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Major depressive disorder (MDD) is a common psychiatric disorder which is associated
with an accelerated biological aging. However, little is known whether such process
would be reflected by a more rapid aging of the brain function. In this study, we tested
the hypothesis that MDD would be characterized by accelerated aging of the brain’s
default-mode network (DMN) functions. Resting-state functional magnetic resonance
imaging data of 971 MDD patients and 902 healthy controls (HCs) was analyzed,
which was drawn from a publicly accessible, multicenter dataset in China. Strength
of functional connectivity (FC) and temporal variability of dynamic functional connectivity
(dFC) within the DMN were calculated. Age-related effects on FC/dFC were estimated
by linear regression models with age, diagnosis, and diagnosis-by-age interaction as
variables of interest, controlling for sex, education, site, and head motion effects. The
regression models revealed (1) a significant main effect of age in the predictions of
both FC strength and dFC variability; and (2) a significant main effect of diagnosis and
a significant diagnosis-by-age interaction in the prediction of FC strength, which was
driven by stronger negative correlation between age and FC strength in MDD patients.
Our results suggest that (1) both healthy participants and MDD patients experience
decrease in DMN FC strength and increase in DMN dFC variability along age; and (2)
age-related decrease in DMN FC strength may occur at a faster rate in MDD patients
than in HCs. However, further longitudinal studies are still needed to understand the
causation between MDD and accelerated aging of brain.

Keywords: major depressive disorder, aging, fMRI, functional connectivity, dynamic functional connectivity (dFC),
dynamic brain network
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INTRODUCTION

Major depressive disorder (MDD), one of the most common
serious psychiatric disorders worldwide, is associated with
increased risks of many biological and physiological pathologies
such as dementia/cognitive decline (Byers and Yaffe, 2011;
Holmquist et al., 2020), cardiovascular disease (Gan et al., 2014),
and osteoporosis (Cizza et al., 2009) which occur in the process
of normal aging. Accordingly, there are growing evidences
suggesting that MDD leads to an accelerated biological aging
as revealed by biochemical (Wolkowitz et al., 2011; Levada and
Troyan, 2020), genetic (Simon et al., 2006; Protsenko et al.,
2021), and neuroimaging (Sacchet et al., 2017; Cheng et al., 2020;
Dunlop et al., 2021) characteristics. For instance, it was found
that MDD patients are significantly older (with a median gap
of 2 years) than their chronological age based on predictable
age-related patterns of DNA methylation (Protsenko et al.,
2021). Structural neuroimaging studies have also reported that
age-related reductions in the brain cortical thickness (Cheng
et al., 2020) and putamen volumes (Sacchet et al., 2017) are
accelerated in MDD.

Apart from the above mentioned biochemical, genetic, and
brain structural alterations, MDD is characterized by abnormal
brain function that can be shown by functional magnetic
resonance imaging (fMRI) (Mulders et al., 2015; Zhang K.
et al., 2016; Zanatta et al., 2019). In previous fMRI studies, the
most prominent and frequently reported findings in MDD are
altered resting-state functional connectivity (FC) patterns within
the default-mode network (DMN) areas (Mulders et al., 2015;
Zhang K. et al., 2016; Zanatta et al., 2019; Shi et al., 2021). Such
alterations include both reduced FC strengths (Chen et al., 2015;
| Yan et al., 2019; Shi et al., 2020) as well as decreased temporal
stability of dynamic functional connectivity (dFC) based on the
recent assumption that FC patterns fluctuate over time (Wise
et al., 2017; Long et al., 2020a). Interestingly, these alterations
have been also associated with the process of normal aging:
several previous studies have consistently reported that older age
is related to decreased FC strength (Bluhm et al., 2008; Mevel
et al., 2013; Vidal-Piñeiro et al., 2014; Park et al., 2017; Staffaroni
et al., 2018) and increased dFC variability (Qin et al., 2015;
Marusak et al., 2017; Park et al., 2017) within the DMN. Such
similarities bring up the possibility that accelerated biological
aging in MDD may be reflected by FC strength and dFC
variability within the DMN, which has not been well examined
to our knowledge. Thus, characterizing the trajectories of age-
related changes in FC strength/dFC variability within the DMN
may both facilitate the mechanistic understanding of MDD, as
well as the development of specific treatment strategies to prevent
deteriorated progression in MDD.

In the present study, we therefore investigated whether MDD
would be characterized by accelerated aging of brain function
in terms of FC/dFC features within the DMN. Specifically, we
assessed the MDD diagnosis-by-age interactions on FC strength
and dFC variability within the DMN based on the previously
mentioned literatures. In order to increase the statistical power
and reliability of the results, we used a large, multicenter
fMRI dataset of MDD patients and healthy controls (HCs). We
hypothesized that (1) age-related decreases in FC strength and

increases in temporal variability of dFC within the DMN would
be observed in both the MDD and healthy participants; and
(2) such processes might be accelerated in MDD as reflected
by significant diagnosis-by-age interactions, which are driven
by stronger associations between age and FC/dFC measures in
patients with MDD.

MATERIALS AND METHODS

Participants
The final analyzed sample in this study consisted of 971 MDD
patients and 902 healthy participants from 20 study centers,
which was a part of the REST-meta-MDD Consortium in China.1

All patients were diagnosed as MDD based on the International
Statistical Classification of Diseases, 10th Revision (ICD-10) or
Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-
IV) criteria. Such a sample was drawn from the original 1300
MDD patients and 1128 HCs in the REST-meta-MDD dataset by
excluding the subjects who met the following exclusion criteria:
(1) <18 years of age; (2) demographic information such as
age is incomplete; (3) fMRI scanning repetition time 6=2 s (to
reduce biases caused by different temporal resolutions when
constructing dynamic brain networks); (4) poor image quality or
inaccurate spatial normalization determined by manual checking;
(5) excessive head motion with framewise-displacement (FD)
>0.2 mm; (6) bad mask coverage with signal loss in any region
of interest (ROI). The data was anonymously contributed from
studies which were approved by local Institutional Review Boards
in each center, and written informed consent were obtained from
all participants from the local institutions.

Among the analyzed 971 patients with MDD, there were
364 first-episode and 234 recurrent MDD patients, while the
episodicity (first or recurrent) was unavailable for the other
373 patients. The 17-item Hamilton Depression Rating Scale
(HAMD) and Hamilton Anxiety Scale (HAMA) scores were
available for 813 and 561 patients, respectively. See Tables 1, 2 for
sample details. More details of the REST-meta-MDD Consortium
can be also found in previous publications (Yan et al., 2019; Liang
et al., 2020; Long et al., 2020a; Ding et al., 2021; Liu et al., 2021;
Yang et al., 2021).

Imaging Data Acquisition and
Preprocessing
All imaging data (including resting-state fMRI and T1-weighted
structural images) was required at each center of the REST-meta-
MDD Consortium (see Table 1 for key scanning parameters).
Data was preprocessed in each center locally with a standardized
pipeline to obtain ROI-based fMRI time series. The raw imaging
data was not shared to protect participant privacy based on
the policy of REST-meta-MDD Consortium (Yan et al., 2019).
The preprocessing pipeline was performed using the DPARSF
software2 (Chao-Gan and Yu-Feng, 2010; Yan et al., 2016) whose
details can be found in previous published studies (Yan et al.,
2019; Long et al., 2020a). Briefly, it includes removing the

1http://rfmri.org/REST-meta-MDD
2http://rfmri.org/DPARSF
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TABLE 1 | The sample size and key data acquisition parameters of each site included in this study.

Site serial numbera Samples Scanner Repetition time (ms) Echo time (ms) Flip angle (◦) Slice number Time points

MDD HCs

1 71 71 Siemens 3T 2000 30 90 30 210

2 29 26 Philips 3T 2000 30 90 37 200

3 24 33 Siemens 3T 2000 40 90 26 150

6 13 15 Siemens 3T 2000 30 70 33 180

7 32 40 GE 3T 2000 30 90 37 184

8 43 51 GE 3T 2000 30 90 35 200

9 47 48 GE 3T 2000 25 90 35 200

10 28 11 Siemens 3T 2000 30 90 32 240

11 28 27 GE 3T 2000 30 90 33 200

12 31 4 GE 3T 2000 30 90 33 240

15 40 48 Siemens 3T 2000 25 90 36 240

16 28 29 GE 3T 2000 30 90 30 200

17 36 38 GE 3T 2000 40 90 33 240

18 20 18 Philips 3T 2000 35 90 24 200

20 265 241 Siemens 3T 2000 30 90 32 242

21 81 65 Siemens 3T 2000 30 90 33 240

22 22 20 Philips 3T 2000 30 90 36 250

23 27 29 Philips 3T 2000 30 90 38 240

24 24 28 GE 1.5T 2000 40 90 24 160

25 82 60 Siemens 3T 2000 25 90 36 240

aThe sample was drawn from data of the original 25 sites in the REST-meta-MDD project. More details about each site (affiliations and principal investigators) can be
found at: http://rfmri.org/REST-meta-MDD.

first 10 volumes, slice timing, motion realignment, brain tissue
segmentation, spatial normalization, temporal filtering (0.01–
0.10 Hz), and nuisance (including white matter, cerebrospinal
fluid, and whole brain signals) regression. After preprocessing,
the images were manually checked by trained researchers to
ensure the quality. Data with unsatisfied quality was excluded
based on the criteria above in section “Participants.”

Functional Connectivity Strength and
Dynamic Functional Connectivity
Variability Within Default-Mode Network
The steps of calculating DMN FC strength and dFC variability
are summarized below and also shown in Figure 1. After

TABLE 2 | Comparisons on demographic/characteristics between the
MDD and HC groups.

MDD (n = 971),
mean ± SD

HCs (n = 902),
mean ± SD

Group
comparisons

Age (years) 37.43 ± 14.80 36.88 ± 16.15 t = 0.759,
p = 0.448

Sex (male/female) 344/627 368/534 χ2 = 5.724,
p = 0.017

Education (years) 11.43 ± 4.09 12.47 ± 4.90 t = −4.996,
p < 0.001

Mean FD (mm) 0.07 ± 0.03 0.07 ± 0.04 t = −1.075,
p = 0.282

Illness duration (months)a 38.54 ± 60.64 / /

HAMD scorea 20.63 ± 7.83 / /

HAMA scorea 19.43 ± 8.90 / /

aData on duration of illness, HAMD score and HAMA score was available for 747,
813, and 561 patients, respectively.

preprocessing, mean time series were firstly extracted from 58
DMN ROIs defined based on the Power functional atlas (Power
et al., 2011; Cole et al., 2013). The ROIs were visualized in
Figure 2 using Brainnet viewer (Xia et al., 2013) and their
coordinates can be found elsewhere (Long et al., 2019).

To calculated FC strength within the DMN, the weighted
adjacency FC matrices were computed for each participant. In the
matrices, FC strengths between all possible (N = 58× 57/2 = 1653
here) ROI pairs were estimated by Pearson’s correlation
coefficients between fMRI time series. In line with previous
work (Yan et al., 2019), the average FC values between all
possible ROI pairs within the DMN was then defined as within-
DMN FC strength.

To calculate temporal variability of dFC, a widely used sliding-
windows approach (Long et al., 2020a; Huang D. et al., 2021;
Huang X. et al., 2021) was applied to segment the time series of all
ROIs into a number of continuous time windows; in the primary
analyses, a window width of 100 s and a step length of 6 s were
used according to previous recommendations (Sun et al., 2019;
Long et al., 2020a). The same as static FC, weighted adjacency
matrices were computed in each time window to represent
dFC during different time periods. Average dFC variability
within the DMN was estimated by averaging the dissimilarities
of dFC profiles across different time windows. Briefly, node-
wise temporal variability of dFC for a ROI k (Vk) was firstly
computed as

Vk = 1 − corrcoef
(
F(i, k), F(j, k)

)
, i, j = 1, 2, 3, . . . , T; i 6= j,

where T is the total number of time windows depending on fMRI
scanning length, F(i, k) is the vector characterizing dFC between
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FIGURE 1 | A summary of how to calculate static FC strength and dFC variability (refer to section “Functional Connectivity Strength and Dynamic Functional
Connectivity Variability Within Default-Mode Network” for details).

FIGURE 2 | Regions of interest used to define the DMN based on Power et al. (2011).

ROI k and all other DMN ROIs within the ith time window, and
“corrcoef” means correlation coefficients. Temporal variability of
dFC for the whole DMN (V) was then calculated by averaging Vk
of all ROIs within the DMN as

V=
∑

k Vk

N
,

where N is equal to 58 here. More details about such methods can
be found in prior studies (Zhang J. et al., 2016; Dong et al., 2019;
Long et al., 2020a,b).

Assessing Diagnosis by Age Effects
Referring to a number of published work (Wright et al.,
2014; Sheffield et al., 2016; Sacchet et al., 2017; van Velzen
et al., 2020), linear regression analyses were performed
to assess the MDD diagnosis by age interactions, with
diagnosis (MDD = 0 vs. HCs = 1), age, and diagnosis × age
interaction as variables of interest in the prediction of

FC/dFC measures, as well as sex, education level, site (as
dummy variables), and head motion (mean FD) as covariates
(˜intercept+ diagnosis+ age+ diagnosis× age+ sex+education
+ site + head motion). Note that here, “site” was included as
a covariate to exclude potential effects of differences in fMRI
scanning parameters and in the proportions of patients/controls
enrolled by each site. Associations between age and FC/dFC
measures in each group were further estimated by Pearson
correlation coefficients and compared between groups using an
online tool, cocor3 (Diedenhofen and Musch, 2015), utilizing the
function of “comparing correlation coefficients in independent
groups” in cocor which is based on procedures provided by
Meng et al. (1992) and Zou (2007). All other statistical analyses
(except the comparisons between correlation coefficients) were
completed in SPSS v22.

3http://comparingcorrelations.org/
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Associations With Clinical
Characteristics
Several additional analyses were performed to assess the possible
associations between DMN FC/dFC and clinical characteristics.
First, to investigate possible associations between the DMN
FC/dFC and illness duration/HAMD scores/HAMA scores,
partial Pearson correlations were calculated between them in
patients whose corresponding information are available, after
controlling for age, sex, education, site, and head motion.
Second, to investigate if DMN FC/dFC patterns would differ
by episodicity (first or recurrent), they were compared between
the first-episode and recurrent patients using ANCOVA with
covariates of age, sex, education, site, and head motion.

Validation Analysis
Several supplementary analyses were performed to validate our
results. Firstly, in dFC studies, there remain debates about the
optimal window width and step length in constructing dynamic
brain networks (Qin et al., 2015; Zhang et al., 2018; Savva
et al., 2020). Therefore, we repeated the analyses on DMN
dFC using a range of different window widths (80/100/120 s)
and step lengths (6/8/10 s) to see if the results would be
changed. Secondly, we repeated the analyses with Fisher’s
r-to-z transformations on Pearson’s correlation coefficients
in all FC/dFC matrices, which were not performed in the
main analyses. Thirdly, when dealing with regression analyses,
heteroscedasticity is a common problem that may reduce the
precision of model (Rosopa et al., 2013). Therefore, we tested
the heteroscedasticity of each regression model and when there
is a significant heteroscedasticity, we mitigated possible effects
of heteroscedasticity by applying a logarithmic transformation
to the dependent variable (calculating the natural logarithm) as
suggested (Rosopa et al., 2013).

RESULTS

Sample Characteristics
Demographic and clinical characteristics of the MDD and HC
groups are summarized in Table 2. There were no significant
differences in age and head motion between the MDD and HC
groups (both p > 0.05). The MDD group had a higher proportion
of females (χ2 = 5.724, p = 0.017) and a significantly lower
education level (t =−4.996, p < 0.001) than HCs.

Linear Regression Results
The linear regression model revealed a significant main effect
of age (β = −0.182, t = −6.115, p < 0.001) in the prediction
of DMN FC strength, suggesting that both MDD patients
and HCs experienced a similar reduction in DMN FC with
age. Moreover, the model revealed a significant main effect of
diagnosis (β = 0.074, t = 3.631, p < 0.001), suggesting a lower
DMN FC in MDD patients; and a significant diagnosis × age
interaction (β = 0.047, t = 2.334, p = 0.020) which was driven by a
significantly stronger negative correlation (z =−2.183, p = 0.029)
between age and DMN FC strength in MDD patients than in HCs

(Table 3 and Figure 3A). Taken together, although the strength of
DMN FC decreased with age in both the MDD and HC groups,
such reduction may occurr at a faster rate in MDD patients.
Additionally, a significant effect of sex (β = 0.061, t = 3.030,
p = 0.002) was found in the model, which suggests a higher DMN
FC strength in females than males.

As for DMN dFC, the linear regression model revealed a
significant main effect of age (β = 0.086, t = 3.722, p < 0.001)
in the prediction of dFC variability, suggesting that both MDD
patients and HCs experienced a similar increase in DMN dFC
variability with age. However, the model revealed no significant
main effect of diagnosis (β = −0.017, t = −1.046, p = 0.296)
and no significant diagnosis × age interaction (β = −0.030,
t = −1.298, p = 0.054), with no between-group difference in the
correlation between age and DMN dFC variability (z = 1.043,
p = 0.297) (Table 3 and Figure 3B). Additionally, a significant
effect of sex (β = −0.047, t = −2.894, p = 0.003) was found
in the model, which suggests a lower DMN dFC variability in
females than males.

Associations With Clinical
Characteristics
No significant correlations were found between the DMN
FC/dFC and illness duration/HAMD scores/HAMA scores (all
p > 0.05, Table 4). No significant differences were found between
the first-episode and recurrent patients in either the DMN FC
strength (F = 0.816, p = 0.367) or dFC variability (F = 1.699,
p = 0.193).

Validation Analysis
When re-calculating the DMN dFC with using a range of different
window widths and step lengths, the regression models kept
showing a significant main effect of age (p < 0.001, see Table 5)
in the prediction of DMN dFC variability, while the main effect
of diagnosis and diagnosis-by-age interaction kept being no
significant (p > 0.05). The results on FC and dFC were also
largely unchanged when repeating the analyses with Fisher’s r-to-
z transformations on FC/dFC matrices (Supplementary Table 1).
These results, therefore, suggest that the effects of age on FC
strength/dFC variability were unlikely to be mainly driven by
analyzing strategies.

In regression model on the DMN FC strength, there
exists a significant heteroscedasticity as indicated by a
significant correlation between age and absolute values
of the residuals (Spearman’s rho = −0.051, p = 0.027;
shown in Supplementary Figure 1). Nevertheless, effects
of such a heteroscedasticity can be corrected by applying

TABLE 3 | Comparisons on the correlation coefficients between groups.

In MDD
(n = 971)

In HCs
(n = 902)

Group
comparisons on r

Correlation between age and
FC strength

r = −0.310 r = −0.216 z = −2.183,
p = 0.029

Correlation between age and
dFC variability

r = 0.434 r = 0.394 z = 1.043,
p = 0.297

Frontiers in Aging Neuroscience | www.frontiersin.org 5 January 2022 | Volume 13 | Article 809853

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-809853 January 4, 2022 Time: 13:29 # 6

Tang et al. Accelerated Aging of Brain in Depression

FIGURE 3 | Associations between age and DMN FC strength (A)/dFC variability (B) in each group.

a logarithmic transformation to the DMN FC strength
(Supplementary Figure 1), while main results were unchanged
in the corrected model (Supplementary Table 2). Therefore, the
results were unlikely to be affected by the heteroscedasticity in
regression models.

DISCUSSION

In this study, we tested the hypothesis that MDD would be
characterized by accelerated aging of brain function within the
DMN as reflected by significant diagnosis-by-age interactions.
Specially, age-related effects on both the strength of static FC and
temporal variability of dFC within the DMN were investigated
by linear regression models. Our results revealed (1) significant
main effects of age in the prediction of both FC strength and
dFC variability; and (2) a significant main effect of diagnosis

TABLE 4 | Correlations between the DMN FC/dFC and clinical characteristics.

Illness duration HAMD score HAMA score

DMN FC strength r = −0.013,
p = 0.729

r = −0.022,
p = 0.545

r = 0.008,
p = 0.861

DMN dFC variability r = 0.002,
p = 0.963

r = 0.006,
p = 0.871

r = −0.027,
p = 0.530

TABLE 5 | Main effect of age in the prediction of DMN dFC variability, when dFC
was calculated with different window widths/step lengths.

Window width (s) Step length

6 s 8 s 10 s

80 β = 0.093,
t = 3.832
p < 0.001

β = 0.094,
t = 3.851
p < 0.001

β = 0.094,
t = 3.834
p < 0.001

100 β = 0.086,
t = 3.722
p < 0.001

β = 0.087,
t = 3.690
p < 0.001

β = 0.087,
t = 3.662
p < 0.001

120 β = 0.079,
t = 3.660
p < 0.001

β = 0.080,
t = 3.663
p < 0.001

β = 0.081,
t = 3.640
p < 0.001

and a significant diagnosis-by-age interaction in the prediction
of FC strength within the DMN. These results may facilitate our
understanding of both the process of biological aging and neural
mechanisms underlying MDD.

The first main finding revealed by regression model in the
present study is a significant main effect of age in the prediction
of both FC strength and dFC variability within the DMN. Such
results indicate that both healthy participants and MDD patients
experienced similar decrease in DMN FC strength and increase
in DMN dFC variability along age. These results are in line with
a number of previous studies, which have consistently reported
that older age is associated with lower FC strength (Bluhm et al.,
2008; Mevel et al., 2013; Vidal-Piñeiro et al., 2014; Park et al.,
2017; Staffaroni et al., 2018) and lower dFC stability (higher
variability) (Qin et al., 2015; Marusak et al., 2017; Park et al.,
2017) within the DMN. It is noteworthy that compared with
most of the above studies, our study has a much larger sample
size which means a higher reliability (Cao et al., 2019) achieved
by using a large, multicenter dataset. Therefore, our results
reinforce previous studies and may further offer solid evidence
that normal aging of the brain can be reflected by changed
FC/dFC patterns within the DMN.

The regression model also revealed a significant main effect
of diagnosis, and a significant diagnosis-by-age interaction in
the prediction of FC strength within the DMN. The significant
main effect of diagnosis indicates a lower DMN FC strength
in MDD patients. The DMN is known to mediate brain’s
self-referential and internally directed processing (Whitfield-
Gabrieli and Ford, 2012) and although not completely consistent
(Scalabrini et al., 2020), its FC has been reported to be reduced
in MDD in multiple studies (Chen et al., 2015; Jacob et al.,
2020; Shi et al., 2020). Thus, our study further supports this
result. The significant diagnosis-by-age interaction, which was
driven by stronger negative correlation between age and DMN
FC in MDD patients (Table 3 and Figure 3A), suggests that
age-related reduction in DMN FC may occur at a faster rate
in MDD patients than in HCs. Multiple previous neuroimaging
studies have reported accelerated brain aging in MDD patients in
terms of brain structures (Sacchet et al., 2017; Cheng et al., 2020;
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Ballester et al., 2021), but much less is known about it from
a functional perspective. Here, to our knowledge, our study
provides one of the first evidences of accelerated aging of FC
within the DMN. Therefore, this brain subsystem may be an
important target for the intervention and treatment of MDD
across the lifespan.

We should note that in the regression model, no significant
main effect of diagnosis and no significant diagnosis-by-age
interaction (both p > 0.05) were found in the prediction of dFC
variability. Thus, the present study failed to replicate previously
reported MDD-related increase in DMN dFC variability (Wise
et al., 2017; Long et al., 2020a). There are two potential reasons for
such inconsistency as we proposed. First, in the analyzed sample
we included participants with different fMRI scanning lengths,
ranging from 300 to 500 s (Table 1). Although site effects have
been controlled in the regression model, such diversity along the
time dimension might bring bias to the results. Second, besides
the reports of increased DMN dFC variability in MDD (Wise
et al., 2017; Long et al., 2020a), there was also research reporting
opposite results (Demirtaş et al., 2016). It is possible that subtypes
with distinct DMN dFC profiles (hyper- and hypo-variability)
may exist in MDD, which can be investigated in future studies.

Although we focused on age-related effects in this study,
significant effects of sex were also shown in the regression models,
indicating higher FC strength and lower dFC variability within
the DMN in females than males. Such results are in concert
with some earlier studies, which have pointed out potential
sex differences in both static and dynamic brain connectome
(Jiang et al., 2020; Long et al., 2021). These results might also,
therefore, highlight the necessity of controlling sex-related effects
in fMRI studies.

Our study has some limitations. Firstly and importantly, the
current study was carried out based on cross-sectional rather than
longitudinal data, and we cannot directly define the causation
between MDD and accelerated aging. We are also unable to
answer whether there are genetic or epigenetic deviations which
cause both MDD and more rapid aging. Due to such limitations,
it should be only one of possible interpretations of the presented
data that MDD causes accelerated aging of brain. Secondly, the
detailed clinical information for each MDD patient, such as
comorbid conditions, number of prior depressive episodes and
treatment details, was not fully recorded due to the variations
in data management practices across different sites. This issue
has limited our power to further analyze the effects of clinical
variables on DMN FC/dFC patterns. Thirdly, because raw image
data was not shared by the REST-meta-MDD Consortium, we are
unable to further perform voxel-wise analyses (Cui et al., 2018)
which may provide valuable information. Lastly, we only focused
on FC strength and dFC variability within the DMN based on our
literature driven hypothesis. However, other brain subsystems
[e.g., salience, affective, and cognitive control networks (Zeng
et al., 2012; Manoliu et al., 2014)] and other brain network
measures [e.g., static and dynamic small-world metrics (Long
et al., 2020a; Yang et al., 2021)] may be also relevant to the
occurrence and development of MDD with age, which can be
explored in further studies.

In summary, this study tested the hypothesis that MDD
is characterized by accelerated aging of the brain function in

terms of FC strength and dFC variability within the DMN.
Diagnosis-by-age interactions on FC/dFC were estimated by
linear regression models. The results suggest that both healthy
participants and MDD patients experienced similar decrease in
DMN FC strength and increase in DMN dFC variability along
age; moreover, stronger negative correlations were found between
DMN FC strength and age in MDD patients than in HCs,
suggesting that age-related decrease in DMN FC may occur at
a faster rate in MDD. These findings may further facilitate our
understanding of mechanisms underlying the occurrence and
development of MDD. However, further longitudinal studies are
still needed to understand the causation between MDD and
accelerated aging of brain.
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