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Atherosclerotic plaque deposit in the carotid artery is used as an early estimate to
identify the presence of cardiovascular diseases. Ultrasound images of the carotid artery
are used to provide the extent of stenosis by examining the intima-media thickness
and plaque diameter. A total of 361 images were classified using machine learning
and deep learning approaches to recognize whether the person is symptomatic or
asymptomatic. CART decision tree, random forest, and logistic regression machine
learning algorithms, convolutional neural network (CNN), Mobilenet, and Capsulenet
deep learning algorithms were applied in 202 normal images and 159 images with
carotid plaque. Random forest provided a competitive accuracy of 91.41% and
Capsulenet transfer learning approach gave 96.7% accuracy in classifying the carotid
artery ultrasound image database.

Keywords: carotid artery, ultrasound image, machine learning, deep learning, stroke

INTRODUCTION

Every year, in India, 26% of people die due to cardiovascular diseases, stroke because of artery
stenosis is 75%, and heart attack is 42%. In the United States, one of the 19 deaths is due to
stroke (Farah, 2018). Risk factors that may lead to stroke are physical inactivity, being obese, heavy
drinking, use of illegal drugs, family history having a stroke and other cardiovascular diseases,
cholesterol, high blood pressure, diabetes, and smoking. Other factors with increased stroke risk
are race-, sex-, age-, and hormones-related problems.

Stroke is the third prominent reason for death in many developed countries (Benjamin et al.,
2019). The common cause of stroke is the formation of atherosclerotic plaque in the carotid artery
that can grow large enough to block blood flow leading to stenosis or rupture causing clots in
the artery. Progressive intimal accumulation of protein, lipid, and cholesterol makes medium-
and large-sized arteries, causing atherosclerosis. Atherosclerosis may be existing in body parts,
such as infernal aorta, coronary artery, superficial femoral artery, and the common carotid artery
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bifurcation region. Strain in the arterial wall causes variance
in clinical, mechanical, and molecular levels in the artery. The
plaque formation is compensated by artery enlargement with no
changes in the lumen region, where blood flows.

The mapping of features to any one of the classes in
a computer-assisted diagnostic system is called classification.
Machine learning algorithms that are used for biomedical image
classification are neural network, backpropagation, support
vector machine (SVM), adaptive binary tree-based SVM, decision
trees, such as linear regression, logistic regression, random forest,
k-nearest neighbor (KNN), k-means, Boltzmann machine, mean
shift clustering, Markov statistics nonparametric techniques, and
fuzzy-based classification methods.

Stimulated by the function and structure of the brain, an
artificial neural network (ANN) was developed. A subset of
machine learning, called deep learning, performs classification
tasks directly from the images. The accuracy of deep learning
sometimes exceeds human performance. The model extracts all
the necessary features by itself and performs the classification.
Transfer learning is a kind of deep learning which uses the learnt
knowledge from some other data and uses that for the application
in hand. Some of the transfer learning algorithms are Alexnet,
Mobilenet, Imagenet, Capsulenet, etc.

Carl Azzopardi et al. (2020) used a deep neural network
(DNN) to delineate lumen-intima boundary (LIB) and
media-adventitia boundary (MAB) with a fully automatic
segmentation technique. For the network stochastic gradient
descent optimization problem, a new objective function was
formulated. The invariant intensity data input was given to
the network with a bimodal synthesis of amplitude and phase
congruency. The performance in MAB and LIB detection was
96.2 and 92.5%, respectively. The study was made with just 15
images in each stenosis category which is not a sufficient number
for deep learning-based segmentation. Images from different
sources were not considered for learning, missing generalizability
(Azzopardi et al., 2020).

Roy-Cardinal et al. (2019) extracted noninvasive vascular
ultrasound elastography (NIVE) and ultrasound features, such
as homodyned-K (HK), Nakagami parametric maps, log-
compressed images. The algorithm identified large lipid area,
calcification, ruptured fibrous cap presence, differentiation
of nonvulnerable and vulnerable plaques, and confirming
symptomatic and asymptomatic patients using a random forest
classifier. The study population was 91, and only 5 cases with
fibrous caps were involved. A balanced dataset may give better
classification performance. Based on elastography and B mode
gray-level features, the AUC obtained was 0.90 (95% CI 0.80–
0.92, p < 0.001). The area of calcification accuracy obtained was
0.95 (95% CI 0.94–0.96, p < 0.001), performed using the above
features. Area under the curve variation for other tasks varied
between 0.79 and 0.97 (Roy-Cardinal et al., 2019).

Loizou et al. (2017) studied the texture variability in the
ultrasound video to identify the presence of vulnerable plaque.
The videos were intensity normalized, denoised, IMT segmented,
and texture feature learned to find systole and diastole states.
The texture was visibly variable for diastolic and systolic states.
More gray-scale average was recorded for systole compared to

diastole. Plaque structures had variable textures in both the
states. Systole and diastole features combined gave better results.
Borders of type 1 plaque were not identified by this method.
Acoustic shadowing was produced in type V plaque and was not
recognizable. The state diagram was improper for 2% of cases
(Loizou et al., 2017).

Lekadir et al. (2017) proposed a CNN classification model
for the different plaque constituents. Lipid core, calcified tissues,
and fibrous caps were detected with a correlation of 0.90 related
to clinical results. Based on the patch batched technique, 56
images were converted into 90,000 patches for the process. SVM
with predefined image features gave an accuracy of 78.5%. The
testing time taken for classifying each image was 52 ± 13 ms,
and changes in accuracy were reduced by 0.003 by changing
the patches between 9 × 9, 11 × 11, 13 × 13, and 15 × 15
(Lekadir et al., 2017). Pazinato et al. (2016) used the features of
neighboring pixels for carotid image classification. On a dataset
with calcium, lipids, muscles, fibrous, and blood tissues texture,
gradient, statistical, and local binary pattern (LBP) features were
used. Pixel-based machine learning classification was carried out
on the normalized image following multiscale description. The
method was computationally complex and did not focus on any
particular machine learning algorithm. The technique applied in
ultrasound tissue engineering achieved a classification accuracy
of 73%, and was statistically verified (Pazinato et al., 2016).

Gastounioti et al. (2015) explained the importance of
kinematic features for plaque analysis for a computer-aided
diagnosis (CAD). Fisher discriminant ratio-based feature
selection and SVM-based classification were performed.
Applying texture features gave 80% of accuracy and kinematic
features recorded 88% of accuracy. The accuracy of this proposed
CAD has still lots of scope for improvement. AUC, specificity,
and sensitivity improved by 0.70, 0.83, and 0.67, respectively
(Gastounioti et al., 2015). Vegas-Sánchez-Ferrero et al. (2014)
defined a gamma mixture model (GMM) for the subsampled
RF images, and their parameters are useful features to identify
various plaque tissues. The method outperformed in terms
of plaque echogenicity and characteristics. It achieved an
accuracy of 95.16% for four-class classifications and 86.56%
for three-class classification, which can still be improved
(Vegas-Sánchez-Ferrero et al., 2014).

Saba et al. (2021) proposed a classification approach for
carotid artery ultrasound images using four machine learning
models, one deep learning model, and one transfer learning
model. He used the scattering principle of the plaque, where
the symptomatic ones are more scattered than the asymptomatic
ones (Saba et al., 2021). He achieved stable results for
the characterization and classification of the carotid artery
ultrasound images.

Classification of the carotid artery images to identify the
presence of plaque deposit is performed by machine learning
algorithms, CART decision tree, random forest, and logistic
regression. Convolutional neural network (CNN)-based deep
learning classification and Mobilenet and Capsulenet transfer
learning approaches are performed in the carotid artery image
database. The performance of these classification methods is
analyzed with the true values confirmed by three radiologists.
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In this article, section 2 gives the methodology, section
3 describes the results and discussions, and section 4
concludes the article.

METHODOLOGY

This section defines the approach involved in the classification
of the carotid artery ultrasound images. Feature extraction
and selection are done to obtain the appropriate features. The
selected features are given as input to the machine learning
classification algorithms, CART decision tree, random forest,
and logistic regression. The images are given as input to the
CNN, transfer learning algorithms, Mobilenet and Capsulenet.
The classification performance measures are used to identify the
efficiency of the algorithms.

Figures 1A,B give the sample carotid artery ultrasound images
with and without plaque deposit.

Database Creation
Ethical clearance is obtained from the SRM Medical College
Hospital and Research Center, Kattankulathur, Tamil Nadu,
India, to collect carotid artery ultrasound images. Database of the
carotid artery ultrasound B mode images is collected from the
Bharat Scans, Chennai and the SRM Medical College Hospital
and Research Center, Kattankulathur, Chennai.

Feature Extraction
Machine learning involves high-dimensional data, where the
analysis requires a considerable amount of data for learning
and testing. The images obtained are denoised by curvelet
decomposition to remove speckle and preserve useful edges.
Feature reduction minimizes the effects of redundant variables
by selecting feature subsets. Choosing the most significant
features progresses the classification model performance and
reduces over fitting.

Following preprocessing and segmentation of the images, 63
features are taken from the images in the database. A number
of 33 texture features, 5 shape features, 10 histogram and
correlogram features, and 15 morphology features are extracted
from the images. Out of that, 22 most significant features
are selected by principal component analysis (PCA) method
(Parhizkar et al., 2021).

The most discriminant features from the extracted features are
selected based on the following approach. Distance between two
classes for every feature is computed as follows for mean m1, m2
and standard deviation σ1, σ2.

distance =
|m1−m2|√

σ2
1+σ2

2

(1)

Features with more distance are those with more significance.
From the 65 extracted features, 22 most significant features
were selected for the classification task. PCA-based feature
selection was performed in addition. The principal components
are derived from the eigenvalues. A correlated feature set is

converted into uncorrelated ones called principal components by
an orthogonal transformation.

The selected features are texture, spatial structure, skewness,
kurtosis, histogram, correlogram, histogram of oriented gradient
(HOG), Gabor wavelet, angular 2nd moment, shape, sharpness,
length irregularity, mean probability density function, gray-scale
median, multiregion histogram, arterial wall ROI’s randomness,
absolute gradient, radian and angular sum of discrete Fourier
transform for Fourier power spectrum, coarseness, convexity,
connectivity, and plaque volume. The potential features are given
as input to the machine learning classification algorithms.

Classification by Machine Learning
Algorithms
Proper data preparation, automation and iterative learning,
testing, scalability, and ensemble modeling are necessary for
a classification algorithm. The classification of the carotid
artery images database is performed with the machine learning
algorithms, CART decision tree, logistic regression, and random
forest algorithm.

Machine learning is to develop a mathematical model built
by training the inputs. The inputs are the features selected from
the ultrasound image dataset of the carotid artery. The learning
experience is generalized so that it can give the correct output for
the new image which is not in the database. The generalization of
the model is improved by applying a validation set to the trained
model. The resulting output and error are given as feedback to
the input so that training of the model improves. After many
iterations of tuning and training of the model, the trained model
is used with new unseen test data to find the performance of the
approach (Lundervold and Lundervold, 2019; Latha et al., 2020).

CART Decision Tree
The decision tree is a prediction-based machine learning model
with parameters represented in the branches and target outputs
represented in the form of leaves. Branch labels are represented
by leaves and feature conjunctions that lead to the leaves are
represented as branches. Target with continuous values is called
regression trees. Classification and regression tree (CART) is a
nonparametric decision tree algorithm (Seera and Lim, 2014).
Information gain defines how to quantify the quality of the split.
For attributes p and q, the information gain I is represented as

I
(
p, q

)
=−

p
p+ q

log2

(
p

p+ q

)
−

q
p+ q

log2(
q

p+ q
) (2)

To create a tree from the available attributes, entropy is
computed. It depends on how much variance the data has.

E (A)=

v∑
i=1

pi+qi

p+ q
I(p, q) (3)

The training sets each attribute that is found from the gain. It
is the variance between entropy and information gain.

Gain = I
(
p, q

)
−E(A) (4)

Decision trees can identify the nonlinearity in the dataset and
adapt accordingly. The data need not be standardized because a
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A B

FIGURE 1 | (A) Sample image without plaque deposit (B) with plaque deposit.

FIGURE 2 | (A) Tree formation for sample 53 images with kurtosis feature (B) ROC curve.

distance measure is not involved in the classification. Sigmoid
activation is used to get the optimum classification result. The
rules of CART and other decision trees are as follows:

1. Based on a variable’s value, the splitting criteria for a
node are formulated.

2. The stopping criteria are decided when to stop
splitting a tree.

3. Final target variable at the end of each node is calculated.

An output of one implies the presence of plaque, and zero
represents the absence of plaque in the image with a threshold
of 0.5. Figure 2 gives the results of applying the CART decision
tree for the carotid artery ultrasound image database. Using
the kurtosis feature, the tree formation for sample 53 images is
projected in Figure 2A. Kurtosis≤ 0.01 is separated and branches
are formed from that node. Figure 2B is the ROC curve for
which the AUC is 83.53%, which implies that CART is suitable
for disease classification in the carotid artery.

Classification and regression tree is nonparametric and hence
is independent on the distribution kind of the input data.
The algorithm is not affected by the outliers in the input
data. Without strictly following the stopping rule, the tree
can be overgrown and can be pruned back to the optimal
solution. Fit can be improved using a test set and validation
sets. The input variable set can be selected by combining
CART with other prediction methods. The drawbacks of

CART include variance in the model when a small change
in the database is made and imbalanced class data lead
to underfit trees.

Logistic Regression
Binary logistics is more suitable for categorical targets with linear
or nonlinear decision boundaries, with a threshold fixed. It
applies the logistic or sigmoid function. For the curve’s maximum
value L, steepness parameter or growth rate k and x0 being the
midpoint of x, the logistic function is given by

f =
L

1+e−k(x−x0)
(5)

Assuming threshold 0.5, for probability 0.5, class = 1 is
assigned. For probability < 0.5, class = 0 is assigned (Barui et al.,
2018). The cost function J used is crossentropy since sigmoid
activation is used.

J (θ)=
1
m

m∑
i=1

cost(hθ

(
xi) , (yi) (6)

Where cost
(
hθ (x) , y

)
= −log(hθ (x) ) for y = 1 and

cost
(
h (x) , y

)
= −log(1− h (x) ) for y = 0. The natural log

of odds called logit which transforms the line into the logistic
curve is

log
(

p (x)
1− p (x)

)
= β0+β1(x) (7)

Frontiers in Aging Neuroscience | www.frontiersin.org 4 January 2022 | Volume 13 | Article 828214

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-828214 January 21, 2022 Time: 14:35 # 5

Latha et al. Early Stroke-Detection Using Carotid-Artery Images

The logistic regression coefficients are found by maximum
likelihood estimation. Highly correlated inputs from the database
are removed after calculating the pair-wise correlation of the
features. It is done to prevent overfit because of multiple highly
correlated inputs. The sparsity of the data is also reduced so that
the likelihood estimation does not prevent target convergence
(Zhang et al., 2018; Javeed et al., 2019; Zhang and Han, 2020).
Figures 3A,B project the ROC curve and the number of trees
with AUC 87.55%.

Random Forest
Random forest is an ensemble classification approach, protecting
the structure from being affected by overfitting problems,
introduced by Ho in 1995. The tree learners of the random forest
follow bootstrap aggregation bagging. Without increasing, bias
bootstrapping reduces the variance of the model. The trees are
uncorrelated so the prediction of the average of many trees is not
noise-sensitive. Bootstrapping gives different input sets for each
training time. A forest is created randomly with root, internal,
and terminal nodes. Algorithm efficiency improves for a bigger
tree. Unlike other decision tree algorithms, random forest decides
the root and other nodes randomly.

The classifier is efficient enough to handle missing values and
is more suitable for categorical classification. Random forest is
created first, and predictions are made from the created forest
(Javeed et al., 2019; Wu et al., 2020). Sigmoid activation function
is used. Using the random nodes, incorrect labeling can be
identified using Gini impurity given by

IG (n)= 1−
j∑

i=1

(pi)
2 (8)

The algorithm for random forest creation is as follows.

1. From a total of m feature sets, K features are randomly
selected k < m.

2. Find node from features after best split point.
3. From the best divided, segregate child node.
4. The above steps are repeated until l number of

nodes is achieved.
5. Repeat the above steps for n times to achieve n nodes.

The prediction that forms the created random forest is done
by the below procedure.

1. For each test feature, the rules of the model are applied
to get the target.

2. For each predicted target, the votes are estimated.
3. The more voted target is considered the outcome.

Figure 4A projects the error rate which is least for nearly 85
number of trees, then increases, becomes constant, and the next
drop is marked in nearly 920 trees. Figure 4B gives the ROC
curve with AUC 90.63%.

Random forest combines individual tree’s decisions and
considers the maximum voted one, which makes it one of the best
machine learning algorithms. Trees are modeled more diversely,
thus implementing all possible models, and obtaining all possible

outcomes improves model efficiency. Kernel-induced random
forest (KIRF) is followed where trees are built till error no
longer reduces. Out of bootstrap (OOB) samples are applied to
get the error rate of the random forest by taking the mean of
the error from all the bags using all the available features. The
drawbacks of the random forest include model complexity, more
time consuming than other decision trees, and less intuitive for
large decision trees.

Deep Learning Algorithms
Deep learning, which is a class of ANN, extracts the semantic
from the images directly, resulting in better classification
performance. The deep learning model is built with multisource
labeled data and provides more generalized results. The carotid
artery ultrasound image classification is performed with a deep
learning approach, CNN.

Deep learning is a promising machine learning field that can
unravel artificial intelligence problems efficiently. It uses a DNN
where the solution depends on the database. Deep learning is
superior in terms of nonlinearity, generalization, harmony, fault
tolerance, parallelism, and learning. There are undisclosed neural
network layers that perform the learning for the available data.
Each layer holds a relationship with the next and the previous
layers. Deep learning absorbs features and useful representations
directly from the raw image bypassing the feature extraction step.
This automatic learning of feature representation and learning
both happen in the layers.

Due to complexity, the importance of the subject, carotid
image analysis using machine learning is not efficient enough
and needs a model learnt from a huge number of images. The
analysis does not depend on the features extracted manually. The
data may be patient-dependent and expert-dependent which may
influence the outcomes. Deep learning extracts the hidden feature
representations of the images and helps in efficient diagnosis.
For example, deep learning algorithms are CNN, DNN, DBM,
LSTM networks, and generative adversarial networks (GANs),
each having their pros and cons which does not require any
preprocessing of data. The extension of CNN called transfer
learning algorithms, such as Alexnet, Leenet, Googlenet, and
Resnet, has proved their efficiency in the testing phase to a huge
extent in terms of complexity.

Deep learning stacks many neuron layers constructing a
hierarchical feature representation. The layer count in the model
is over 1,000 creating a gigantic model memorizing all features
and thus makes more intelligent classification.

Deep learning executes feature engineering on its own by
combining and correlating the necessary attributes of the image.
Deep learning solves the classification problem end-to-end,
which makes the model better than other machine learning
approaches. There is a lot of scope of development of deep
learning with emerging techniques, such as transfer learning.
Other challenges of deep learning are interpretability, trust, data,
regulations, and workflow integration.

Convolutional Neural Network
Convolutional neural network is a proven traditional deep
learning network based on its translation invariance property
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and shared weights architecture. All nodes connected to all
nodes in the other layers build a much complex system and
may be inefficient. CNN uses the domain knowledge of the data
preserving the spatial relationship, assembling complex patterns
into small, simple patterns (Tajbakhsh et al., 2016).

Rectified linear unit (ReLU) activation function is used for
CNN activation. In convolution layer activation, previous layer
activations are convolved with parameterized filters of size

3 × 3. Learning the same weight reduces the complexity of
weight calculation for each layer and node. The convolution
layer outputs are polled in a pooling layer. For small grids,
the polling layer provides single output by max-pooling or
average pooling. Translational invariance is achieved after the
pooling layer preventing a shift in activation maps because
of the shift in the input. Increased stride length convolution
leads to downsampled pooling reducing the model complexity.
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Based on a stochastic sampling of the neural network, dropout
regularization is performed. Different neurons are removed
in different iterations leading to different outputs each time.
Weights are updated each time to get more optimal results.
Activation maps subtracted from the mean and divided by
standard deviations for each training batch give batch normalized
output (Lundervold and Lundervold, 2019). Figure 5 gives CNN
architecture. The image is directly fed as input to the model. The
convolution layer extracts features, such as corners, edges, and
colors from the input image. Deeper layers extract more deep
features, such as plaque structure, kurtosis, texture of plaque,
and nonplaque area. Dominant features from the restricted
neighborhood are extracted in the pooling layer.

Max-pooling representation is used, which minimizes
computational cost and provides translational in-variation to the
internal representation. Alternate convolution and pooling layers
are used to reduce the large feature space. Later, layers extract
more disease-related features assisting the classification process
and improve classification accuracy.

After the convolution and pooling, the data are converted
into a column vector, suitable for multilevel fully connected
architecture. It is followed by a feed-forward neural network and
back-propagation architecture in successive training iterations.
Dominant and low-level features are adequately identified and
classification proceeds.

Transfer Learning Based on Mobile Network
Architecture
A network pretrained on available images can be fine-tuned for
the application to be performed. When the source and the target
are nearly similar, transfer learning works best in terms of weight
updating and optimization compared to random initializations.

Figure 6 gives Mobilenet architecture. The types of transfer
learning are positive, negative, and neutral. Learning in a
condition facilitating another condition is called positive transfer
learning. Learning a task that makes learning another task harder
is called negative learning. A learning which does not make a
change in another learning is called neutral type of learning.
A 1× 1 convolution is associated with the depthwise convolution
outputs in a pointwise convolution layer. In a single step, inputs
and outputs are combined using a convolution filter. Using
Mobilenet, computation and model size have drastically reduced.
Transfer learning marks fast training, more accurate, and needs
fewer data. The significant levels of transfer learning are

1. Full network adaptation—weights are updated from a
pretrained network instead of arbitrary initialization and
apprise them during the training phase (Wang et al., 2016).

2. Partial network adaptation—network parameters from the
pretrained network are initialized and used as such for the
first few layers and the last layers are updated for training
(Zeng et al., 2017; Hesamian et al., 2019).

3. Zero adaptation—network parameters from a pretrained
network are used and are not changed throughout.

Zero adaptation may not be suitable for medical images
trained with other organs or general images because they may not
have similar properties of the carotid image. In using this carotid

FIGURE 6 | Mobilenet architecture.

database for testing a pretrained network, since the available
dataset is small than the training dataset, the following procedure
is followed. Overfitting may be a concern because of the small
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testing set (Akbarian et al., 2019; Latha et al., 2021). The extracted
high-level features may not be similar to the target dataset. The
key features of Mobilenet model compared with the CNN model
are the following.

1. Most of the pretrained layers near the start of
CNN are removed.

2. Instead, fully trained networks equal to the number of
classes for the application are included.

3. The newly obtained weights are randomized and replaced
instead of the removed network weights.

4. The network is trained to update the weights of the new
fully connected layers.

Mobilenet is a family of mobile-first computer vision model
for TensorFlow considering restricted data available and suited
for embedded applications. The model is small, low latent, and

low power designed by google researchers. A width multiplier
parameter is introduced to overcome the resource-accuracy
tradeoff. The resolution multiplier term reduces the layers’
internal structure. ReLU activation function is used.

Figure 7 gives the transfer learning with mobile net
architecture, which provides training accuracy 100% and
validation accuracy 95%. Though the training performance is
less than that of CNN, the validation performance has improved
drastically on using mobile net architecture.

Capsulenet
Geoffrey Hinton proposed Capsulenet in 2017, which is
a better representation of capsules than convolution. The
neuron activities also have a viewpoint variance in addition.
CNN requires augmentation and depends more on texture
features, which led to these transfer learning approaches.
CNN’s max-pooling may lose valuable information because of

FIGURE 7 | Transfer learning based on the Mobilenet architecture (snapshot of the obtained results).
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FIGURE 8 | Capsulenet architecture.

TABLE 1 | Confusion matrix of machine learning algorithms.

CART Decision tree Logistic regression Random forest

Actual positive (1) Actual negative (0) Actual positive (1) Actual negative (0) Actual positive (1) Actual negative (0)

Predicted positive (1) 123 34 120 27 132 23

Predicted negative (0) 23 181 14 200 8 198
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FIGURE 9 | CNN model applied to the carotid artery ultrasound image database (snapshot of the obtained results).

poor relationships between hierarchies of simple and complex
objects. Capsulenet applies vector activation and outputs which
encodes feature transformation information. ReLU activation
function is used.

FIGURE 10 | Capsulenet implementation for the carotid artery database
images (snapshot of the obtained results).

Figure 8 gives Capsulenet architecture with ReLU activation.
Capsules are convolutions with block nonlinearity and routing.
The iterations are slow but require few parameters than CNN.
Inside the knowledge representations, Capsulenet builds a better
model hierarchy. Capsule structures are added to the CNN
model, and the outputs are reused to get more stable higher
representations. Max-pooling is used instead of dynamic routing
and hence achieves translation invariance. It improves the
ability of the network to detect an object even wherever it
lies in the image.

RESULTS AND DISCUSSION

Choice of performance measures to evaluate the machine
learning algorithms gives hope for its practical use. An unsuitable
incorrect measure will mislead to wrong results and a flawed
model which is not suitable for the application. The available
data are imbalanced, and thus, analyzing more number of metrics
assists in proper model selection. It involves comparing the
proposed model with an existing model or predicting the class
label for a given image set.

Performance Metrics
The classification of a carotid artery ultrasound image as
symptomatic or asymptomatic is a binary classification problem.
The performance depends on the count of correctly classified
samples to their class (true positive (TP)), not belonging to
the class, correctly classified as (true negative (TN)), samples
misclassified to that class (false positive (FP)), and those that are
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TABLE 2 | Performance comparison of carotid artery image classification using machine learning approaches.

Algorithm Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F score (%) AUC (%)

CART Decision Tree 84.21 88.72 78.34 84.25 81.19 83.53

Logistic Regression 88.64 93.46 81.63 89.55 85.41 87.55

Random Forest 91.41 96.11 85.16 94.29 89.49 90.63

misrecognized as belonging to that category (false negative (FN))
(Sokolova and Lapalme, 2009). The overall effectiveness of the
model is given by

accuracy =
TP+ TN

TP+ TN+ FP+ FN
(9)

The labels class agreement with positive labels in the algorithm
is given by

precision =
TP

TP+ FP
(10)

Positive label identification efficiency is expressed by recall
or sensitivity. The relevant data points are identified using. F
score measures the relationship between the positive labeled data
and that given in the classifier. Specificity explains how effective
the model identifies a negative label. FPR is the false alarm
probability and TPR is the recall parameter. The model’s ability
to identify false classification is derived from the area under
the ROC curve (AUC). An AUC rate 1 is expected for an ideal
classification model. These measures signify the classification
model performance.

recall =
TP

TP+ FN
(11)

precision =
TP

TP+ FP
(12)

F score = 2×
precision× recall
precision+ recall

(13)

specificity =
TN

TN+ FP
(14)

AUC = (
1
2
)(

TP
TP+ FN

+
TN

TN+ FP
) (15)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(16)

ReLu activation function is used in the classification models.

TABLE 3 | Performance comparison of carotid artery image classification by deep
learning approaches.

Algorithm Accuracy (%)

CNN 55

Mobilenet 95

Capsulenet Transfer Learning 96.7

Machine Learning
Table 1 gives the confusion matrix of the machine learning
algorithms applied in the dataset containing 361 images, out
of which 159 are abnormal and 202 are those without any
disease indications.

The CART model gives an accuracy of 84.21%, specificity
88.72%, sensitivity 78.34%, and precision of 84.25%. The results
prove that the model is useful in identifying the negative cases
better than the positive ones. Logistic regression records an
accuracy of 88.64% for the carotid database. The obtained
specificity is 93.46%, sensitivity is 81.63%, and precision is
89.55%. More number of features added to the logistic regression
model will increase the variance in the odds and may lead to
overfitting. This reduces the generalization of the model fit.
Based on the chi-square test, Hosmer–Lemeshow goodness-of-
fit measure can improve model performance. The algorithm
that assumes the data is noise-free. Outliers from the training
data must be removed to prevent misclassification. Random
forest gives an accuracy of 91.41%, specificity 96.11%, sensitivity
85.16%, and precision of 94.29%. The above results prove
that random forest is a more accurate classifier than logistic
regression and CART decision tree for classifying the carotid
artery ultrasound images.

Deep Learning
Convolutional neural network model is applied on ultrasound
image database for the classification of the images as with and
without plaque deposit. The model achieved training accuracy
of 100% and validation accuracy of 55% as given in Figure 9.
Figure 10 gives the result of the capsulenet implementation in
the database.

Convolutional neural network requires a wide number of
data for training the model. Because of the limited number
of data, the validation performance is nearly half, though the
training is efficient. To overcome this, transfer learning was
introduced to perform a deep learning architecture with limited
training dataset.

Capsules group neurons and thus require fewer parameters
between layers. Pose matrix in Capsulenet defines the rotation
and translation of an object, which represents its change
in viewpoint. It makes the model better generalized to new
viewpoints. The spatial relationship between part of the image
and the whole is learnt which makes the image identification
simple. It is a viewpoint-dependent neural activity which does
not require image normalization and can also identify multiply
transformed images (Samiappan and Chakrapani, 2016; Arun
et al., 2019; del Mar Vila et al., 2020; Samiappan et al., 2020).
Underfitting problem was seen in the classification problem by
CNN, which has led to poor performance and generalization.
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The carotid artery ultrasound image dataset is small and was not
sufficient for a deep learning-based classification.

Initially, 300 training images and 61 validation images were
used. Data augmentation methods, such as rotation, flipping, and
translation were done to improve the classification accuracy.

Table 2 gives the performance of the three machine learning
techniques applied for the carotid artery ultrasound image
database. Random forest gives computationally faster and
improved performance results compared to CART and logistic
regression. Since the dataset was small (361 images), machine
learning algorithms were not computationally complex, lags
in accuracy of identification of the disease. Capsules group
neurons and thus require fewer parameters between layers.
Pose matrix captures rotated and translated versions as linear
transformations, and so, Capsulenet is better generalized to new
viewpoints. The spatial relationship between part of image and
the whole is learnt, which makes the image identification simple.
Capsulenet achieves accuracy of 96.7%, which is the highest for
the carotid artery database images.

The images in the database were flipped to both plane
axis rotated to π/4 axis. Table 3 gives the performance of
the three deep learning techniques applied in the carotid
artery image database.

Proposed Capsulenet with max-pooling gives 12.91, 8.33, 5.47,
43.12, and 1.75% improvement in accuracy compared with a
CART decision tree, logistic regression, random forest, CNN,
and Mobilenet classification algorithms, respectively. Negative
transfer is the interference of the previous knowledge in the new
learning. It has not affected the classification performance of the
carotid artery ultrasound images. It is proved with improved
performance measures.

It is proved that deep learning approaches give improved
accuracy of 95.7% for Capsulenet compared to other machine
learning and deep learning algorithms reported in the literature.

CONCLUSION

A number of 361 images were processed to form a database with
the help of radiologists. Extracted features from the database
images are applied to the machine learning algorithms CART
decision tree, random forest, logistic regression, CNN model,
Mobilenet, and Capsulenet transfer learning algorithms for
classifying the images as normal or abnormal. Machine learning
algorithms were able to perform with an accuracy of 84.21,
88.64, and 91.41%, respectively, for CART, logistic regression, and
random forest. Proposed Capsulenet transfer learning approach

eliminates the need for large amount of training data. Proposed
Capsulenet with max-pooling gives 12.91, 8.33, 5.47, 43.12, and
1.75% improvement in accuracy compared with CART decision
tree, logistic regression, random forest, CNN, and Mobilenet
classification algorithms, respectively.
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