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Standing upright on stable and unstable surfaces requires postural control. Postural
control declines as humans age, presenting greater risk of fall-related injury and other
negative health outcomes. Secondary cognitive tasks can further impact balance, which
highlights the importance of coordination between cognitive and motor processes. Past
research indicates that this coordination relies on executive function (EF; the ability to
control, maintain, and flexibly direct attention to achieve goals), which coincidentally
declines as humans age. This suggests that secondary cognitive tasks requiring EF
may exert a greater influence on balance compared to non-EF secondary tasks, and
this interaction could be exaggerated among older adults. In the current study, we had
younger and older adults complete two Surface Stability conditions (standing upright on
stable vs. unstable surfaces) under varying Cognitive Load; participants completed EF
(Shifting, Inhibiting, Updating) and non-EF (Processing Speed) secondary cognitive tasks
on tablets, as well as a single task control scenario with no secondary cognitive task.
Our primary balance measure of interest was sway area, which was measured with an
array of wearable inertial measurement unit sensors. Replicating prior work, we found a
main effect of Surface Stability with less sway on stable surfaces compared to unstable
surfaces, and we found an interaction between Age and Surface Stability with older
adults exhibiting significantly greater sway selectively on unstable surfaces compared to
younger adults. New findings revealed a main effect of Cognitive Load on sway, with
the single task condition having significantly less sway than two of the EF conditions
(Updating and Shifting) and the non-EF condition (Processing Speed). We also found an
interaction of Cognitive Load and Surface Stability on postural control, where Surface
Stability impacted sway the most for the single task and two of the executive function
conditions (Inhibition and Shifting). Interestingly, Age did not interact with Cognitive Load,
suggesting that both age groups were equally impacted by secondary cognitive tasks,
regardless the presence or type of secondary cognitive task. Taken together, these
patterns suggest that cognitive demands vary in their impact on posture control across
stable vs. unstable surfaces, and that EF involvement may not be the driving mechanism
explaining cognitive-motor dual-task interference on balance.
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INTRODUCTION

Research over the past several decades has found that standing
upright involves multiple levels of controlled and automatic
processing to integrate multiple streams of information (Peterka,
2002; Boisgontier et al., 2013). Biologically speaking, postural
control involves interactions between cerebellar and cortical
regions (Jacobs and Horak, 2007), as well as interactions among
fronto-striatal regions (Mihara et al., 2008).

To complicate matters even further, humans often face
situations in which they must maintain balance on unstable,
irregular surfaces (e.g., an uneven sidewalk or a muddy patch of
grass), which may require additional neural resources to avoid
falls and injuries (Peterka, 2002; Agrawal et al., 2009). In line with
this, research has found reduced postural control with decreased
surface stability (Dault et al., 2001b; Bayot et al., 2018), with
the impact of these physical demands varying as a function of
specific surface stability manipulations (Barbado Murillo et al.,
2012; Remaud et al., 2012; Lanzarin et al., 2015).

Postural control is not just impacted by physical demands
but also by concurrent cognitive demands (Pellecchia, 2003;
Costa et al., 2020), which further emphasizes the importance of
cortical areas for standing upright (Woollacott and Shumway-
Cook, 2002). One finds evidence for this in studies that require
participants to maintain balance while performing cognitive
tasks, which leads to impaired postural control (Lajoie et al., 1993;
Andersson et al., 2002; Huxhold et al., 2006). This cognitive-
motor interaction may be due to limitations in how humans use
higher-order cognitive processing to manage the coordination of
multiple tasks. For instance, task performance costs may come
from bottlenecks in our information-processing architecture
(Pashler, 1994; Borst et al., 2010) or from competition for limited
attentional resources (Wickens, 2002). If task performance costs
come from information-processing bottlenecks, then we expect
to see general interference regardless the specific tasks; however,
if the costs come from limited attentional resources, then we
expect to see greater interference for tasks that require similar
attentional resources.

Postural control is especially important for older adults who
are at a higher risk of injury from falls (Fuller, 2000). In
general, aging has been associated with postural and balance
problems (Hageman et al., 1995; Laughton et al., 2003; Laufer
et al., 2006; Ambrose et al., 2013), including declines in postural
stability (Gill et al., 2001; Choy et al., 2003). Even without
additional cognitive demands, healthy older adults tend to
exhibit more postural sway than their younger counterparts (Kim
et al., 2010). Furthermore, in cognitive-motor dual-task settings,
older adults have demonstrated poorer balance and cognitive
performance compared to younger adults (Schaefer, 2014), which
has implications for daily activities and risk of falls (Lajoie and
Gallagher, 2004; Beauchet et al., 2009).

Interestingly, age-related differences in cognitive-motor dual-
task interference differ depending on the nature of the secondary
cognitive task, especially when both the postural task and
cognitive task recruit common neural resources that may atrophy
as humans age (Rypma et al., 2001; Johnson et al., 2004; Fraizer
and Mitra, 2008). For example, one study had older and younger

adults verbally list words or type words while standing on stable
or unstable surfaces and found differences in how the verbal and
texting tasks impacted postural control across their age groups
(Hsiao et al., 2020).

The current study builds on this line of research by
further exploring the specificity of cognitive-motor dual-task
interference in younger and older adults within the same
modality. In the cognitive domain, we focused on executive
function, which consists of higher cognitive processes important
for controlling goal-directed behaviors (Garavan et al., 2000;
Jurado and Rosselli, 2007; Chan et al., 2008; Bayot et al., 2018).
Contemporary models suggest that executive function is made up
of distinct but related components that allow humans to control,
maintain, and flexibly direct attention to achieve goals (Miyake
et al., 2000; Li et al., 2017). Important for postural control,
executive function purportedly relies on the same frontal neural
systems supporting motor control (Stuss, 2011).

As humans age, motor control increasingly relies on executive
function (Duncan and Owen, 2000; Seidler et al., 2010; Al-Yahya
et al., 2011, 2019; Holtzer et al., 2014), yet executive function
also declines with age (Elderkin-Thompson et al., 2008; Grady,
2012; King et al., 2013; Yuan and Raz, 2014). Thus, in cognitive-
motor dual-task situations involving executive function tasks,
older adults’ restricted supply of executive function might result
in greater performance costs compared to younger adults. In
contrast, non-executive function tasks that do not rely as much
on neural resources common to motor control may not result
in comparable interference. This has not been directly tested in
terms of balance performance; however, cognitive-motor dual-
task interference from EF and non-EF tasks has been investigated
in related motor domains such as gait (Beauchet et al., 2012).
For example, one study measured gait for 20 younger adults
and 17 older adults who completed single and dual-task walking
scenarios. They found that EF-based secondary tasks slowed
gait more non-EF tasks, and this EF-specific cognitive-motor
dual-task interference was greater for older adults compared to
younger adults (Walshe et al., 2015).

The current study builds on this prior research by
investigating the specificity of cognitive-motor dual-task
interference on balance using tablet-based executive function
and non-executive function tasks, stable and unstable surfaces,
and younger and older adults. Building on prior motor control
research and leveraging a dominant model of EF (Miyake
et al., 2000), we wanted to identify which combinations of
cognitive load (i.e., non-EF demands, EF switching demands,
EF updating demands, EF inhibition demands) and surface
stability (i.e., stable, unstable) lead to the greatest impacts
on sway, which could indicate situations where resources
are most scarce (and thus, most shared). If secondary EF
tasks lead to greater sway specifically on unstable surfaces
compared to a non-EF task selectively, this would align
more with models of limited attentional resources, such
that performance declines as demand for a shared resource
increases. This would also provide additional support for an
overlap or taxation of concurrent processing between specific
higher-level EFs and balance. On the other hand, if we see
comparable impairment (i.e., greater sway) from the non-EF
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and EF tasks, then it’s possible that cognitive-motor dual-
task impairment is not specific and perhaps instead results
from general information-processing bottlenecks (Maylor
and Wing, 1996; Dault et al., 2001a). Furthermore, we were
interested in whether or not levels of cognitive-motor dual-task
interference on balance would be comparable for young and
older adults since prior research found greater impairments
on EF tasks for older adults in a related motor domain
(Walshe et al., 2015).

MATERIALS AND METHODS

Participants
Based on prior research involving postural control, dual tasking,
and young vs. older adults, our goal was to have at least
30 participants in each age group (Kerr et al., 1985; Yardley
et al., 1999; Bergamin et al., 2014; Bohle et al., 2019; Hsiao
et al., 2020). For the younger adults, we recruited 53 healthy
adults (ages 18–35) and excluded 11 due to technical errors
for a final sample of 42 younger adult participants (mean
age = 23 years; 26F/16M). For the older adults, we recruited
37 healthy older adults (ages 60 or older (Walshe et al., 2015)
and excluded 7 due to technical errors for a final sample of
30 older adult participants (mean age = 73 years; 27F/3M). For
our convenience sample, we only recruited participants from the
local community who could stand upright without assistance;
had no balance impairments; were not taking any medication
that could impact balance; were free from musculoskeletal and
neurological disorders including dementia, depression, and other
cognitive impairments; and had normal or corrected-to-normal
vision. All participants provided written consent according to the
Declaration of Helsinki, and our protocol was approved by the
Tufts University IRB.

Protocol
Participants completed a single session lasting approximately
1.5 h. After participants provided informed consent, we placed
wearable sensors that measured postural sway on them. Next,
participants completed baseline standing conditions on firm and
foam surfaces while holding a tablet, and then they completed
four tablet-based cognitive tasks on the firm surface and on the
foam surface (Figure 1). We counterbalanced surface type blocks
(i.e., firm surface first and foam surface second vs. foam surface
first and firm surface second), and we randomized cognitive tasks
within each surface type block. Finally, participants completed a
brief survey at the end of the study before being debriefed and
compensated for their time. The post experiment survey included
two measures of interest. First, participants completed the
Activities-Specific Balance Confidence Scale (ABC), which was a
16-item scale that assessed balance confidence when performing
activities, such as walking up/down stairs or getting into/out of
a car (Powell and Myers, 1995). We summed the scores and
then divided by 16 for an overall balance confidence rating.
Second, participants completed the short version of the Mobile
Device Proficiency Questionnaire (MDPQ-16). The MDPQ-
16 measures mobile device proficiency across eight domains,

such as mobile device basics and data/file storage, with two
items per domain (Roque and Boot, 2018). We averaged each
of the subscales and then summed across the eight domains
for a total score.

Balance Procedure
We used six APDM Opal sensors to measure postural sway
(Opal v2, APDM Inc., Portland, OR, United States). Participants
wore these sensors on their feet, lumbar, sternum, and wrists
(Deshmukh et al., 2012; Mancini et al., 2012; Martinez-Mendez
et al., 2012; Doherty et al., 2017; Pissadaki et al., 2018; Morris
et al., 2019). We measured center of pressure variability using
the root mean square distance of sway acceleration (RMS
Sway in m/s2), which quantified the magnitude of center of
pressure displacements (Maki et al., 1994; Prieto et al., 1996;
Rocchi et al., 2004; Mancini et al., 2011a; King et al., 2017),
and we used APDM Mobility Lab v2.0 to process postural
sway data (Mancini et al., 2011b). To ensure consistent foot
placement across all trials, we used a foot placement template
so that participants had approximately 10 cm between the
right and left heel with a 30-degree outward foot rotation
(Chiari et al., 2002; Morris et al., 2019). Participants stood on
the firm floor of the lab for the stable conditions, and they
stood on an Airex Elite foam balance pad (approximately 6
cm in height) for the unstable conditions (Šarabon et al., 2010;
Gera et al., 2018).

Computerized Cognitive Tasks
Participants completed tablet-based cognitive tasks administered
through the mobile application BrainBaseline, which is a
scientifically validated research tool (Lee et al., 2012; White
et al., 2020; Ward et al., 2021). For our non-EF measure,
participants completed a simple processing speed task in which
they responded as quickly as possible whenever a circle appeared
in the middle of the screen, and we used response time as
our primary measure (Basner and Dinges, 2011). For our EF
measures, participants completed a shifting task, an updating
task, and an inhibition task (Miyake et al., 2000). For EF shifting,
participants completed a task switching task in which they made
parity (odd vs. even) or magnitude (less than 5 vs. greater than 5)
judgments depending on the background color on each trial for
a centrally presented number, and we calculated switch costs
(i.e., the difference between correct switch trial RTs and correct
repeat trial RTs) as our primary measure (Monsell, 2003). For EF
updating, participants completed an N-back task which consisted
of viewing a stream of sequentially presented numbers and
determining whether the current number matched the number
presented two trials previously, and we used 2-back accuracy
as our primary measure (Owen et al., 2005). For EF inhibition,
participants completed a Stroop task in which they responded
to the font color of centrally presented words while ignoring
the lexical content of the word, and we calculated the Stroop
effect (i.e., the difference between correct incongruent RTs and
correct congruent RTs) as our primary measure (Stroop, 1935;
MacLeod, 1991). Full details on these four tasks have been
described elsewhere (Lee et al., 2012).
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FIGURE 1 | Top figures represent sensor placement for both age groups as they performed the various conditions on stable and unstable surfaces. Bottom images
depict the five experimental conditions, which were Baseline (no task), non-EF processing speed, EF shifting, EF updating, and EF inhibition.

TABLE 1 | Postural sway descriptive statistics.

Age

Younger adults Older adults

Surface Cognitive load Mean SD Mean SD

Firm Baseline 0.026 0.013 0.022 0.010

Processing speed 0.051 0.064 0.035 0.028

EF Shifting 0.051 0.043 0.041 0.033

EF Updating 0.051 0.091 0.037 0.033

EF Inhibition 0.035 0.029 0.033 0.027

Foam Baseline 0.042 0.015 0.065 0.041

Processing speed 0.049 0.025 0.054 0.033

EF Shifting 0.051 0.028 0.069 0.047

EF Updating 0.051 0.023 0.057 0.042

EF Inhibition 0.045 0.027 0.060 0.042

RESULTS

Balance Performance
For the postural sway data, we ran a 5 (Cognitive Load: Baseline
vs. non-EF processing speed vs. EF shifting vs. EF updating vs.
EF inhibition) × 2 (Surface Stability: firm vs. foam) × 2 (Age:
younger vs. older) mixed model ANOVA (see Table 1 for postural
sway descriptive statistics).

We found a main effect of Cognitive Load [F(4, 280) = 3.89,
p = 0.004, η2

p = 0.05]. As seen in Figure 2, planned comparisons
revealed that sway was significantly lower in the baseline
condition compared to the EF shifting (p < 0.001) and the
EF updating (p = 0.04) conditions, as well as the non-EF
processing speed condition (p = 0.03). Although numerically in
the expected direction, the difference between baseline and EF
inhibition was not significant (p = 0.09). Interestingly, the non-EF
processing speed condition did not differ from the EF conditions
(p’s > 0.10), but the EF inhibition condition was significantly
lower than the EF shifting condition (p < 0.05).

We also found a main effect of Surface Stability [F(1,

70) = 16.07, p < 0.001, η2
p = 0.19] with significantly less sway

in the firm condition compared to the foam condition (Figure 3).
In addition, we found an interaction between Cognitive Load

and Surface Stability [F(4, 280) = 2.84, p = 0.03, η2
p = 0.04].

As seen in Figure 4, postural sway on the firm surface was
significantly lower than on the foam surface for the Baseline
(p < 0.001), EF shifting (p = 0.004), and EF inhibition
(p = 0.001) conditions.

Contrary to our expectations, we did not observe a main
effect of Age [F(1, 70) = 0.17, p = 0.69, η2

p = 0.002] on sway,
nor did we find an interaction between Age and Cognitive Load
[F(4, 280) = 1.53, p = 0.19, η2

p = 0.02]. On the other hand,
we observed an interaction between Age and Surface Stability
[F(1, 70) = 8.09, p = 0.01, η2

p = 0.10]. As seen in Figure 5,
the older adult group had significantly higher sway on the foam
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FIGURE 2 | Main effect of cognitive load on postural sway. Error bars are ± SE. Significant differences are indicated by asterisks: ∗p < 0.05.

surface compared to the firm surface (p< 0.001) whereas younger
adults’ postural control did not differ across the two surface types
(p = 0.37). Importantly, the older adult group did not differ from
the younger adult group on the stable, firm surface (p = 0.22),
whereas they did significantly differ from them on the unstable,
foam surface (p = 0.03). We did not observe any other significant
interactions among our factors (see Supplementary Materials for
all statistical tests).

To recap our balance performance findings, we found main
effects on sway from Cognitive Load and Surface Stability, as well
as from an interaction between these factors. We also found an
interaction between Age and Surface Stability in terms of sway,
but no other analyses were significant.

Cognitive Performance
For the cognitive data, we ran a series of mixed model ANOVAs
for our different dependent measures with Surface Stability (firm
vs. foam) as a within subjects factor and Age (younger vs. older)
as a between subjects factor and used Bonferroni correction for
an adjusted p-value of 0.0125 (see Table 2 for cognitive task
descriptive statistics).

For non-EF processing speed, we found a main effect of
Age [F(1, 70) = 17.40, p < 0.001, η2

p = 0.20] with older adults

producing significantly slower correct RTs compared to younger
adults, which is seen in the top left of Figure 6. We did not find
an effect of Surface Stability [F(1, 70) = 3.29, p = 0.07, η2

p = 0.05]
nor an interaction between Age and Surface Stability in terms of
non-EF processing speed [F(1, 70) = 1.32, p = 0.25, η2

p = 0.02].
For EF shifting, we found a main effect of Age [F(1, 69) = 6.60,

p = 0.01, η2
p = 0.09] in which the older adults had higher switch

costs compared to the younger adults, which is depicted in the top
right of Figure 6. We did not find an effect of Surface Stability
[F(1, 69) = 0.03, p = 0.85, η2

p = 0.001], nor did we find an
interaction between Age and Surface Stability in terms of EF
shifting [F(1, 69) < 0.001, p = 0.99, η2

p < 0.001].
For EF updating, we found a main effect of Age

[F(1, 70) = 40.50, p < 0.001, η2
p = 0.37] with older adults

exhibiting lower accuracy than younger adults, which is seen
in the bottom left of Figure 6. We did not observe an effect
of Surface Stability [F(1, 70) = 4.42, p = 0.04, η2

p = 0.06], nor
did Age and Surface Stability interact in terms of EF updating
[F(1, 70) = 0.01, p = 0.92, η2

p < 0.001].
Finally, for EF inhibition, we found an effect of Age [F(1,

70) = 61.20, p< 0.001, η2
p = 0.47] in which older adults had larger

Stroop effects compared to younger adults, which is depicted in
the bottom right of Figure 6. We did not find an effect of Surface
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FIGURE 3 | Main effect of surface stability on postural sway. Error bars are ± SE. Significant differences are indicated by asterisks: ∗p < 0.05.

Stability [F(1, 70) = 0.01, p = 0.91, η2
p < 0.001], nor did we find

an interaction between Age and Surface Stability in terms of EF
inhibition [F(1, 70) = 0.13, p = 0.72, η2

p = 0.002].
To recap our cognitive performance findings, we found effects

of Age on our EF and non-EF tasks, but there were no effects of
Surface Stability and no interactions between Age and Surface
Stability on any of the cognitive measures (see Supplementary
Materials for all statistical tests).

Post-experiment Survey
Using the summary score on the ABC scale, we ran an
independent samples t-test and found that younger adults
reported significantly higher levels of confidence compared to the
older adults [91% vs. 78%; Welch’s t(37) = 3.39, p = 0.002, Cohen’s
d = 0.88]. Like with the ABC, we ran an independent samples
t-test on the MDPQ total score and found that younger adults
reported significantly higher levels of mobile device proficiency
compared to the older adults [39 vs. 27; Welch’s t(27) = 5.62,
p < 0.001, Cohen’s d = 1.52].

DISCUSSION

The current study is the first to examine the impact of cognitive
demands of tablet-based EF and non-EF tasks among older and

younger adults attempting to balance on surfaces of varying
stability. We measured participants’ postural control using center
of pressure displacements obtained from an array of wearable
IMU sensors (Mancini et al., 2011b, 2012; Deshmukh et al.,
2012; Martinez-Mendez et al., 2012; Doherty et al., 2017), and
we measured cognitive performance using response times and
accuracy on the tablet tasks (Rossiter et al., 2017).

Balance Performance
In general, more sway was observed on unstable surfaces
compared to stable surfaces as evidenced by a main effect
of surface stability, which aligns with prior research (Barbado
Murillo et al., 2012; Tse et al., 2013). Furthermore, older adults
showed this effect in a more exaggerated fashion compared to
younger adults, which also replicates prior work and suggests
that older adults’ motor control is more impacted by surface
stability than younger adults (Abrahamová and Hlavacka, 2008;
Boisgontier et al., 2013; Przysucha et al., 2020). One possible
explanation for this comes from findings suggesting age-related
declines in muscle mass needed for postural control, which can
contribute to older adult risk of falling (Pijnappels et al., 2008).
Another possible explanation for age-related sway differences
in unstable conditions could stem from differences in balance
confidence among older vs. younger adults. Indeed, the older
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FIGURE 4 | Interaction of surface stability by cognitive load on postural sway. Error bars are ± SE. Significant differences are indicated by asterisks: ∗p < 0.05.

adults in our study reported overall lower balance confidence
than the younger adults. This suggests that they may have felt
less equipped to perform the task, which may have introduced
an additional cognitive demand for them, although this comes
with some caveats. For instance, older adult balance performance
was not actually correlated with balance confidence in our
sample. That said, balance confidence scores were negatively
correlated with postural sway in the EF updating and non-
EF processing speed conditions for our younger adult group,
although we refrain from making strong interpretations given
that correlations tend not to reliably stabilize until much higher
sample sizes (Schönbrodt and Perugini, 2013). Future studies
should investigate possible role balance confidence may have on
balance performance further with more comprehensive measures
of balance confidence and with much larger samples.

In addition to being impacted by surface stability, postural
control was impacted by cognitive load. Based on research in
a motor ability related to postural control (i.e., gait; Walshe
et al., 2015), we expected that EF and non-EF tasks would have
differential effects on sway in part because of the purported
overlap in neural resources for EF tasks and motor control,
but this is not what we found. Instead, we observed that doing
cognitive tasks in general on a tablet generated more sway

compared to a baseline of holding an inactive tablet. Specifically,
in our planned comparisons where we tested the difference
in sway while performing each secondary task compared to
sway during the baseline (single-task) condition, we observed
significantly higher sway for all cognitive tasks relative to baseline
except for EF inhibition, which instead trended in the same
direction. This is surprising considering that our non-EF measure
of processing speed supposedly imposes lower order cognitive
demands than demands from EF measures (Maldonado et al.,
2020); however, it’s also important to note that some prior models
have suggested that balance measures are independent from gait
measures (Horak et al., 2016), which could also account for
differences between our findings on balance with EF/non-EF
tasks and prior work on gait with EF/non-EF tasks.

Furthermore, we expected that given age-related declines in
EF resources required for coordinating cognitive and postural
demands, older adults might specifically struggle in cognitive-
motor dual-task conditions involving EF demands compared to
non-EF demands; however, the type of cognitive task demand
did not interact with age. Instead, we only had a main effect
of cognitive load. This suggests that introducing a cognitive
demand via tablet tasks generally impacts postural control for
both age groups; that is, all participants demonstrated poorer
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FIGURE 5 | Interaction of surface stability by age on postural sway. Error bars are ± SE. Significant differences are indicated by asterisks: ∗p < 0.05.

balance when actively engaged with a secondary task regardless
of whether it was an EF task (Dault et al., 2001b; Bergamin et al.,
2014). In addition, the overlap between neural resources needed
for EF and motor control may not be the primary mechanism
accounting for the present cognitive-motor dual-tasking effects,
although more research with neuroimaging techniques (e.g.,
fNIRS) is needed to directly test such hypotheses related to
limited cognitive resource overlap and multitasking bottlenecks
(Rosso et al., 2017).

Despite the paucity of age effects, our results support the
notion that postural control requires cognitive resources in
general. In other words, engaging in a secondary cognitive
task while standing upright generates cognitive-motor dual-task
interference regardless of if the secondary cognitive task relies on
EF or not and regardless of age group. This general interference
account aligns more with one of two popular dual-tasking
models. Bottleneck models posit that cognitive-motor dual-task
interference results from serial processing restrictions when
multiple tasks require similar information processing stages at
the same time, which is not possible due to structural limitations
(Pashler, 1994) or strategic control (Meyer and Kieras, 1997).
Importantly, this model is somewhat agnostic in terms of the
specific task combinations and would thus treat EF-related tasks
similar to non-EF tasks. We found that both EF tasks and a

non-EF task impacted balance compared to a single-task control
condition, which is more compatible with the notion of general
information processing bottlenecks.

Alternatively, according to capacity sharing models, cognitive-
motor dual-task interference on balance results from limited-
capacity parallel processing abilities to divide specific resources
among the cognitive and motor tasks, which means that each task

TABLE 2 | Cognitive task descriptive statistics.

Age

Younger adults Older adults

Surface Cognitive load Mean SD Mean SD

Firm Processing speed 357 47.3 427 103

EF Shifting 186 185 302 338

EF Updating 0.84 0.18 0.59 0.21

EF Inhibition 146 82.4 348 203

Foam Processing speed 360 53.6 441 108

EF Shifting 179 234 296 260

EF Updating 0.89 0.13 0.63 0.24

EF Inhibition 135 93.3 353 197
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FIGURE 6 | Main effects of age on cognitive task performance. Top left is Processing Speed (RT in ms). Top right is EF Shifting (switch costs in ms). Bottom right is
EF Inhibition (Stroop effect in ms). Bottom left is EF Updating (2-back accuracy). Error bars are ± SE. Significant differences are indicated by asterisks: ∗p < 0.05.

gets lower capacity leading to impairments (Navon and Gopher,
1979; Woollacott and Shumway-Cook, 2002). When similar
resources are required for balance and EF-related cognitive task
performance, interference should be greater than when less
related attentional resources are required for balance and non-
EF-related cognitive task performance. Once again, our results
are less compatible with this theoretical account.

Regardless, more research is needed to further test
assumptions of these models against a host of possible patterns
observed in cognitive-motor dual-task research (Plummer
et al., 2013; Bayot et al., 2018). For example, it is possible that
when faced with competition for attentional resources, people
must decide how to prioritize the two tasks, and in the current
study, older and younger adults might have adopted similar
task prioritization strategies, which is why we did not see
more effects of age on balance (Yogev-Seligmann et al., 2012;
Plummer and Eskes, 2015). Unfortunately, we did not think to
ask participants if they prioritized balance performance over
cognitive performance, nor do we know if these types of decisions
are conscious and intentional. Future research manipulating
participant instructions could help to more directly test the

role that task prioritization might play in cognitive-motor
dual-tasking settings.

Cognitive Performance
Although our main focus was on balance performance, we
also measured performance on computerized cognitive tasks.
In terms of cognitive performance, we noted age effects on all
cognitive tasks, where older adults had worse performance (e.g.,
lower accuracy, slower responses) compared to younger adults.
This replicates prior results that suggest age-related declines in
cognitive function (Elderkin-Thompson et al., 2008; Grady, 2012;
Fraser and Bherer, 2013; King et al., 2013; Yuan and Raz, 2014).
In our case all tasks were performed on a tablet platform, thus
it is also possible that the age-related effects on the cognitive
tasks are due, in part, to differences in mobile device proficiency
across older and younger adults (Roque and Boot, 2018). That
said, others have found age-related effects on cognitive tasks in
cognitive-motor dual-task studies that did not use tablets (Prado
et al., 2007), so more research is needed to better understand the
impact of technology proficiency on balance.
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CONCLUSION

In today’s society, standing upright is rarely done without
additional cognitive tasks and on completely stable, regular
surfaces. Furthermore, normal aging often entails cognitive and
physical changes that impact balance and the risk of falling,
which is why we wanted to investigate balance for younger
and older adults engaged in different types of cognitive tasks
on stable and unstable surfaces. We chose to use three EF
tasks compared to a non-EF task to better understand the
specificity of cognitive-motor dual-task interference on balance,
and we instead found general interference from the cognitive
tasks that patterned similarly for both age groups. We used
tablet-based cognitive tasks in part because of the increasing
role of devices in daily life. Indeed, other cognitive-motor
dual-tasking studies have found that using mobile devices can
impact postural control for both younger and older adults
(Cho et al., 2014; Nurwulan et al., 2015; Laatar et al., 2017;
Bruyneel and Duclos, 2020; Hsiao et al., 2020; Onofrei et al.,
2020). Future work with larger samples is needed to extend
investigations into the specificity of cognitive-motor dual-task
interference on balance to more realistic tasks people complete
on mobile devices.
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