundant
non-hemoglobin protein in erythrocytes and, together with
CA-II, contributes to equilibration of dissolved CO2/HCO3

−

pools in blood and maintains the pH blood homeostasis, also
facilitating the CO2 transport from brain and metabolizing
tissues to lungs (Sly and Hu, 1995; Supuran, 2008; Zamanova
et al., 2019; Mishra et al., 2020). CA-I is hypothesized to
contribute to cerebral edema due to the observation that CA-
I is increased in the brain following HS (Guo et al., 2012).
One of the most important cytosolic isozymes in the brain
is CA-VII, a fast isozyme (Kcat = 9.5 × 105 s−1), found
especially in the neurons of hippocampus, together with CA-
II. Interestingly, CA-VII is not found in glial cells, which
contain just CA-II in the cytosol. Besides CNS, CA-VII is
found in skeletal muscles, stomach, duodenum, liver, colon
(Sly and Hu, 1995; Supuran, 2008; Zamanova et al., 2019;
Mishra et al., 2020). In the brain, Kaila’s group has shown
that CA-VII acts as a molecular switch in hippocampal CA1
pyramidal neurons in the development of synchronous gamma-
frequency firing in response to high-frequency stimulation. This

finding makes CA-VII an important modulator of long-term
potentiation, synaptic plasticity, memory, and learning processes
(Ruusuvuori et al., 2004). The same group, using a novel CA-
VII (Car7) KO mouse model, as well as a CA-II (Car2) KO,
and a CA-II/VII double KO mouse models, has shown that
in mature hippocampal pyramidal neurons CA-VII and CA-
II isozymes enhance bicarbonate-driven GABAergic excitation
during intense GABAA-receptor activation. The expression of
these two cytosolic isozymes was detected at a very early age
in the animals (10- and 20-days post-birth), pointing toward
CA-VII and CA-II being key molecules in age-dependent
neuronal pH regulation (Supuran, 2008; Ruusuvuori et al., 2013;
Ruusuvuori and Kaila, 2014; Zamanova et al., 2019; Mishra et al.,
2020).

Membrane-bound isozymes also play an important role in the
brain, especially for the regulation of extracellular pH (Chesler,
2003; Shah et al., 2005). Thus, the phosphatidylinositol glycan
(GPI)-anchored isozymes CA-IV (Stams et al., 1996) is a fast
isozyme (Kcat = 1.1 × 106 s−1) found on the plasma face of the
cortical capillaries. It is more resistant to inhibition by halide
ions than CA-II, being adapted to perform the CO2/HCO3

−

interconversion in the extracellular space that contains a higher
concentration of Cl− ions than the cytosol. The isozyme is also
expressed in the choriocapillaries of the eye, in skeletal and
cardiac muscles, lungs, kidneys, gastrointestinal and reproductive
tracts (Sly and Hu, 1995; Supuran, 2008; Zamanova et al., 2019;
Mishra et al., 2020). Another isoform localized within the plasma
membrane is CA-IX, a transmembrane isozyme, possessing an
N-terminal proteoglycan domain, the catalytic domain, a single-
pass transmembrane region, and an intracellular tail. It is a
dimeric protein with a low expression pattern in most organs,
except for the digestive system (largest amount) and CNS, where
it can be found mainly in the ventricular-lining cells and in
the choroid plexus (Saarnio et al., 1998; Hilvo et al., 2008;
Supuran, 2008; Alterio et al., 2009; Pastorek and Pastorekova,
2015; Zamanova et al., 2019; Mishra et al., 2020). The expression
of CA-IX is up-regulated in hypoxia by the transcription factor
hypoxia inducible factor-1 (HIF1α) and is associated with the
Warburg effect in cancer pathology (Ivanov et al., 2001; Supuran,
2008; Pastorek and Pastorekova, 2015; Shabana and Ilies, 2019).
In models of glioblastoma, CA-IX has been observed to increase
cell migration, motility, and adhesion in monocytes (Huang et al.,
2020). Currently, a compound partially selective to inhibit for
CA-IX, referred to as SLC-0111, is in clinical trials, and it is
likely it would operate as a therapy for multiple cancers, including
glioblastoma (Boyd et al., 2017; Ilies and Winum, 2019; Shabana
and Ilies, 2019; McDonald et al., 2020). This isoform has also
been suggested to be involved in heart fibrosis in a rat cardiac
ligation model (Vargas et al., 2016). Interestingly, in humans,
CA-IX is expressed also within atherosclerotic plaques, where
it is suggested to be a marker of necrotic tissue (Demandt
et al., 2021). Recent studies provided evidence that CA-IX
likely exacerbates cerebral ischemia outcomes (Mishra et al.,
2020). CA-XII is another medium-fast (Kcat = 4.2 × 105 s−1),
membrane-bound isozyme, similar in general structure with CA-
IX, but without the proteoglycan domain. It is also dimeric,
with the two active sites oriented toward the extracellular milieu
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(Ivanov et al., 1998; Türeci et al., 1998; Whittington et al.,
2001). It is found in many hypoxic tumors, alongside CA-
IX, including gliomas, hemangioblastomas, and meningiomas.
However, opposite to CA-IX, CA-XII is highly expressed in
many normal tissues including breast epithelium and non-
pigmented ciliary epithelial cells of the eye, in brain (small
peripheral capillaries), esophagus, pancreas, colon, rectum,
kidney, prostate, ovary, testis, endometrium, sweat glands. CA-
XII was shown to play a key role in epithelial cell electrolyte
homeostasis via activation of the ductal Cl−/HCO3

− exchanger
AE2, and association with Na+/HCO3

− cotransporter kNBC1
(Proescholdt et al., 2005; Purkerson and Schwartz, 2007; Supuran,
2008; Hong et al., 2015; Waheed and Sly, 2017; Zamanova
et al., 2019; Mishra et al., 2020). The membrane-bound isozyme
CA-XIV possesses an extracellular catalytic domain, a single
transmembrane helix, a short intracellular polypeptide segment,
and has a moderate catalytic activity. It is highly expressed in the
kidney, retina and the heart, as well as in brain, skeletal muscles,
liver, and lungs. It was reported that CA-XIV is interacting with
bicarbonate transporters and is involved in acid–base balance
in muscles and erythrocytes in response to chronic hypoxia,
and hyperactivity of the heart (Mori et al., 1999; Supuran,
2008; Mboge et al., 2018; Zamanova et al., 2019; Mishra et al.,
2020).

The mitochondrial isoforms CA-VA and CA-VB are
isozymes with medium-high activity (KcatVA = 2.9 × 105 s−1,
KcatVB = 9.5 × 105 s−1), important for gluconeogenesis,
lipogenesis, ureagenesis, and other anabolic pathways. They
supply HCO3

− to pyruvate carboxylase during gluconeogenesis
and lipogenesis pathways, and to carbamoyl phosphate
synthetase in ureagenesis pathway. CA-VA is found mainly
in the liver, while CA-VB is found in skeletal and heart muscles,
kidneys, pancreas, gastrointestinl tract, brain and spinal cord
(Shah et al., 2000; Supuran, 2008; Scozzafava et al., 2013;
Zamanova et al., 2019; Mishra et al., 2020). Due to their
involvement in these anabolic pathways, they have been studied
in models of obesity and type 2 diabetes (De Simone and Supuran,
2007; Supuran, 2012; Scozzafava et al., 2013; Salameh et al., 2019;
Mishra et al., 2020). The function of CA-V and the difference
between CA-VA and CA-VB isoforms has been examined by
analyzing the phenotypical differences between CA-VA and CA-
VB KO, as well as the double KO mouse models, indicating their
role in ammonia detoxification (Shah et al., 2013b). The function
of CA-V in the brain is extremely understudied, however, CA-VA
has been reported to be expressed in both neurons and glial cells
(Ghandour et al., 2000). Interestingly, the effect of CA-V has
been also investigated in cerebral pericytes (Price et al., 2017). It
has been observed that silencing of both isoforms protect against
high-glucose-induced cell death and ROS production, CA-VA
to a more significant degree (Price et al., 2017), confirmed also
by increased oxidative stress and apoptosis in models of CA-VA
over expression (Price et al., 2017).

Although extensive studies reported the multiple functions
of the different CA isoforms in a variety of tissues, further
investigation regrading CAs cell-specific expression/activity,
especially within the CNS, and in CNS disorders, is needed.
In particular, CAs impact on cerebrovascular dysregulation
occurring during IS and AD must still be elucidated. It is

therefore crucial to identify the cell- and isoform-specific roles,
and to design isoform-selective inhibitors, which may be likely to
ameliorate the cell/tissue specificity and to decrease the observed
side effects of the FDA-approved pan-CAIs (Provensi et al., 2019;
Zamanova et al., 2019; Mishra et al., 2020).

Below, we summarize the available literature highlighting
the positive effects of CA inhibition on neurovascular
dysfunction in stroke-, AD-, CAA-, and diabetes-induced
cerebrovascular pathology.

Carbonic Anhydrase Inhibitors and
Cerebrovascular Pathology
CAIs have been studied for decades (Maren, 1967; Bertini and
Luchinat, 1983; Silverman and Lindskog, 1988; Supuran et al.,
2003; Krishnamurthy et al., 2008; Supuran, 2008; Winum et al.,
2009; Alterio et al., 2012; Akocak and Ilies, 2014; McKenna and
Supuran, 2014; Supuran and Winum, 2015; Ilies and Winum,
2019; Angeli et al., 2020; Supuran and Capasso, 2020). They
were first developed as diuretics due to their function on the
reabsorption of sodium and water within the kidney (DuBose,
1984; Purkerson and Schwartz, 2007; Supuran, 2018), and are
currently used to treat glaucoma as they decrease intraocular
pressure, and for the prevention of high altitude sickness
(Bradwell et al., 1992; Mincione et al., 2007; Ritchie et al.,
2012), as they diminish pulmonary vasoconstriction, increase
CBF likely controlling cerebral oxygenation, and reduce cerebral
edema (Mishra et al., 2020). However, the molecular mechanism
responsible for the effects of CAIs, including some of the most
used pan-CAIs such as ATZ and MTZ, are multiple, and still
under investigation.

MTZ, for example, was recognized as one of a few compounds
that had the ability to inhibit cytochrome c release from the
mitochondria under oxidative stress (Wang et al., 2008). Over
1000 compounds of the NINDS drug library were first screened in
isolated mitochondria from mouse liver and further confirmed in
striatal cells in models of Huntington’s disease. MTZ, inhibiting
cytochrome c release from challenged mitochondria, also resulted
in the reduction of caspase-9 and caspase-3 activation (Wang
et al., 2008; Fossati et al., 2016; Sekerdag et al., 2018). Following
this study, FDA-approved CAIs such as MTZ, ATZ, topiramate
and more recently developed non-FDA approved selective
inhibitors, are starting to be applied in models of cerebrovascular
pathology, ischemia, CAA and AD, and their positive effects
have been attributed, at least in part, to their ability to prevent
mitochondrial dysfunction in cerebrovascular cells (Wang et al.,
2009; Shah et al., 2013a; Fossati et al., 2016; Solesio et al., 2018).

CA inhibition has been shown to contribute to
cerebrovascular tone during transient phases of pH change,
but not in steady-state conditions, in rat arteries (Rasmussen and
Boedtkjer, 2018). This study used two different CAIs, ATZ and
4-aminomethylbenzenesulfonamide (AMB). It was revealed that
only the pan-CAI ATZ, potent against most of intracellular CA
isozymes, had an effect on intracellular acidification mechanisms.
Based on the observed results, it was concluded that intracellular
CAs are responsible for modifying the rate of intracellular
pH and vascular tone within the arteries (Rasmussen and
Boedtkjer, 2018). Other studies have observed the vasodilator
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abilities of ATZ, such as increased NO production leading to
increased blood flow in the cortex of rats (Tuettenberg et al.,
2001). It is likely that the production of NO is not the only
mechanism by which ATZ mediates vasodilation (Kiss et al.,
1999). Systemic administration of ATZ has also been widely
used as a short test to increase CBF in human studies (Okudaira
et al., 1995; Grossmann and Koeberle, 2000; Russell et al., 2008).
Interestingly, its stimulatory effect on CBF is reduced in patients
with AD or vascular dementia compared to healthy controls
(Stoppe et al., 1995; Pavics et al., 1999).

Carbonic Anhydrase Inhibition in Models
of Ischemic Stroke
The neuroprotective effects of MTZ, in both in vitro and
in vivo models of ischemic injury, displayed in Table 1,
were first explored by Wang et al. (2009). Exposing primary
cortical neurons to OGD and H2O2 resulted in necrosis, which

TABLE 1 | CA inhibition in models of IS.

Model Mechanism CA
Inhibitor/Isoform

References

Mouse primary
cortical neurons

Inhibition of OGD
induced necrosis

MTZ Wang et al.,
2009

Inhibition of OGD
induced mitochondria
mediated apoptosis

Inhibition of OGD
induced inflammasome

activation

C57BL/6J
Mouse pMCAO

Reduction of infarct size MTZ Wang et al.,
2009Improvement of

neurological score

Reduction of caspase 3
activation

Decrease of
cytochrome C release

Wistar rat
tMCAO

Decrease of infarct size ATZ Han et al., 2020

Reduction of AQP4
expression

Reduction of brain
water content and

sodium accumulation

Sprague
dawley rat
pMCAO

Improvement of
neurological score

CA-VII inhibition,
CA-IX/XII inhibition

Di Cesare
Mannelli et al.,

2016Reduction of infarct size ATZ, CA-IX/XII
inhibition

Rat
hippocampal
slices

Inhibition of OGD
induced anoxic
depolarization

ATZ, CA-IX
inhibition, CA-XII

inhibition

Dettori et al.,
2021

Wistar rats
pMCAO

Reduction of infarct size ATZ, CA-IX/-XII
inhibition

Dettori et al.,
2021Improvement of

neurological score

Attenuation of microglia
activation

MTZ, Methazolamide; ATZ, Acetazolamide; HS, hemorrhagic stroke; p/Tmcao,
permanent/transient middle cerebral artery occlusion; CA, carbonic anhydrase;
AQP4, Aquaporin-4; OGD, oxygen glucose deprivation.

was rescued by MTZ treatment. Similarly, OGD increased
cytochrome c release and apoptosis inducing factor (AIF) release
from the mitochondria, as well as the activity of caspase-3 (Wang
et al., 2009), and MTZ attenuated these effects (Wang et al.,
2009), suggesting that MTZ does not only prevent necrosis, but
also mitochondria-mediated apoptosis, induced by OGD. In the
same study, primary cortical neurons exposed to OGD presented
inflammasome activation, measured by the activation of caspase-
1 and release of IL-1β. MTZ inhibited both IL-1β release as
well as caspase-1 activation in vitro (Wang et al., 2009). This
finding supports the hypothesis that CAs may mediate both
apoptotic and inflammatory mechanisms. In a mouse model of
MCAO, MTZ-treated mice (20 mg/kg) had a smaller infarct size,
improved neurological score, and decreased cytochrome c release
and caspase-3 activation, compared to non-treated mice (Wang
et al., 2009). A more recent study performed in rats determined
the effectiveness of ATZ alone, as well as in conjugation with
head-down tilt, a way to physically promote CBF, in a transient
MCAO rat model. The results indicated that ATZ was protective
following transient MCAO, significantly decreasing infarct size
(Han et al., 2020). Furthermore, ATZ reduced AQP4 expression,
compared to rats with no treatment, suggesting a reduction in
brain edema (Han et al., 2020). In a rat model of permanent
MCAO, ATZ was used in comparison with selective inhibitors
for CA-VII, CA-IX, and CA-XII to determine whether these

TABLE 2 | CA inhibition in models of HS.

Model Mechanism CA
Inhibitor/Isoform

References

Sprague-
dawley rats
intracaudate
blood injection

Improvement of
neurological outcome

ATZ Guo et al.,
2012

Reduction of
neuronal death

Exacerbation of brain
water content

CA-I injection Guo et al.,
2012

Increase
neurodegeneration

Mouse primary
cortical neurons

Inhibition of
blood/hemoglobin
induced cell death

MTZ Li et al., 2016

Inhibition of
blood/hemoglobin

induced ROS
production

C57BL/6J Mice
SAH

Reduction in
caspase-3 activation

and cell death in
hippocampus/cortex

MTZ Li et al., 2016

Improvement in
neurological outcome

New Zealand
White Rabbits
SAH

Reduction of
neurodegeneration/

apoptosis in
hippocampus

Topiramate Seçkin et al.,
2009

ATZ, acetazolamide; MTZ, methazolamide; CA-I, carbonic anhydrase-1; SAH,
subarachnoid hemorrhage; ROS, reactive oxygen species.
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isoforms are involved in the pathology. Interestingly, the pan-
CAI ATZ did not improve neurological score 24 h following
occlusion, however, the CAI with selectivity for CA-VII, as well
as the compound more selective for membrane isoforms CA-
IX and CA-XII, improved the neurological deficits observed
in the occluded untreated rats. In the group treated with
the CA-IX/CA XII potent and medium selective inhibitor, 6-
(benzyloxy)benzo[d]thiazole-2-sulfonamide (BBT), infarct size
was significantly reduced, while no reduction was observed

TABLE 3 | CA inhibition in models of AD and CAA.

Model Mechanism CA
Inhibitor/Isoform

References

hCMEC/D3 Inhibition of Aβ induced
DNA fragmentation

MTZ, ATZ Fossati et al.,
2010; Solesio
et al., 2018Inhibition Aβ induced of

cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Human primary
brain SMC

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2010

Inhibition Aβ induced of
cytochrome c release

Normal Human
Astrocytes

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2016

Human Glioma
M059K

Inhibition of Aβ induced
DNA fragmentation

MTZ Fossati et al.,
2016

Inhibition Aβ induced of
cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Human
Neuroblastoma
(SHSY5Y)

Inhibition of Aβ induced
DNA fragmentation

MTZ, ATZ Fossati et al.,
2016; Solesio
et al., 2018Inhibition Aβ induced of

cytochrome c release

Inhibition of Aβ induced
H2O2 production

Inhibition of Aβ induced
caspase-9 activity

Activation of Nrf2 MTZ Sotolongo
et al., 2020

Rat primary cortical
neurons

Activation of Nrf2 MTZ Sotolongo
et al., 2020

C57BL/6 Mice Aβ

hippocampal
injection

Inhibition of caspase-3
activation

MTZ Fossati et al.,
2016

Increase of NeuN
expression in
hippocampus

Reduction of
caspase-3 activation in

reactive microglia

hCMEC/D3, human cerebral microvasculature endothelial cells; Aβ, amyloid-beta;
MTZ, methazolamide; ATZ, acetazolamide; SMC, smooth muscle cell; SHSY5Y,
human neuroblastoma cells; MO59K, glioblastoma cell line; Nrf2, nuclear factor
erythroid 2-related factor.

in the CA-VII inhibitor group. However, rats treated with
50 mg/kg of ATZ also displayed diminished infarct volume. This
study suggests that CA-IX and possibly CA-XII may exacerbate
neuronal loss along with neurological and vascular deficits,
following ischemic insult (Di Cesare Mannelli et al., 2016).
Very recently, another study evaluated different CA-selective
inhibitors, in both in vitro and in vivo models of IS (Dettori et al.,
2021). This study analyzed a new generation of CAIs, which are
lipophilic and selective for the hypoxia-associated (CA-IX and
CA-XII) and cytosolic (CA-II and CA-I) isoforms. Importantly,
ATZ was used as a reference compound at a much lower dose
in this study (4.4 mg/kg). In vitro, the lipophilic CAIs and ATZ
protected against OGD-induced anoxic depolarization, providing
mechanistic information. In vivo, the CAIs reduced infarct
volume, neurological deficits, neuronal damage and microglial
activation (Dettori et al., 2021). This study also measured TNF-
α and Il-10 plasma levels, showing differences between the sham
surgery and the occluded groups, without any affect in the
treated groups, likely due to the short time window of treatment
(24-h). As proposed in the discussion, it is possible that, with
a longer treatment, CA inhibition may mediate inflammatory
pathways (Bulli et al., 2021; Dettori et al., 2021). Indeed, CAs
have been also associated with inflammatory pathologies, such
as rheumatoid arthritis and cancer metastasis (Supuran, 2008;
Alver et al., 2011; Liu et al., 2012). Overall, both MTZ and ATZ
are protective in models of IS, however, the development of CA-
IX and potentially CA-XII inhibitors may be beneficial for the
treatment of both neurological and vascular disorders, following
IS. The protective mechanisms observed following CA inhibition
in models of IS, summarized in Table 2, seem to be superior with
compounds selective for membrane-bound isoforms CA-IX and
CA-XII (Bulli et al., 2021).

Carbonic Anhydrase Inhibition in Models
of Hemorrhagic Stroke
The protective mechanisms of CA inhibition in models of HS
are summarized in Table 2. Inhibition of CA reduced brain
injury after ICH in Sprague-Dawley rats (Guo et al., 2012). This
study focused on CA-I, which is highly expressed in red blood
cells. Upon intracaudate injection of blood, CA-I levels were
increased in the ipsilateral basal ganglia, for as long as 3 days post-
injection. Moreover, following intracaudate injection of CA-I,
increased brain water content, microglial activation and neuronal
cell death were detected, suggesting that CA-I expression may
contribute to cerebral edema and neuroinflammation. ATZ-
treated rats exhibited reduced perihematomal edema, as well as
sodium accumulation, together with decreased neuronal deficits
(Guo et al., 2012). However, the cellular mechanisms responsible
for the effects of CA-I on BBB integrity require further
investigation. Lately, the scientific community is beginning to
hypothesize that CA-I, in both the retina and brain, contributes
to vascular permeability, suggesting that specific inhibitors
of CA-I could be beneficial to minimize NVU dysfunction,
and thus neuroinflammation around the barrier (Gao et al.,
2007). Furtherly, in a SAH mouse model, mice treated with
the pan-CAI, MTZ, had decreased caspase-3 activation and
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apoptosis in the hippocampus and cortex, compared to the
non-treated group, ameliorating neurological deficits (Li et al.,
2016). In primary cortical neurons, MTZ reduced hemoglobin
and blood induced cell death along with production of ROS
(Li et al., 2016). Topiramate, another CAI active on multiple
CA enzymes, including CA-V, reduced SAH injury in rabbits
(Seçkin et al., 2009).

Carbonic Anhydrase Inhibition in Models
of Alzheimer’s Disease and Cerebral
Amyloid Angiopathy
Recently, the effects of CA inhibition on mitochondrial and
neurovascular cell function have been tested in models of
amyloidosis (Table 3). In AD and CAA, Aβ toxic aggregates
accumulate around and within the cerebral vessel walls, as
well as in parenchymal plaques in specific brain regions,
such as the hippocampus and cortex (Ghiso et al., 2014;
Cortes-Canteli and Iadecola, 2020). Our lab has shown
that Aβ oligomers and protofibrils induce cytochrome c
release from the mitochondria in multiple cell types of the
NVU, including ECs and SMCs, neurons and glial cells,
leading to caspase activation and cell death (Fossati et al.,
2010, 2012a,b, 2016; Parodi-Rullán et al., 2020). In all of
these neurovascular cell types, MTZ reduced mitochondrial
mediated cell death triggered by Aβ (Fossati et al., 2010,
2016). Moreover, MTZ attenuated caspase-3 and caspase-
9 activation in ECs, neuronal and glial cells in vitro, as

well as caspase-3 activation in vivo (Fossati et al., 2016;
Solesio et al., 2018). In an in vivo study, Aβ was injected
into the hippocampus of wild-type mice, in the presence
or absence of a previous intraperitoneal MTZ injection.
Interestingly, MTZ treatment attenuated the activation of
caspase-3 in microglia and increased the amount of NeuN
positive neurons within the hippocampus, indicating that MTZ
treatment had a protective effect against neurodegeneration
following Aβ-injection (Fossati et al., 2016). To elucidate the
specific mechanisms responsible for these protective effects,
our group showed that Aβ-induced mitochondrial dysfunction,
mitochondrial membrane depolarization, cytochrome C release,
and H2O2 production were attenuated in neuronal and ECs,
not only by MTZ, but also by ATZ, which was effective at
lower concentrations (Solesio et al., 2018). Moreover, both
ATZ and MTZ inhibited caspase-9 activation caused by Aβ

in cerebrovascular EC, and the resulting apoptosis (Solesio
et al., 2018). MTZ has been also observed to increase the
activation of nuclear factor-related factor 2 (Nrf2), in models
of high-altitude sickness and more interestingly, in human
neuroblastoma cells and primary cortical neurons challenged
with Aβ in vitro (Lu et al., 2020; Sotolongo et al., 2020).
Nrf2-activation by MTZ increased the activity of antioxidant
enzymes, such as superoxide dismutase-1 and heme-oxygenase-1,
pointing to the potential downstream effects of MTZ (Sotolongo
et al., 2020). These studies support the hypothesis that CA
inhibition is protective to multiple cell types of the NVU,
in models of amyloidosis, and highlight the necessity to test

TABLE 4 | CA isoforms in CNS and cerebrovascular pathology.

CA isoform Cellular localization Cell type/Brain area Cellular function Neurological disorder References

CA-I Cytosol Red blood cells -pH homeostasis in the blood
-Edema/sodium accumulation

in the brain

IH Guo et al., 2012

CA-II Cytosol -Epithelium of choroid plexus
-Glial Cells -Neurons

-Intracellular ion homeostasis
-Cell-life/life cycle

Loss of expression
associated with cognitive

abnormalities

Sly and Hu, 1995; Mishra
et al., 2020

CA-III Cytosol MCA N/A N/A Rasmussen and Boedtkjer,
2018

CA-IV Plasma membrane -Cortical capillaries -MCA Extracellular pH N/A Chesler, 2003; Shah et al.,
2005; Rasmussen and

Boedtkjer, 2018

CA-VA Mitochondria -Cerebrovascular pericytes
-Neurons -Glial cells

-High-glucose induced
Apoptosis -High-glucose

induced ROS production -Cell
viability -Biogenesis reactions

Type-2 Diabetes induced
cerebrovascular pathology

Ghandour et al., 2000;
Patrick et al., 2015; Price

et al., 2017

CA-VB Mitochondria -Cerebrovascular pericytes
-MCA -CNS cells

Cell Viability Type-2 Diabetes induced
cerebrovascular pathology

Price et al., 2017;
Rasmussen and Boedtkjer,
2018; Mishra et al., 2020

CA-VII Cytosol Hippocampal neurons -Gamma-frequency firing
-Long-term potentiation

Epilepsy Ruusuvuori et al., 2004,
2013

CA-IX Plasma membrane -Glioblastoma -Choroid plexus
-Ventricular linings

-Extracellular pH -Monocyte
adhesion/cell migration -Tumor

progression

Glioblastoma-IS Di Cesare Mannelli et al.,
2016; Huang et al., 2020;

Mishra et al., 2020

CA-XII Plasma membrane -Glioblastoma -Peripheral
capillaries -MCA

Extracellular pH Glioblastoma Proescholdt et al., 2005;
Rasmussen and Boedtkjer,

2018

CA, carbonic anhydrase; MCA, middle cerebral artery; IH, intracerebral hemorrhage; IS, ischemic stroke.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 November 2021 | Volume 13 | Article 772278

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-772278 November 10, 2021 Time: 12:19 # 12

Lemon et al. Carbonic Anhydrases and Neurovascular Dysfunction

these and/or isoform-specific compounds in clinical trials for
AD and CAA. New studies currently performed in our lab
are also confirming the positive effects of CAIs on cognitive
performance in mouse models of amyloidosis (Angiulli et al.,
2018). Additional studies are in process to investigate chronic
treatments with pan-CAIs in multiple models of CAA and AD,
in parallel with the assessment of specific isoform inhibitors,
to further elucidate the role of different CA isoforms in AD
and CAA pathology.

Interestingly, although CAIs are proving to be beneficial in
preventing CAA and AD pathology, CA activators have also
showed beneficial effects for memory retention in acute models
(Ilies et al., 2002; Canto de Souza et al., 2017; Sanku et al.,
2018; Provensi et al., 2019; Blandina et al., 2020; Schmidt
et al., 2020). These findings point to a relevant role of CA
enzymes in the modulation of multiple pathways in contextual
fear memory extinction, neurodegenerative and neurovascular
pathology. They also highlight the need for a careful and
specific modulation of CA enzyme’s activity, and for a further
understanding of the effects of each isoform in different brain
areas, cell types, and pathological conditions.

Carbonic Anhydrase Inhibition in Models
of Diabetes-Induced Cerebrovascular
Pathology
Some studies have also explored the specific inhibition of the
mitochondrial isoforms CA-VA and CA-VB, which recently
gained interest for their role in the prevention of cerebrovascular
pathology, in different models of diabetes (Price et al., 2012,
2017; Shah et al., 2013a), which contributes to AD and stroke
pathogenesis (Kuźma et al., 2018; Cortes-Canteli and Iadecola,
2020; Freitas-Andrade et al., 2020; Zlokovic et al., 2020). In
a streptozotocin induced diabetic CD-1 mouse model it was
reported that topiramate treatment for 3 weeks increased the
levels of glutathione and reduced oxidative stress in the brain.
It was also observed that diabetes-induced loss of cerebral
pericytes was attenuated by topiramate (Price et al., 2012).
The same group confirmed these mechanisms in the brains of
CA-V double KO mice, where increased levels of glutathione
and decreased oxidative stress was observed compared to wild-
type (Price et al., 2012). Hyperglycemia-treated cerebrovascular
pericytes increased ROS production, as well as the rate of

FIGURE 2 | AD and stroke share common risk factors and pathological mechanisms. This figure aims to emphasize the multiple CAIs, as well as point out specific
CA isoforms that have been observed to modulate cerebrovascular pathology in models of AD or stroke. Age, cardiovascular risk factors and hypoperfusion are all
common risk factors between AD and stroke. Both AD and stroke exhibit NVU dysfunction, accompanied by many common molecular mechanisms, such as
mitochondrial dysfunction, vascular, and neuronal cell death, neuroinflammation, and BBB dysfunction. If these mechanisms are causes or effects of neurovascular
dysfunction is still a hotly debated issue. Despite the differences in the advanced pathological manifestations of the two diseases, stroke does increase the risk of
dementia, suggesting that targeting their common risk factors and molecular mechanisms could ultimately mitigate the development of cerebrovascular pathology in
both disorders, protecting brain health and CNS homeostasis. ATZ, Acetazolamide; MTZ, methazolamide; BBB, blood brain barrier; NVU, neurovascular unit; CNS,
central nervous system; CA, carbonic anhydrase; AD, Alzheimer’s disease; CAIs, carbonic anhydrase inhibitors. This figure was created with BioRender.com.

Frontiers in Aging Neuroscience | www.frontiersin.org 12 November 2021 | Volume 13 | Article 772278

http://BioRender.com
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-772278 November 10, 2021 Time: 12:19 # 13

Lemon et al. Carbonic Anhydrases and Neurovascular Dysfunction

mitochondrial respiration. The inhibition of CA (particularly
CA-V), with topiramate, reduced ROS production (Shah et al.,
2013a). Although topiramate has a high inhibitory activity
on the CA-V isoforms, it also has affinity for the other
isoforms, as well as multiple off-target effects in the brain,
as shown by studies that analyzed topiramate’s functions on
GABA and glutamate receptors (Johnson, 2005; Mao et al.,
2015). Ideally, more specific inhibitors should be developed to
further investigate the functions of CA-VA/B. The same group
used a plasmid to overexpress CA-VA in cerebral pericytes
exposed to high-glucose to confirm the hypothesized molecular
mechanisms involving CA-VA, such as ROS production and cell
death, observing that topiramate was protective against these
mechanisms (Patrick et al., 2015). As a proof of concept, the same
group genetically knocked down CA-VA and CA-VB in cerebral
pericytes (Price et al., 2017). CA-VA and CA-VB knockdown
improved cell viability, compared to the control, when exposed
to hyperglycemia, although the specific knockdown of CA-VA
was even more effective than CA-VB knockdown in decreasing
ROS production and apoptosis, in a hyperglycemic environment
(Price et al., 2017). These studies reveal potential differences
between CA-VA and CA-VB function in brain pericytes, which
need further investigation. In a streptozotocin induced diabetic
mouse model, cerebrovascular pathology was also characterized
using electron microscopy. The breakdown of the BBB and
its dysfunction was attenuated by topiramate treatment in vivo
(Salameh et al., 2016). More recently, a study using a high-fat-
induced diabetes mouse model, focused on the disruption of the
hippocampal BBB. BBB tight junction proteins, such as ZO-1 and
claudin-12, were reduced with a high-fat diet, while topiramate
treatment increased their expression, along with the attenuation
of oxidative stress (Salameh et al., 2019).

CONCLUSION

The NVU is an important functional structure of the CNS,
and its failure participates in the development of AD,
vascular dementias, and exacerbates stroke outcomes. Multiple
pathological and cellular mechanisms leading to NVU pathology
need clarification, and new therapeutic strategies should be
further investigated and developed. As scientific techniques
improve, the ability to understand the functions of this unit
increases. Recent studies support that CA inhibition is protective
to the NVU, and the role of these enzymes should be further
investigated. Table 4 emphasizes the CA isoforms that have
been discussed throughout the review, their cellular localizations,
their association with specific neurological disorders, and their

expression in neurovascular cells. Clarifying how the cells of
the NVU interact with each other, as well as the roles of CAs
within each cell type, is critical for targeting cerebrovascular
pathology in IS, AD, as well as other neurogenerative diseases.
The pan-CAIs MTZ and ATZ, as well as topiramate, have shown
protective effects in models of stroke, cerebrovascular pathology,
type II diabetes, and AD, summarized in Figure 2. Although
these compounds are FDA-approved, facilitating translation to
clinical trials, these CAIs are not specific drugs. Isoform-specific
CAIs are of increasing interest, as 15 isoforms with different
functions and localizations have been identified in humans.
Further preclinical and clinical studies to assess the efficacy of
CA inhibition in AD as well as IS are essential. To confirm the
role of specific CA isoforms as pharmacological targets, genetic
studies, such as isoform KO and knock in in different NVU cell
types, would be beneficial. Overall, the studies discussed above
provide evidence for CAs as important potential mediators and
targets in neurovascular pathology for AD, stroke and related
cerebrovascular disorders.
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