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Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) is a pattern recognition

receptor on myeloid cells, and is upregulated on microglia surrounding amyloid plaques

in Alzheimer’s disease (AD). Rare, heterozygous mutations in TREM2 (e.g., R47H)

increase AD risk several fold. TREM2 can be cleaved at the plasma membrane by

metalloproteases to release the ectodomain as soluble TREM2 (sTREM2). Wild-type

sTREM2 binds oligomeric amyloid beta (Aβ) and acts as an extracellular chaperone,

blocking and reversing Aβ oligomerization and fibrillization, and preventing Aβ-induced

neuronal loss in vitro. Whereas, R47H sTREM2 increases Aβ fibrillization and

neurotoxicity. AD brains expressing R47H TREM2 have more fibrous plaques with more

neuritic pathology around these plaques, consistent with R47H sTREM2 promoting Aβ

fibrillization relative to WT sTREM2. Brain expression or injection of wild-type sTREM2

reduces pathology in amyloid models of AD in mice, indicating that wild-type sTREM2

is protective against amyloid pathology. Levels of sTREM2 in cerebrospinal fluid (CSF)

fall prior to AD, rise in early AD, and fall again in late AD. People with higher sTREM2

levels in CSF progress more slowly into and through AD than do people with lower

sTREM2 levels, suggesting that sTREM2 protects against AD. However, some of these

experiments can be interpreted as full-length TREM2 protecting rather than sTREM2,

and to distinguish between these two possibilities, we need more experiments testing

whether sTREM2 itself protects in AD and AD models, and at what stage of disease. If

sTREM2 is protective, then treatments could be designed to elevate sTREM2 in AD.

Keywords: TREM2, sTREM2, microglia, Alzheimer’s disease, amyloid beta, neuroinflammation,

neurodegeneration, neuroprotection

INTRODUCTION

TREM2
Triggering Receptor Expressed inMyeloid Cells 2 (TREM2) is a pattern recognition receptor found
on the plasma membrane of myeloid cells. When activated by ligands, such as phospholipids,
lipoproteins, and amyloid beta peptide (Aβ), TREM2 induces an innate immune response,
which includes phagocytosis, chemotaxis, and transcriptional changes (Keren-Shaul et al., 2017;
Deczkowska et al., 2020; Kulkarni et al., 2021). TREM2 signaling is mainly via binding DAP12
(DNAX-activating protein of 12 kDa), which activates Syk tyrosine kinase (Deczkowska et al.,
2020). Within the brain, TREM2 is almost uniquely expressed by microglia, and is upregulated
on microglia around amyloid plaques in AD (Giraldo et al., 2013; Yuan et al., 2016; Brendel et al.,
2017). Rare, heterozygous mutations of TREM2 are known to affect AD risk, including the R47H

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.834697
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.834697&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gcb3@cam.ac.uk
https://doi.org/10.3389/fnagi.2021.834697
https://www.frontiersin.org/articles/10.3389/fnagi.2021.834697/full


Brown and St George-Hyslop sTREM2 and Alzheimer’s Disease

mutation, which increases AD risk several fold (Guerreiro
et al., 2012; Giraldo et al., 2013; Jonsson et al., 2013; Kulkarni
et al., 2021). These mutations are thought to increase AD
risk by reducing the protective roles of microglial TREM2,
in particular by reducing microglial phagocytosis of amyloid
plaques (Condello et al., 2015; Yuan et al., 2016).

sTREM2
TREM2 is a single-pass type I transmembrane protein with a
small C-terminal on the cytosolic side of the plasma membrane,
and an N-terminal ectodomain that includes the ligand binding
site (Zhong and Chen, 2019; Yang et al., 2020). However, the
ectodomain of TREM2 is shed from cells expressing full-length
TREM2 into the extracellular medium, and is then known as
soluble TREM2 (sTREM2) (Piccio et al., 2008; Wunderlich et al.,
2013). The turnover of full-length TREM2 on macrophages is
very rapid with a half-life of<1 h, because of constitutive cleavage
of full-length TREM2 and shedding of sTREM2 (Thornton et al.,
2017). The proteases responsible for shedding sTREM2 include
A Disintegrin And Metalloproteases 10 and 17 (ADAM10 and
ADAM17), and this cleavage occurs at the H157-S158 peptide
bond (Schlepckow et al., 2017; Thornton et al., 2017). ADAM10
and 17 appear to be responsible for sTREM2 release induced
by lipopolysaccharide (LPS), whereas the protease meprin β

constitutively cleaves TREM2 (predominately at the R136-D137
peptide bond) to release sTREM2 from macrophages (Berner
et al., 2020). However, it is unclear whethermeprin β can generate
sTREM2 in microglia. After shedding of sTREM2, the remaining
part of TREM2 may be cleaved within the membrane by γ

secretase (Wunderlich et al., 2013). The very rapid and inducible
turnover of TREM2 to generate sTREM2 suggests either that
(i) TREM2 levels need to be regulated very rapidly, or (ii) that
sTREM2 has a function, and full-length TREM2 is a precursor of
this functional sTREM2.

Regulation of sTREM2 Shedding
Conditions that increase or decrease sTREM2 shedding from
full-length TREM2 are not clear, but LPS or IL-1β can induce
sTREM2 release from primary mouse microglia (Zhong et al.,
2019). Also, oligomeric Aβ, which can bind both full-length
TREM2 and sTREM2, induced shedding of sTREM2 for TREM2-
overexpressing cells (Vilalta et al., 2021), suggesting that sTREM2
sheddingmay be induced prior to and during AD as a result of Aβ

oligomerization. CSF sTREM2 levels increase in amyloid mouse
models and correlate with microglial activation (Brendel et al.,
2017). Viral infection of the lungs can increase sTREM2 levels
post-infection, due to IL-13 or IL-4 induced sTREM2 shedding
(Wu et al., 2015). And HIV viral infection of the brain increases
CSF levels of sTREM2 (Gisslén et al., 2018). sTREM2 levels
in CSF are thought to be a biomarker of microglial activation,
although there is limited evidence for this in vivo (Bekris et al.,
2018; Rauchmann et al., 2020; Pascoal et al., 2021), and sTREM2
may itself cause microglial activation (see below). CSF sTREM2
levels rise with age in humans from about 2 ng/ml at 43 years to
6 ng/ml at 80 years of age (Henjum et al., 2016).

FIGURE 1 | Release of sTREM2 from microglia, and activation of microglia by

sTREM2. sTREM2 may be generated by ADAM10/17 or meprin β proteolysis

of full-length TREM2, or from expression of an isoform lacking the

transmembrane domain. γ secretase can cleave the remains of TREM2 within

the membrane to degrade it. Released sTREM2 can chemoattract and

activate microglia via unknown receptors.

Alternative Forms of sTREM2
TREM2 can be expressed via alternative splicing as a soluble
isoform, lacking the transmembrane form, and this alternative
sTREM2 may constitute 25% of total sTREM2 in the brain (Ma
et al., 2016; Del-Aguila et al., 2019). This again suggests that
sTREM2 has a function, rather than being simply a degradation
product of full-length TREM2. The sTREM2 generated by
alternative splicing would be 219 amino acids residues long, the
sTREM2 generated by ADAM10 or 17 would be 157 amino
acids residues long, and the sTREM2 generated by meprin β

would be 136 amino acids residues long (plus shorter forms)
(Berner et al., 2020), although removal of the signal peptide
would shorten all these sTREM2 forms by 18 amino acid residues.
The ectodomain of TREM2 and sTREM2 is highly glycosylated
at Asn20 and Asn79, so the apparent molecular weight of full-
length TREM2 on electrophoresis gels is about 50 kDa when fully
glycosylated, and about 25 kDa when deglycosylated (Ma et al.,
2016). The apparent molecular weight of sTREM2 in CSF is 30–
35 kDa (Ma et al., 2016), implying that almost half the apparent
weight of sTREM2 is sugars, and that different glycosylation
states coexist. The alternativemechanisms of sTREM2 generation
are illustrated in Figure 1.

sTREM2 Degradation
Processes responsible for degradation and clearance of
extracellular sTREM2 are unclear, although it has been found
that macrophages readily take up sTREM2 (Wu et al., 2015),
and sTREM2 injected into mouse brain is cleared from the
brain within 3 days (Zhong et al., 2019). Membrane-attached
meprin β generates sTREM2 constitutively, but inflammation-
induced ADAM10/17 releases soluble meprin β, which can
rapidly degrade sTREM2 (Berner et al., 2020). However, it is
unclear whether meprin β contributes to sTREM2 production or
degradation in the brain.
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FIGURE 2 | Wild-type sTREM2 blocks Aβ pathology, but R47H TREM2 does the opposite. Aβ oligomers bind to TREM2 and induce shedding of sTREM2. Wild-type

sTREM2 blocks Aβ oligomerization, fibrillization and neurotoxicity. R47H sTREM2 increases Aβ oligomerization, fibrillization and neurotoxicity. Thus, wild-type sTREM2

may protect against amyloid pathology, while R47H TREM2 exacerbates amyloid pathology. This might help explain why a single copy of the R47H TREM2 gene

increases AD risk several fold.

ACTIONS OF sTREM2

sTREM2 Activates Microglia
sTREM2 treatment of macrophages induced phosphorylation
of ERK1/2 (extracellular signal-regulated kinases 1 and 2)
and inhibited apoptosis (Wu et al., 2015). Similarly, sTREM2
treatment of microglia in culture promoted survival by inhibiting
apoptosis, apparently via activation of Akt (Zhong et al., 2017). In
addition, sTREM2 induced inflammatory activation of cultured
microglia via nuclear factor-κB, resulting in morphological
activation and release of pro-inflammatory cytokines (Zhong
et al., 2017). sTREM2 also stimulatedmigration and phagocytosis
by primary microglia in culture (Zhong et al., 2019). Injection of
sTREM2 into the brains ofmice expressing the amyloid precursor
protein (APP) induced activation and proliferation of microglia,
plus increased expression of pro-inflammatory cytokines, and
increased microglial phagocytosis of Aβ (Zhong et al., 2019).
Injection of sTREM2 into the brains of healthy mice also induced
expression of pro-inflammatory cytokines (Fassler et al., 2021).
A fragment of sTREM2 (amino acids 51–81) was sufficient to
activate microglia (Sheng et al., 2021). Thus, sTREM2 activates
microglia, although the mechanism of this activation is unclear.

sTREM2 Blocks Aβ Aggregation and
Neurotoxicity
sTREM2 is known to bind oligomeric Aβ, with minimal binding
to monomeric or fibrillar Aβ (Lessard et al., 2018; Zhao et al.,
2018; Zhong et al., 2018; Vilalta et al., 2021). Subsequently,
it was found that sTREM2 blocked Aβ oligomerisation and
fibrillization at a molar ratio of 1 sTREM2 to 100 Aβ (Kober et al.,
2021; Vilalta et al., 2021), and at higher molar ratios sTREM2
disaggregated Aβ oligomers and fibrils (Vilalta et al., 2021).
Wild-type sTREM2 also inhibited Aβ-induced permeabilization
of artificial membranes, and inhibited Aβ-induced neuronal
loss in glial-neuronal cultures (Vilalta et al., 2021). These
results suggest that wild-type sTREM2 may act as extracellular

chaperone for Aβ, blocking its folding into aggregatable forms
and refolding aggregates into soluble forms, thereby inhibiting
the neurotoxicity of Aβ. In contrast, R47H sTREM2 bound less to
Aβ oligomers, but increased Aβ aggregation into protofibrils, and
increased Aβ-induced neuronal loss in glial-neuronal cultures
(Vilalta et al., 2021). Thus, R47H sTREM2 may not only loose a
neuroprotective function, but also gain a neurotoxic function in
the presence of Aβ, probably by folding Aβ into more toxic forms
(see Figure 2).

sTREM2 Protects Against Amyloid
Pathology in Mice
sTREM2 injection into the brains of mice expressing APP
reduced amyloid plaque load (Zhong et al., 2019). Furthermore,
viral expression of sTREM2 in the APP-expressing mice, reduced
plaque load and reversed deficits of spatial memory and long-
term potentiation (Zhong et al., 2019). Thus, sTREM2 is
protective against amyloid pathology in mice, and this might be
by sTREM2 affecting Aβ aggregation and/or sTREM2 activating
microglia to phagocytose plaques. A fragment of sTREM2 (amino
acids 51–81) was sufficient to activate microglia, but not to bind
Aβ and reduce amyloid pathology in vivo; whereas a 41–81
fragment of sTREM2 bound Aβ and reduced amyloid pathology
in vivo better than full-length sTREM2 (Sheng et al., 2021). This
suggests that sTREM2 protects against amyloid pathology mainly
by binding Aβ.

TREM2 knockout mice, crossed with APP-expressing mice,
have more fibrous and less compact plaques (Condello et al.,
2015; Wang et al., 2016; Yuan et al., 2016; Song et al., 2018), and
while this has been attributed to less microglial phagocytosis of
the plaques because of less full-length TREM2, the result might
alternatively be due to sTREM2 blocking Aβ aggregation and/or
sTREM2 activating microglia to phagocytose plaques. TREM2
knockout mice have increased Aβ seeding (Parhizkar et al.,
2019), which again could be explained by reduced microglial
phagocytosis of Aβ seeds mediated by full-length TREM2, or
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reduced blocking of Aβ aggregation by sTREM2. In 5xFAD
mice expressing wild-type human TREM2, sTREM2 was found
bound to the amyloid plaques (Song et al., 2018), consistent
with sTREM2 having a role in regulating plaques. Note that the
ability of sTREM2 to block Aβ aggregation and to disaggregate
Aβ, might be shared with full-length TREM2, as they both
bind Aβ oligomers (Vilalta et al., 2021), but this has not been
tested. Humans (and mice) with heterozygous R47H TREM2
have more fibrous plaques with more neuritic pathology (Yuan
et al., 2016), which again might be explained by either R47H
sTREM2 promoting Aβ fibrillation, or by reduced microglial
phagocytosis of plaques.

EVIDENCE THAT sTREM2 IS PROTECTIVE
AGAINST AD IN HUMANS

CSF levels of sTREM2 fall significantly in early pre-symptomatic
stages prior to AD diagnosis (when amyloid is aggregating), but
rise during mild cognitive impairment (MCI) and AD (when tau
is aggregating), and fall again during the dementia stages of AD
(Heslegrave et al., 2016; Piccio et al., 2016; Suárez-Calvet et al.,
2016, 2019; Bekris et al., 2018; Liu et al., 2018; Nordengen et al.,
2019; Rauchmann et al., 2019;Ma et al., 2020). People with higher
CSF levels of sTREM2 progress more slowly through MCI and
AD, in terms of memory loss, clinical score and brain atrophy
(Ewers et al., 2019, 2020; Edwin et al., 2020; Franzmeier et al.,
2020). And this apparent protective effect of sTREM2 correlated
with reduced amyloid and Tau aggregation measured by PET
(Ewers et al., 2020), consistent with sTREM2 reducing amyloid
aggregation and pathology.

However, these apparent protective effect of high sTREM2
has been attributed to full-length TREM2, rather than sTREM2,
on the untested assumption that high sTREM2 levels indicates
high TREM2 levels, as a result of constant shedding. However,
if elevated sTREM2 results from elevated shedding, which is for
example induced by oligomeric Aβ (Vilalta et al., 2021), then this
will reduce full-length TREM2. Thus, elevated levels of sTREM2
do not necessarily indicate that levels of full-length TREM2
are elevated, and the apparent protective effect of sTREM2
against AD may be more simply explained by sTREM2 itself
being protective.

GWAS studies of gene variants that affect the CSF levels
of sTREM2 identified the membrane-spanning 4-domains
superfamily A (MS4A) gene cluster as key determinants of
sTREM2 levels in CSF (Piccio et al., 2016; Deming et al., 2019;
Hou et al., 2019). This gene region had previously been linked to
AD risk (Naj et al., 2011). For example, rs1582763 increased brain
expression of MS4A4A and MS4A6A genes, increased sTREM2
levels in CSF, reduced AD risk and increased age of AD diagnosis.
While rs6591561 resulted in a loss-of-functionMS4A4A, reduced
CSF sTREM2 levels, increased AD risk and reduced age at AD
onset (Deming et al., 2019). MS4A4A and TREM2 were found
to colocalize at the plasma membrane, and overexpression of
MS4A4A increased sTREM2 levels, whilst silencing of MS4A4A
reduced sTREM2 levels (Deming et al., 2019). This suggests that
MS4A4A may affect AD risk by promoting sTREM2 shedding,

and if so, indicating that sTREM2, rather than full-length TREM2
is protective against AD. However, further work is required to
establish whether MS4A4A directly affects sTREM2 shedding.

EVIDENCE AGAINST THE HYPOTHESIS
THAT sTREM2 PROTECTS

One piece of evidence potentially contradicting a protective role
of sTREM2 in AD, is that the H157Y mutation of TREM2
expressed in cells significantly increased sTREM2 shedding
relative to wild-type TREM2, resulting in increased sTREM2 and
decreased full-length TREM2, but is associated with increased
AD risk (Schlepckow et al., 2017; Thornton et al., 2017).
This suggests that the increased AD risk associated with the
H157Y mutation is due to decreased full-length TREM2 or
increased sTREM2, contradicting the hypothesis that sTREM2
is protective against AD. However, the H157Y mutation only
increased shedding by about 50%, and this was from HEK293
cells (Schlepckow et al., 2017; Thornton et al., 2017), so it
may be difficult to extrapolate to sTREM2 levels in human
brains. Additionally, the H157Y mutation would constitute the
C-terminal of sTREM2, and might affect its properties, such
as its interactions with Aβ. Thus, it would be important to
determine whether this mutation does indeed increase CSF levels
of sTREM2 in humans, and whether H157Y sTREM2 has the
same protective properties as wild-type sTREM2.

Other evidence potentially contradicting the hypothesis that
sTREM2 protects against AD is the finding of Schlepckow et al.
(2020) that an antibody binding to the ADAM cleavage site of
TREM2 prevented sTREM2 release, but reduced plaques load in
an amyloid mouse model. However, the antibody used directly
activated TREM2 signaling, so the reduced plaque load may
result from this signaling (Schlepckow et al., 2020). Additionally,
the compaction of these plaques, neuritic pathology and memory
loss were not tested in this model.

DISCUSSION

Is TREM2 or sTREM2 Protective in
Alzheimer’s Disease?
It appears that either TREM2 or sTREM2 are protective in
Alzheimer’s disease, but which? TREM2 is thought to be
protective by (i) recruiting and activating microglia into a
protective state around amyloid plaques, and (ii) compacting
amyloid plaques by phagocytosis of Aβ, preventing the plaques
inducing neuritic pathology (Condello et al., 2015; Yuan et al.,
2016; Keren-Shaul et al., 2017). Whereas, sTREM2 is thought
to be protective by: (i) stimulating microglial recruitment,
activation and phagocytosis of Aβ, and/or (ii) blocking and
reversing Aβ aggregation, preventing neurotoxicity (Zhong
et al., 2019; Vilalta et al., 2021). Thus, the putative protective
effects of TREM2 and sTREM2 are complimentary rather than
antagonistic, and potentially both may be protective against
Alzheimer’s disease. However, it is still important to verify that
TREM2 and/or sTREM2 are in fact protective.
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Key Experiments to Determine Whether
sTREM2 Is Protective Against AD
Some of evidence indicating that sTREM2 is protective against
AD, may alternatively be interpreted as full-length TREM2 is
protective. Thus, there is a need for experiments that distinguish
between these possibilities, or directly show that sTREM2 is
protective. The most direct way to show that is to add or
express sTREM2 independent of full-length TREM2 and test
whether this is protective in AD models. This has been done
for a mouse amyloid model and found to be protective (Zhong
et al., 2019), but this was relatively acute model, and it would
be important to test this in other models, particularly more
chronic and AD-relevant models. Within such models, it would
be important to test whether sTREM2 can block Aβ aggregation,
or disaggregate preformed plaques or oligomers. It would also
be useful to know whether Aβ oligomers in AD CSF are
significantly bound to sTREM2, and whether physiological levels
of sTREM2 can disaggregate Aβ aggregation in CSF. Further,
it would be worth knowing whether the different types of
sTREM2 behave differently, including sTREM2 generated by
ADAM and meprin β, or by alternative splicing, or H157Y and
R62H sTREM2.

Potential Treatment Strategies
Current strategies targeting TREM2 in AD have focused on
agonistic antibodies to activate TREM2with the aim of increasing
microglial phagocytosis of amyloid plaques (Wang et al.,
2020; Fassler et al., 2021). These antibodies will also bind
sTREM2 and potentially block the protective effects of sTREM2
(Fassler et al., 2021). If sTREM2 is indeedmore protective against

AD than full-length TREM2, then antibodies that increased
sTREM2 shedding might be beneficial, or other treatments
designed to activate sTREM2 shedding e.g., by activating
ADAM10 and ADAM17. Blocking sTREM2 degradation (e.g.,
by inhibiting meprin β) might increase sTREM2 levels without
decreasing full-length TREM2. sTREM2 and sTREM2 fragments
injected into the brain were protective in mouse models of AD
(Zhong et al., 2019; Sheng et al., 2021), but may be difficult to
deliver practically in humans. However, viral vectors expressing
sTREM2 in the brain were protective in these mouse models of
AD, and thus might be protective in humans with AD (Zhong
et al., 2019).
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