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Background: Late-onset Alzheimer’s disease (LOAD) and early-onset Alzheimer’s
disease (EOAD) are different subtypes of AD. This study aimed to build and validate
radiomics models of the hippocampus for EOAD and young controls (YCs), LOAD and
old controls (OCs), as well as EOAD and LOAD.

Methods: Thirty-six EOAD patients, 36 LOAD patients, 36 YCs, and 36 OCs from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were enrolled and allocated
to training and test sets of the EOAD-YC groups, LOAD-OC groups, and EOAD-LOAD
groups. Independent external validation sets including 15 EOAD patients, 15 LOAD
patients, 15 YCs, and 15 OCs from Shanghai Mental Health Center were constructed,
respectively. Bilateral hippocampal segmentation and feature extraction were performed
for each subject, and the least absolute shrinkage and selection operator (LASSO)
method was used to select radiomic features. Support vector machine (SVM) models
were constructed based on the identified features to distinguish EOAD from YC subjects,
LOAD from OC subjects, and EOAD from LOAD subjects. The areas under the receiver
operating characteristic curves (AUCs) were used to evaluate the performance of the
models.

Results: Three, three, and four features were selected for EOAD and YC subjects, LOAD
and OC subjects, and EOAD and LOAD subjects, respectively. The AUC and accuracy
of the SVM model were 0.90 and 0.77 in the test set and 0.91 and 0.87 in the validation
set for EOAD and YC subjects, respectively; for LOAD and OC subjects, the AUC and
accuracy were 0.94 and 0.86 in the test set and 0.92 and 0.78 in the validation set,
respectively. For the SVM model of EOAD and LOAD subjects, the AUC was 0.87 and
the accuracy was 0.79 in the test set; additionally, the AUC was 0.86 and the accuracy
was 0.77 in the validation set.
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Conclusion: The findings of this study provide insights into the potential of hippocampal
radiomic features as biomarkers to diagnose EOAD and LOAD. This study is the first
to show that SVM classification analysis based on hippocampal radiomic features is a
valuable method for clinical applications in EOAD.

Keywords: early-onset Alzheimer’s disease, late-onset Alzheimer’s disease, hippocampus, radiomics, support
vector machine

INTRODUCTION

Alzheimer’s disease (AD), characterized by progressive cognitive
dysfunction, is a common neurodegenerative disorder that
significantly affects the quality of life of patients (DeTure and
Dickson, 2019). AD is clinically classified into early-onset AD
(EOAD) and late-onset AD (LOAD) based on the age of
symptom onset (Tellechea et al., 2018). A recent study has
suggested considerable differences between EOAD and LOAD
in etiological and clinical heterogeneity (Ayodele et al., 2021).
Compared with LOAD patients, EOAD patients exhibit more
aggressive disease progression and an atypical presentation of
preserved memory function but focal cortical symptoms such as
language, visuospatial, and executive dysfunction (Cacace et al.,
2016).

Consistent with the differences in clinical characteristics,
EOAD and LOAD patients also exhibit distinctions in
neuroimaging findings. Previous structural imaging studies
have shown that compared with LOAD patients, EOAD patients
present with less atrophy in the hippocampus but more severe
atrophy in the neocortex, particularly the parietal and precuneus
and posterior cingulate cortices (Moller et al., 2013; Cavedo
et al., 2014; Joubert et al., 2016). Furthermore, some resting-state
functional magnetic resonance imaging (fMRI) studies have
indicated that patients with EOAD exhibit functional disruption
between the hippocampus and middle frontal cortex, while
LOAD patients show more widely disrupted hippocampal
functional connectivity (Park et al., 2017; Li et al., 2018). These
findings indicate that AD is a heterogeneous disorder with
significant differences between EOAD and LOAD. Therefore,
the hippocampus is likely to exert a specific effect on the
pathologies of the two subtypes of AD and function as a useful
biomarker in the differential diagnosis of EOAD and LOAD.

Radiomics, an emerging imaging analysis method, can
objectively and quantitatively describe phenotypic information
using advanced imaging features (Gillies et al., 2016).
Radiomic features refer to histogram-based features, including
skewness and kurtosis, and texture-based features, such as the
gray-level cooccurrence matrix (GLCM) and the gray-level
run-length matrix (GLRLM), which provide microstructural
information unique from that indicated by volumetric measures
(Mayerhoefer et al., 2020). Currently, radiomics has been widely
applied to MRI and positron emission tomography (PET) as
imaging biomarkers of AD (Cai et al., 2020). Recent MRI-based
radiomics studies have shown that textural features of the
hippocampus are valid to distinguish AD patients from healthy
controls (Chaddad et al., 2018; Feng et al., 2018, 2019; Luk
et al., 2018; Li et al., 2020). Several studies have suggested that

hippocampal texture is superior to volume changes as a predictor
of AD (Beheshti et al., 2017; Shu et al., 2021). However, most
of the above studies have concentrated on the textural features
of the hippocampus in patients with LOAD, and several studies
included both EOAD and LOAD patients as a whole AD group,
missing an opportunity to identify differences between the two
subtypes of AD. No evidence exists regarding the extraction
and modeling of radiomic features between EOAD and healthy
subjects or between EOAD and LOAD patients.

In this study, we are the first to investigate and validate
hippocampus-based radiomic features for diagnosing EOAD
patients and young healthy subjects. Additionally, we sought to
ascertain hippocampal texture as a good biomarker in patients
with LOAD and old healthy subjects. Furthermore, this study is
the first to explore and validate hippocampal radiomic features
and construct classification models for distinguishing between
patients with EOAD and LOAD.

METHODS

Study Participants
The training and test data used in this study were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The ADNI was launched in 2003 as a public-private
partnership led by the National Institute on Aging (NIA), the
Food and Drug Administration (FDA), and National Institute
of Biomedical Imaging and Bioengineering (NIBIB). The ADNI
aims to aid researchers and clinicians in developing new
treatments and monitoring their effectiveness as well as to lessen
the time and cost of clinical trials. Up-to-date information can
be found at www.adni-info.org. The use of the ADNI data was
approved by the institutional review board at each site, and all
the participants provided their written consent.

A total of 144 ADNI participants were included in this
study 36 EOAD, 36 LOAD, 36 young control (YC), and 36 old
control (OC) participants from the ADNI1, ADNI2/GO, and
ADNI3 databases. Scans were collected at either screening or
baseline visits. First, 36 patients diagnosed with AD onset
before the age of 65 years (EOAD) who were enrolled in the
ADNI database were eligible for this study. Next, we included
36 patients who were 65 years or older at disease onset (LOAD)
and who were 1:1 matched to the EOAD patients by the
Clinical Dementia Rating (CDR) Scale. Accordingly, we selected
two control groups for each patient group. The controls were
matched 1:1 to AD patients for age and sex, thus obtaining a
YC group for EOAD (n = 36; YC) and an OC group for LOAD

1http://adni.loni.usc.edu
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(n = 36; OC). Furthermore, demographic information, medical
history, baseline symptoms, and assessment scale scores were
included. The MRI and clinical data were downloaded in June
2021.

Independent external validation data were acquired from
the Memory Clinic of Shanghai Mental Health Center (SMHC)
between July 2017 and May 2021, and normal control subjects
were recruited from the community. A total of 60 participants
including 15 EOAD, 15 LOAD, 15 YCs, and 15 OCs were
enrolled in this study. Similarly, 15 LOAD patients were also
1:1 matched to the EOAD patients using the CDR Scale, and
the controls were matched to AD patients for age and sex.
EOAD and LOAD patients were diagnosed by two experienced
geriatric psychiatrists. The exclusion criteria included the
following: (1) other psychiatric disorders comorbidities; (2) a
history of major physical illness, cardiovascular disease, or
neurological disorder; (3) substance abuse or dependence;
(4) pregnancy. Neuropsychological tests and brain imaging scans
were performed in all subjects. The retrospective study was
approved by the ethics committee of the Shanghai Mental Health
Centre of Shanghai Jiao Tong University School ofMedicine, and
all the participants provided written informed consent after they
were given a description of this study.

Image Acquisition
Regarding ADNI data, T1-weighted structural imaging was
collected using a 3D MPRAGE (magnetization prepared rapid
gradient-echo imaging) sequence with slightly different MR
parameters among participants. The MR images acquired using
Siemens scanner were scanned with the parameters as follows:
repetition time (TR) = 2,300 ms, matrix = 240× 256× 176, slice
thickness = 1.2mm, and those parameters in General Electric
scanner were as follows: TR = 7 ms, matrix = 256× 256× 166,
slice thickness = 1.2mm and those parameters in Philips scanner
were as follows: TR = 6.8 ms, matrix = 256 × 256 × 170,
slice thickness = 1.2mm, respectively. More detailed information
about the image acquisition procedures is available on the ADNI
website2. Additionally, the MR data of Shanghai Mental Health
Center were acquired using a Siemens Magnetom Verio 3.0 T
scanner, and high-resolution T1-weighted structural images with
176 sagittal slices were collected using a MPRAGE sequence
(TR = 2,530 ms, TE = 3.5 ms, flip angle = 9◦, FOV = 256 mm
× 256 mm, voxel size = 1.0 × 1.0 × 1.2 mm3).

Imaging Preprocessing
Standardized preprocessing was necessary to improve
discrimination between textural features and was performed
using Statistical Parametric Mapping (SPM12) software3

implemented in MATLAB R2017a (The MathWorks, Natick,
MA, USA). Firstly, each T1-weighted Digital Imaging and
Communications in Medicine (DICOM) image was converted
to Neuroimaging Informatics Technology Initiative (NIFTI)
data. Secondly, correction for bias field inhomogeneities and
intensity normalization of images were performed in the
VBM12 toolbox. The corrected images were normalized to the

2http://adni.loni.usc.edu/methods/documents/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Montreal Neurological Institute (MNI) standard T1 template
(standard space 181 × 217 × 181 with a resolution of
1 mm × 1 mm × 1 mm) using DARTEL normalization.
Then, the obtained images were spatially normalized to ensure
that a given voxel corresponded to the same anatomical position
in different subjects. Finally, we resliced those images to the
standard MNI space with a resolution of 1 mm × 1 mm × 1 mm.

Segmentation
Segmentation of the hippocampus was required to describe the
texture characteristics of the region of interest (ROI). First, the
bilateral hippocampus from the Anatomical Automatic Labeling
(AAL) template provided by the MNI was chosen as the ROI
mask. Then, the open-source software 3D-slicer4 was applied for
medical image visualization and segmentation (Fedorov et al.,
2012). Specifically, the viewer window of 3D-Slicer was used
to select image ‘‘layers’’, including ‘‘background’’ image and
‘‘label’’ image. Then, the standardized preprocessing image of
each subject was loaded as the ‘‘background’’ image, and the left
and right hippocampus mask was loaded as the‘‘label’’ image,
respectively. Next, two expert radiologists worked together to
check the segmentation of the hippocampus for each subject and
manually modified the unsatisfied image in the ‘‘Segment Editor’’
window of 3D slicer after reaching a consensus. In fact, a previous
study has shown that the dice similarity coefficient (DSC)
between the manual segmentation and atlas-based methods in
brain structure segmentation are 0.79 (Ourselin et al., 2013).
In our study, the combination of atlas-based segmentation and
manual inspections could assure the segmentation quality and
improve the time consumption.

Feature Extraction
First, we loaded the standardized 3D T1-MPRAGE data for the
EOAD, LOAD, YC, and OC subjects into 3D-slicer software, and
then we imported the segmented left and right hippocampus.
Massive features were selected using the ‘‘pyradiomics’’ package
of the software5, including the histogram-based matrix (HISTO),
GLCM, gray-level dependence matrix (GLDM), gray-level size
zone matrix (GLSZM), GLRLM, and neighboring gray-tone
difference matrix (NGTDM) in the ‘‘feature classes’’ window.

HISTO is a statistical description of discrete units, while
the GLCM using second-order statistics reflects the spatial
relationship of pixel gray-level values in the image (Dhruv et al.,
2019). The GLDM is also based on the gray-level relationship
to acquire the first-order statistics of local property values, and
the GLRLM estimates the spatial relationships between groups
of pixels with similar gray-level values (Araujo et al., 2018).
The GLSZM can be used to compute different pixel distances,
whereas the NGTDM measures the total differences in the gray
level of a pixel (Thibault et al., 2014).

Feature Selection
Before feature selection, preprocessing was required for accurate
and valid selection. First, we checked the extracted data and
replaced the abnormal values that deviated more than three

4https://www.slicer.org/
5http://www.jetbrains.com/pycharm/
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standard deviations from the mean by the mean. Considering
that deleting the abnormal values may cause loss of information
and the lack of processing may affect the model construction,
combined with the normal distribution of the data, we decided
to replace outliers with the mean. Next, the subjects from
ADNI data were randomly divided into training and test
datasets at proportions of 0.7 and 0.3 for EOAD-YC groups,
LOAD-OC groups, and EOAD-LOAD groups, respectively.
Then, every extracted feature was standardized by the function
of sklearn.preprocessing.scale based on Python programming
to achieve Z-score normalization to remove the dimensional
constraint.

We used Python programming to accomplish feature
selection. First, t-test and Mann-Whitney U test were used
to select the features with significant differences (p < 0.05).
Next, correlation analysis was performed to further reduce
the dimensionality. If the correlation coefficient of two
feature columns exceeded 0.8, we removed one of them
randomly. Finally, the least absolute shrinkage and selection
operator (LASSO) regression analysis method with 10-fold cross
validation was applied to determine the most valid features
in the training data, and the corresponding lambda value was
selected with minimum mean-squared error (MSE) values. The
mechanism of LASSO, combining the penalty function and linear
regression, makes some regression coefficients become zero and
achieve dimension reduction (Tibshirani, 2013).

Classification Analysis
Support vector machine (SVM) algorithms were used to
construct radiomic models for EOAD and YCs, LOAD and OCs,
and EOAD and LOAD. SVM is one of the most popular and
mature machine learning algorithms based on the neuroimaging
literature (Orru et al., 2012). The SVM model employs a radial
basis function kernel using LIBSVM6 to implement nonlinear
mapping from the input space to the feature space (Chang
and Lin, 2011). Accordingly, the SVM models were used to
construct the prediction models of the EOAD-YC groups,
LOAD-OC groups, and EOAD-LOAD groups based on the
selected prediction features in training sets, and then the test
sets were used to calculate the predictive efficiency based on
the predictive models, respectively (Nalepa and Kawulok, 2019).
Then, all subjects from the data from Shanghai Mental Health
Center were used as independent external validation sets to
verify the reliability and robustness of the corresponding models.
Additionally, receiver operating characteristic (ROC) curves and
the corresponding areas under the curve (AUCs) were used to
evaluate the diagnostic capabilities of the radiomic features.

Statistical Analysis
Statistical analyses were performed using SPSS software 22.0
(IBMCorporation, Armonk, NY). The demographic information
of the participants was collected as numbers or means ± SD
for categorical and continuous variables. The comparisons
between the EOAD and OC (EOAD-OC), LOAD and YC
(LOAD-YC), and EOAD and LOAD (EOAD-LOAD) subjects

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/index.html

were performed using χ2 test for categorical variables and
Student’s t-test for continuous variables (two-tailed) to evaluate
the differences between groups. A p < 0.05 was considered
statistically significant.

RESULTS

Demographic and Clinical Characteristics
The demographic and clinical characteristics of the four groups
are presented in Table 1. No difference was found in age or sex
between the EOADpatients and YCs (EOAD-YC) or between the
LOAD patients and OCs (LOAD-OC) in the ADNI and SMHC
data. The Mini-Mental State Examination (MMSE) scores were
significantly different in the EOAD-YC and LOAD-OC groups
(p < 0.001). No significant differences were found in the clinical
dementia rating (CDR) scores and MMSE scores between the
EOAD and LOAD patients (EOAD-LOAD).

Feature Selection Results
A total of 214 features were extracted from the bilateral
hippocampus. After t-test and Mann-Whitney U test, 99, 102,
and 37 features were preserved in the EOAD-YC, LOAD-
OC, and EOAD-LOAD groups, respectively. After correlation
analysis, 51, 73, and 24 (Figure 1) features remained. Finally,
the LASSO regression model identified three, four, and four
features for the EOAD-YC, LOAD-OC, and EOAD-LOAD
groups (Table 2). Meanwhile, the values of the coefficients and
the corresponding lambda values, and the MSE values and the
corresponding lambda values for the EOAD-YC, LOAD-OC, and
EOAD-LOAD groups are shown in Figure 2.

Classification Analysis Results
The accuracy (ACC), sensitivity (SEN), specificity (SPE), and
AUC were used to evaluate the classification performance.
Figure 3 and Table 3 show the final classification performance
on the test set and validation set. In the analysis between the
EOAD patients and YCs, the ACC, SEN, SPE, and AUC were
0.77, 0.91, 0.64, and 0.90 in the test set and 0.87, 0.87, 0.87, and
0.91 in the validation set, respectively (Figure 3A). By contrast,
in the LOAD patients and OCs, the ACC, SEN, SPE, and AUC
were 0.86, 0.87, 0.86, and 0.94 in the test set and 0.78, 0.85, 0.70,
and 0.92 in the validation set, respectively (Figure 3B). Finally,
in the analysis between the EOAD and LOAD patients, the ACC,
SEN, SPE, and AUC were 0.79, 0.67, 0.93, and 0.87 in the test set
and 0.77, 0.60, 0.93, and 0.86 in the validation set, respectively
(Figure 3C). Similar classification performance was found in the
test and validation datasets, indicating that our models may have
relatively good robustness.

DISCUSSION

The present study aimed to explore hippocampal radiomic
features to distinguish between patients with EOAD and
LOAD and healthy controls. Our findings show that the
hippocampal radiomic-based classification model can
discriminate patients with EOAD from YC subjects and
distinguish LOAD patients from OC participants. Additionally,
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TABLE 1 | Demographic, clinical parameters for EOAD, LOAD, YC, and OC subjects.

EOAD YC p LOAD OC p P (EOAD vs. LOAD)

ADNI data
N 36 36 36 36 1
Age, y 59.80 ± 2.8 60.40 ± 2.4 0.31 72.45 ± 2.8 72.08 ± 1.4 0.48 <0.001
Gender, F(%) 18 (50%) 18 (50%) 1 19 (53%) 19 (53%) 1 0.81
CDR 0.8 - - 0.8 - - 1
MMSE 23.0 ± 1.6 29.0 ± 0.9 <0.001 22.5 ± 3.0 29.2 ± 0.4 <0.001 0.63
SMHC data
N 15 15 15 15 1
Age, y 58.15 ± 5.4 59.85 ± 4.2 0.34 74.05 ± 5.8 73.51 ± 3.6 0.76 <0.001
Gender, F(%) 9 (60%) 9 (60%) 1 8 (53%) 8 (53%) 1 0.71
CDR 0.75 - - 0.75 - - 1
MMSE 22.1 ± 1.1 29.1 ± 0.7 <0.001 21.7 ± 1.8 28.3 ± 0.6 <0.001 0.47

Values presented as mean ± standard deviation. EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; YC, young control; OC, old control; CDR, Clinical
Dementia Rating Scale; MMSE, Mini-Mental State Examination.

FIGURE 1 | Correlation analysis graph of the EOAD-YC groups (A), the LOAD-OC groups (B), and the EOAD-LOAD groups (C). EOAD, early-onset Alzheimer’s
disease; LOAD, late-onset Alzheimer’s disease; YC, young control; OC, old control.

TABLE 2 | The preserved radiomic features after the feature selection.

Type of
features

EOAD-YC LOAD-OC EOAD-LOAD

Histogram Kurtosis Kurtosis
Skewness

Kurtosis

GLCM IMC1 IDMN IDMN

GLDM Dependence
Entropy

Small Dependence Low
Gray Level Emphasis

GLRLM Long Run Low Gray Level
Emphasis

NGTDM Coarseness

GLCM, Gray-Level Co-Occurrence Matrix; GLDM, Gray Level Dependence Matrix;
GLRLM, Gray-Level Run-Length Matrix; NGTDM, Neighbouring Gray Tone Difference
Matrix; IMC1, Informational Measure of Correlation (IMC) 1; IDMN, Inverse difference
moment normalized.

hippocampal texture was identified as a useful biomarker for
LOAD and EOAD patients. Additionally, results from other
datasets verified the generalizability and robustness of the
models.

To our knowledge, this study is the first to construct
a classification model of hippocampal radiomic features for
EOAD patients and healthy subjects. This model reveals

relatively good accuracy and sensitivity with a successful
diagnostic value. Although EOAD patients account for 5–10%
of reported AD cases (Lambert et al., 2014), this AD subtype is
valuable to understand the underlying mechanism. Currently,
studies on patients with EOAD have focused particularly on
structural magnetic resonance imaging (sMRI; Yang et al.,
2019). A quantitative analysis of the hippocampal volume in
EOAD patients suggested that hippocampal atrophy has limited
usefulness as a diagnostic biomarker for these patients (Falgas
et al., 2019). Radiomic features, different from volumetric
features, have captured considerable information and have
shown great promise for personalized clinical applications
(Avanzo et al., 2017). Our results show that the radiomic features
of the hippocampus can be defined as a useful biomarker to
identify EOAD patients and healthy controls, with great promise
for personalized clinical application.

Our findings indicate that the hippocampal radiomic model
presented excellent diagnostic value with good sensitivity and
specificity to distinguish LOAD patients from OCs. Consistent
with our results, radiomic analysis has been used to identify
hippocampal features to distinguish LOAD patients from healthy
control subjects. Chaddad et al. (2018) employed random
forest (RF) models to identify hippocampal textural features to
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FIGURE 2 | The coefficients-lambda graph and the MSE-lambda graph (A) in the EOAD-YC groups, the LOAD-OC groups (B), and the EOAD-LOAD groups (C).
MSE, mean-squared error.

differentiate LOAD patients from normal controls (NCs) with
an AUC of 0.84. Feng et al. (2018) demonstrated hippocampal
radiomic features that distinguish LOAD patients from NCs
with a classification accuracy of 0.87 via the SVM model. Luk
et al. (2018) calculated a logistic regression model to classify
LOAD patients and NCs, and the AUC was 0.93. Liu et al.
(2018) achieved an AUC of 0.90 for classifying LOAD patients
and NCs based on convolutional neural networks (CNNs).
Furthermore, recent evidence suggests that hippocampal texture
is significantly superior to hippocampal volumetry in the
early detection of AD (Sorensen et al., 2016; Luk et al.,
2018). Taken together, our findings support the significance
of hippocampal textural features as promising neuroimaging
biomarkers of AD.

Another important finding in this study worth noting is
the relatively satisfying classification model of hippocampal
radiomic features between EOAD and LOAD patients. This
model has demonstrated relatively high specificity and accuracy
with moderate diagnostic value. Notably, no radiomic analysis
has investigated the radiomic features of brain regions to
distinguish EOAD patients from LOAD patients directly. More
recent attention has focused on neuroimaging analysis methods,
including voxel-based morphometry (VBM), fMRI, diffusion
tensor imaging (DTI), and multimodal MRI, to detect structural
and functional changes in AD (Herdick et al., 2020). A recent
structural MRI study revealed that compared with healthy
controls, EOAD and LOAD patients exhibit a similar pattern
of hippocampal atrophy (Eckerstrom et al., 2018). Therefore, it
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FIGURE 3 | The ROC curve of the EOAD-YC groups in the training and test and validation sets (A). The ROC curve of the LOAD-OC groups in the training and test
and validation sets (B). The ROC curve of the EOAD-LOAD groups in training and test and validation sets (C). ROC, receiver operating characteristic.

TABLE 3 | Classification performance on test and validation datasets.

Accuracy Sensitivity Specificity AUC

EOAD-YC Training set 0.90 0.94 0.88 0.95
Test set 0.77 0.91 0.64 0.90
Validation set 0.87 0.87 0.87 0.91

LOAD-OC Training set 0.91 0.96 0.82 0.97
Test set 0.86 0.87 0.86 0.94
Validation set 0.78 0.85 0.70 0.92

EOAD-LOAD Training
set

0.86 0.84 0.88 0.88

Test set 0.79 0.67 0.93 0.87
Validation set 0.77 0.60 0.93 0.86

AUC, areas under the curve.

may be a challenge to distinguish between EOAD and LOAD
relying on structural MRI. Radiomic analysis can extract and
model many medical image features, and promises to increase
precision in diagnosis and provide decision support for precision
medicine (Lambin et al., 2017). Thus, radiomic studies of EOAD
deserve higher priority. Our findings support the hypothesis that
hippocampal radiomic features are valuable to distinguish the
two types of AD.

Furthermore, in this study, three radiomic features were
selected for the EOAD-YC groups—namely, kurtosis, coarseness,
and informational measure of correlation 1 (IMC1). Kurtosis
measures the degree of histogram sharpness, coarseness reflects
the spatial rate of changes in gray-level intensities, and
IMC1 captures the spatial relationships of pairs of pixels
(Guiot et al., 2022). Concerning the LOAD-OC groups, kurtosis,
skewness, inverse difference moment normalized (IDMN), and
dependence entropy were filtered. Kurtosis and skewness are the
parameters of the histogram, and skewness describes the degree
of histogram asymmetry. IDMN describes texture homogeneity,
whereas dependence entropy reflects the complexity in gray
distribution (Salvatore et al., 2021). Additionally, four radiomic
features—kurtosis, IDMN, small dependence low gray-level
emphasis (SDLGLE), and long-run low gray-level emphasis
(LRLGLE) were selected for the EOAD-LOAD groups. The
first two features were consistent with the LOAD-OC groups.
SDLGLE and LRLGLE are the parameters of GLDM and
GLRLM, respectively. SDLGLE measures the joint distribution
of small dependence with lower gray-level values, while LRLGLE
evaluates the joint distribution of long run lengths with lower

gray-level values (van Griethuysen et al., 2017). In summary, our
results indicate differences and similarities in radiomic features
among the EOAD-YC, LOAD-OC, and EOAD-LOAD groups.

This study has some limitations. First, owing to the relatively
low prevalence rates for EOAD (Zhu et al., 2015), the limited
sample size may affect the performance of the radiomic
models. Second, the hippocampus is a heterogeneous structure
encompassing different subregions, each of which may have
distinct textural features (Blanken et al., 2017). Further studies
regarding the radiomic features of hippocampal subregions
are warranted. Finally, more longitudinal studies are needed
combining texture with cerebrospinal fluid (CSF) and genomic
and metabolic markers to achieve an accurate screening,
diagnostic, and monitoring tool for clinical applications
(Li et al., 2019).

CONCLUSION

In conclusion, we found that hippocampal radiomic features can
be used to distinguish patients with EOAD and LOAD from
YCs and OCs. Furthermore, this study reports the moderately
successful diagnostic classification of EOAD vs. LOAD based on
hippocampal radiomic features. Generally, our findings support
the possibility that hippocampal textural features may serve as
potential neuroimaging biomarkers of AD, providing a useful
tool for decision support in precision medicine.
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