
Frontiers in Aging Neuroscience 01 frontiersin.org

Sex-specific transcriptional 
rewiring in the brain of 
Alzheimer’s disease patients
Jose A. Santiago 1, James P. Quinn 2 and Judith A. Potashkin 3*
1 NeuroHub Analytics, LLC, Chicago, IL, United States, 2 Q Regulating Systems, LLC, Gurnee, IL, 
United States, 3 Cellular and Molecular Pharmacology Department, Center for Neurodegenerative 
Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine 
and Science, North Chicago, IL, United States

Sex-specific differences may contribute to Alzheimer’s disease (AD) 

development. AD is more prevalent in women worldwide, and female sex has 

been suggested as a disease risk factor. Nevertheless, the molecular mechanisms 

underlying sex-biased differences in AD remain poorly characterized. To this 

end, we  analyzed the transcriptional changes in the entorhinal cortex of 

symptomatic and asymptomatic AD patients stratified by sex. Co-expression 

network analysis implemented by SWItchMiner software identified sex-specific 

signatures of switch genes responsible for drastic transcriptional changes in 

the brain of AD and asymptomatic AD individuals. Pathway analysis of the 

switch genes revealed that morphine addiction, retrograde endocannabinoid 

signaling, and autophagy are associated with both females with AD (F-AD) and 

males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, 

oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism 

are uniquely associated with M-AD. Similarly, some of the unique pathways 

associated with F-AD switch genes are viral myocarditis, Hippo signaling 

pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. 

Together these results reveal that there are many sex-specific pathways that 

may lead to AD. Approximately 20–30% of the elderly have an accumulation 

of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic 

females (F-asymAD) and males (M-asymAD) both shared dysregulation of 

endocytosis. In contrast, pathways uniquely associated with F-asymAD switch 

genes are insulin secretion, progesterone-mediated oocyte maturation, 

axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, 

pathways uniquely associated with M-asymAD switch genes are fluid shear 

stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in 

cancer. These results reveal for the first time unique pathways associated with 

either disease progression or cognitive resilience in asymptomatic individuals. 

Additionally, we  identified numerous sex-specific transcription factors and 

potential neurotoxic chemicals that may be  involved in the pathogenesis of 

AD. Together these results reveal likely molecular drivers of sex differences 

in the brain of AD patients. Future molecular studies dissecting the functional 

role of these switch genes in driving sex differences in AD are warranted.
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Introduction

Sex disparities have been reported in numerous preclinical, 
epidemiological, and clinical studies on Alzheimer’s disease (AD), 
the most common cause of dementia worldwide. According to the 
Alzheimer’s Disease Association, approximately two-thirds of 
Americans with AD are women (Rajan et  al., 2021). Earlier 
epidemiological studies reported that older women have a higher 
risk of developing dementia than men (Fratiglioni et al., 1997; Ott 
et  al., 1998; Andersen et  al., 1999; Letenneur et  al., 1999; 
Ruitenberg et al., 2001; Di Carlo et al., 2002). Nonetheless, most 
of these studies were from European countries. Indeed, 
epidemiological studies from North and South America have not 
observed a significant sex correlation with AD (Bachman et al., 
1993; Rocca et al., 1998). One study showed a higher incidence of 
AD among men (Ganguli et al., 2000). Several investigations have 
suggested that the higher incidence of AD among women is due 
to the longer life expectancy rather than sex-specific factors 
(Hebert et al., 2001). Recent epidemiological studies, however, 
suggest that sex and gender differences in the risk of AD may 
be influenced by geographical regions (Mielke et al., 2022).

Animal and molecular studies have also revealed sex 
correlations with AD. Sex-specific differences in AD have been 
associated with diet, metabolic factors, inflammation, and 
comorbidities. For example, a high-fat diet elicited a greater 
metabolic impairment, visceral fat accumulation, and glucose 
intolerance in female but not in male 3x-Tg AD mice (Gannon 
et al., 2022). Similarly, male ApoE knock-in mice but not females 
exposed to a high-fat diet showed markers of chronic 
neuroinflammation and liver dysfunction (Mattar et al., 2022). 
ApoE knock-in female mice exposed to the same diet displayed 
spatial learning and memory impairments without the 
neuroinflammation or liver dysfunction observed in males. In 
addition to sex differences, these studies highlight the complex 
interaction between genetic and environmental factors in AD.

Several potential mechanisms have been posited to explain sex 
differences in AD, including hormonal regulation, physiological 
differences, and sex chromosomes. Recent investigations show 
that women with AD exhibit greater cognitive resilience, verbal 
memory reserve, and preservation of brain structure when 
exposed to pathological tau (Digma et al., 2020; Ossenkoppele 
et al., 2020). Furthermore, increased expression of X chromosome 
genes is associated with slower cognitive decline in women. In 
contrast, some X chromosome genes are associated with 
neuropathological tau burden in men but not in women (Davis 
et al., 2021). Sex hormone signaling is another strong hypothesis 
supporting a sex-specific vulnerability in AD. Several studies have 
shown a higher incidence of AD in women after menopause 
(Fisher et al., 2018). Recently, inhibition of follicle-stimulating 
hormone (FSH) signaling improved cognition in mice with AD 
(Xiong et al., 2022).

Unbiased bioinformatic approaches have unveiled sex-specific 
differences in AD studies. For example, an analysis of blood 
transcriptomic profiles from women with advanced AD identified 

the PI3K-AKT signaling, estrogen, and atherosclerosis as shared 
dysregulated pathways in diabetes (Santiago et  al., 2019). 
Sex-stratified single-cell gene and pathway analysis revealed 
opposite transcriptional changes in the entorhinal cortex of males 
and females with AD (Belonwu et al., 2022).

Recently, a new network-based methodology called 
SWItchMiner has enabled the analysis of co-expression networks 
and the identification of key genes known as ‘switch genes’ that 
may play a crucial role in phenotypic transitions. Switch genes are 
associated with drastic transcriptional changes and may play a 
critical role in disease pathogenesis. This bioinformatic method 
has successfully identified switch genes in numerous biological 
settings, including cancer (Fiscon et al., 2018b,c; Falcone et al., 
2019), chronic obstructive pulmonary disease (Paci et al., 2020), 
physical activity (Santiago et al., 2022), AD (Potashkin et al., 2019; 
Bottero et  al., 2021), frontotemporal and vascular dementias 
(Potashkin et  al., 2020), and amyotrophic lateral sclerosis 
(Santiago et al., 2021; Bottero et al., 2022). Further, sex-specific 
switch genes were identified in the blood of ALS patients (Santiago 
et al., 2021). Although switch genes have been identified in AD 
(Potashkin et  al., 2019; Bottero et  al., 2021), analysis of 
co-expression networks and switch genes stratified by sex has not 
been explored.

Here we built on previous work and investigated sex-specific 
transcriptional changes in the entorhinal cortex of AD patients. 
Imaging studies have revealed that the entorhinal cortex, a brain 
region important in memory formation and learning, is one of the 
first regions affected in AD (Khan et al., 2014). The analysis was 
performed on subjects stratified by sex with symptomatic AD and 
those with intact cognition but neuropathological findings 
consistent with AD (asymAD). Including asymAD individuals in 
this study is important given that approximately 20–30% of the 
aging population with preserved cognition have an accumulation 
of amyloid beta (Rodrigue et al., 2009). The investigation of this 
phenotype is expected to reveal pathways associated with disease 
progression or cognitive resilience.

Materials and methods

Demographic and clinical information of 
study subjects

GSE118553 microarray was accessed from the NCBI GEO 
database. This transcriptomic study contained 78 brain samples 
from the entorhinal cortex from 16 controls (sex (M/F, 9/7), 28 
asymAD (M/F, 8/20), and 34 AD subjects (M/F, 13/21). These 
samples were obtained from the Medical Research Council 
London Neurodegenerative Diseases Brain Bank. The mean age 
(±SD) of subjects was: controls: 71.9 (15.6), asymAD: 85.4 (9.5), 
and AD: 83.9 (9.7). Neuropathology was assessed using the 
BRAAK staging. Braak staging (±SD) of subjects was: 
controls:0, AsymAD: 2.2 (1.2), and AD: 4.9 (1). The disease 
duration was 11.8 (5.8) for AD subjects. Control subjects were 
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classified as healthy without dementia or neuropathological 
evidence of AD. AsymAD subjects had no clinical sign of 
dementia at the time of death but showed the presence of AD 
neuropathology. AD cases were clinically diagnosed and 
positive for neuropathological features consistent with AD. No 
information about comorbidities or medication usage was 
available in the original study. All other clinical information 
about the study participants is published elsewhere in (Patel 
et al., 2019).

Swim analysis to identify switch genes

Raw data from GSE118553 was imported into SWIM (Paci 
et  al., 2017). The SWIM algorithm consists of several steps 
described in detail elsewhere (Paci et  al., 2017; Fiscon et  al., 
2018a). Genes with no or low expression were removed in the 
preprocessing stage. The fold changes were set for each array in 
the filtering step, and genes that were not significantly expressed 
between cases compared to controls were removed. SWIM 
analysis was performed using the following comparisons: F-AD 
vs. controls, F-AD vs. F-asymAD, M-AD vs. controls, and M-AD 
vs. M-asymAD. The fold changes used in this study were 1.5 for 
F-AD vs. controls, M-AD vs. controls, male AD vs. M-asymAD, 
and 1.4 for F-AD vs. F-asymAD. The False Discovery Rate 
method (FDR) was used for multiple test corrections. Pearson 
correlation analysis was performed to build a co-expression 
network of genes differentially expressed between cases and 
controls. The k-means algorithm was used to identify 
communities within the network. Using the clusterphobic 
coefficient Kπ and the global-within module degree Zg, a heat 
map was created. The coefficient Kπ measures the external and 
internal node connections, whereas Zg measures the extent each 
node is connected to others in its community. A node is classified 
as a hub when Zg >5. The average Pearson correlation coefficient 
(APCC) between the expression profile of each node and its 
nearest neighbors is used to build the heat map. Using the APCC, 
three types of hubs are defined; date hubs that show low positive 
co-expression with their partners (low APCC), party hubs that 
show high positive co-expression (high APCC), and nodes that 
have negative APCC values are called fight-club hubs. In the final 
step, switch genes are identified and defined as not being a hub in 
their cluster (low Zg < 2.5), having many links outside their group 
(Kπ > 0.8, when Kπ is close to 1, most of its links are external to 
its module), and having a negative average weight of incident 
links (APCC <0). Switch genes interact outside their community, 
are not in local hubs, and are mainly anti-correlated with their 
interaction partners.

Pathway analysis of switch genes

Biological and functional analysis of switch genes was 
performed using NetworkAnalyst and ExpressAnalyst (Xia et al., 

2014).1 Official gene symbols of switch genes for each dataset 
F-AD, F-asymAD, M-AD, and M-asymAD were imported into 
NetworkAnalyst and analyzed separately. Functional enrichment 
analysis was performed using the KEGG database. Bipartite 
networks were visualized within NetworkAnalyst and 
ExpressAnalyst interfaces. Venn diagram analysis was used to 
identify shared and unique pathways.

Transcription factor analysis of switch 
genes

Gene-transcription factor analysis was performed in 
NetworkAnalyst. Switch genes obtained from F-AD, F-asymAD, 
M-AD, and M-asymAD were analyzed separately. Transcription 
factor and gene target data were derived from the Encyclopedia of 
DNA Elements (ENCODE). ENCODE uses the BETA Minus 
Algorithm in which only peak intensity signal <500 and the 
predicted regulatory potential score < 1 are used. Transcription 
factors were ranked according to network topology measurements, 
including degree and betweenness centrality. Venn diagram 
analysis was used to identify shared and unique transcription  
factors.

Protein-chemical interaction analysis

Switch genes from the different datasets, F-AD, F-asymAD, 
M-AD, and M-asymAD, were imported into NetworkAnalyst for 
protein-chemical interaction analysis. NetworkAnalyst uses the 
chemicals and drug data from the Comparative Toxicogenomics 
Database (CTD). Chemicals were ranked according to the degree 
and betweenness centrality.

Results

Identification of switch genes in the 
entorhinal cortex of AD patients stratified 
by sex

To identify key genes that may reveal sex-specific molecular 
mechanisms in the entorhinal cortex of AD, we  performed a 
co-expression network analysis of AD samples stratified by sex 
using SWIM software on the dataset GSE118553. Switch genes 
were identified using the following comparisons: F-AD vs. 
controls, F-AD vs. F-asymAD, M-AD vs. controls, and M-AD vs. 
M-asymAD, hereafter referred to as F-AD, F-asymAD, M-AD, 
and M-asymAD switch genes. The overall study workflow is 
presented in Figure 1.

1 https://www.networkanalyst.ca/
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The algorithm to identify switch genes consists of several 
steps. In the initial step, genes are retained (red bars) or eliminated 
(gray bars) using a cut-off of 1.5 or higher (Figure  2A). 
We  identified the correlation communities in the second step 
based on the average Pearson correlation coefficient (Figure 2B). 
The nodes with a negative correlation value with their interaction 
partner, known as fight club hubs, are shown in R4  in blue 
(Figure 2B). The parameters Zg (within-module degree) and Kπ 
(clusterphobic coefficient) identify the plane, and it is divided into 
seven regions, each defining a specific node role (R1-R7). High Zg 
values correspond to hubs nodes within their module (local hubs), 
whereas low Zg values correspond to nodes with few connections 
within their module. Each node is colored according to its average 
Pearson correlation value. Yellow nodes are party and date hubs, 
which are positively correlated in expression with their interaction 
partners. Blue nodes are the fight-club hubs, with an average 
negative correlation in expression with their interaction partners. 
The switch genes are denoted by the blue nodes falling in the 
region R4. Switch genes are characterized by low Zg and high Kπ 
values and are connected mainly outside their module. This 

analysis identified 115, 212, 89, and 122 switch genes from F-AD, 
F-asymAD, M-AD, and M-asymAD, respectively (Figure  2; 
Supplementary Table S1). The data presented in Figure  2 
corresponds to the analysis of F-AD vs. controls. The analysis of 
F-AD vs. F-asymAD, M-AD vs. controls, and M-AD vs. 
M-asymAD is provided in Supplementary Figures S1–S3.

Venn diagram analysis showed that F-AD and F-asymAD 
shared 15 switch genes, whereas M-AD and M-asymAD shared 
five switch genes. The unique switch genes were 44, 131, 29, and 
69 for F-AD, F-asymAD, M-AD, and M-asymAD, respectively 
(Supplementary Table S2).

Biological and functional analysis of 
switch genes

Biological and functional analysis of switch genes was 
performed using NetworkAnalyst. Datasets of switch genes from 
F-AD, F-asymAD, M-AD, and M-asymAD were analyzed 
separately (Figures 3A-6A). Functional analysis identified 28, 13, 

FIGURE 1

Overall study design. Dataset 118,553 containing transcriptomic data from the entorhinal cortex of Alzheimer’s disease (AD) individuals was 
imported into SWIM software for co-expression network analysis. Samples from symptomatic and asymptomatic AD individuals were stratified by 
sex and analyzed separately. Switch genes identified in males and females were analyzed further for pathway analysis, transcription factors, and 
chemical interactions. The switch genes are denoted by the blue nodes falling in the region R4. F-AD, females with AD; F-asymAD, asymptomatic 
AD females; M-AD, males with AD; M-asymAD, asymptomatic AD males.
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12, and 10 pathways associated with the switch genes from F-AD, 
F-asymAD, M-AD, and M-asymAD, respectively. The most 
significant pathways identified in F-AD switch genes were 
morphine addiction, platelet activation, and focal adhesion 
(Figure 3B). The pathways overrepresented in F-asymAD switch 
genes were synaptic vesicle cycle, insulin secretion, and estrogen 
signaling (Figure  4B). In contrast, the most significant 
dysregulated pathways associated with M-AD switch genes were 
endocannabinoid signaling, morphine addiction, and nicotine 
addiction (Figure  5B). In contrast, those overrepresented in 
M-asymAD were related to atherosclerosis, endocytosis, and FcγR 
mediated phagocytosis (Figure 6B).

We next explored unique pathways associated with each 
dataset of switch genes. Unique pathways of F-AD switch genes 

were associated with viral myocarditis, Hippo signaling pathway, 
endometrial cancer, insulin signaling, PI3K-AKT signaling, 
adherens junction, gap junction, cardiomyopathy, mTOR 
signaling, longevity, sphingolipid signaling, apoptosis, E. coli 
infection (Figure 3B; Supplementary Table S5). Similarly, unique 
pathways identified from F-asymAD switch genes were axon 
guidance, progesterone-mediated oocyte maturation, insulin 
secretion, renal cell carcinoma, and ErbB signaling (Figure 4B; 
Supplementary Table S5). In contrast, unique pathways identified 
from M-AD switch genes associated with alcoholism, nicotine 
addiction, cell adhesion molecules, prolactin signaling, 
adipocytokine signaling, and oxytocin signaling (Figure  5B; 
Supplementary Table S5). Finally, unique pathways from 
M-asymAD switch genes were atherosclerosis, proteoglycans in 

A B

C D

FIGURE 2

SWIM analysis of entorhinal cortex from female AD compared to normal control subjects in GSE118553. (A) Distribution of log2 fold change values 
where the red bars are selected for further analysis. (B) Heat Cartography Map with nodes colored by their average Pearson Correlation 
Coefficient. Region R4 represents the switch genes. (C) Dendrogram and heat map for switch genes. The red markers indicate that the sample 
came from the diseased cohort. (D) Robustness of the correlation network.
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cancer, and FcγR mediated phagocytosis (Figure  6B; 
Supplementary Table S5).

Transcription factor analysis of switch 
genes

Transcription factor analysis was performed in 
NetworkAnalyst using the ENCODE database. The list of 
transcription factors and Venn diagram analysis are provided in 
Supplementary Table S3. This analysis yielded 142, 188, 109, and 
150 transcription factors associated with the datasets of switch 
genes from F-AD, F-asymAD, M-AD, and M-asymAD, 
respectively. Venn diagram analysis revealed that 75 transcription 
factors were shared among all the groups. F-AD and F-asym AD 
showed 8 and 30 unique transcription factors, respectively. 
Similarly, M-AD and M-asymAD showed 1 and 16 unique 
transcription factors, respectively. Two transcription factors were 
shared between M-AD and M-asymAD. Thirteen transcription 
factors were shared between F-AD and F-asymAD.

Chemicals and drugs interaction analysis 
of switch genes

In order to investigate potential neuroprotective and neurotoxic 
agents associated with AD, we performed a protein-chemical and 
drug network analysis by sex in NetworkAnalyst. The list of 
chemicals and the results from the Venn diagram analysis are 

provided in Supplementary Table S4. Switch genes from F-AD, 
F-asymAD, M-AD, and M-asymAD were analyzed separately. 
Valproic acid and aflatoxin B were the highest ranked interacting 
chemicals across all the datasets. Venn diagram analysis identified 
nine chemicals interacting with F-AD and F-asymAD, including 
15-acetyldeoxynivalenol, 2-amino-1-methyl-6-phenylimidazo 
(4,5-b) pyridine (PhIP), 1,6-hexamethylene diisocyanate, cupric 
oxide, 4-hydroxy-2-nonenal, tobacco smoke pollution, 1-methyl-
4-phenylpyridinium, thapsigargin, and tert-butyl-hydroperoxide. 
Vincristine was identified as a shared chemical between M-AD and 
M-asymAD datasets. The F-AD and M-AD datasets shared five 
chemicals, including 1-butanol, lorazepam, ethanol, MRK 003, 
and amiodarone.

Discussion

Numerous AD studies have documented sex-specific 
differences, yet the molecular mechanisms underlying this 
association have not been fully characterized. Here we analyzed 
co-expression networks using SWIM software to investigate 
sex-specific gene expression changes in the entorhinal cortex of 
AD patients. The analysis was performed by stratifying 
symptomatic and asymptomatic AD cases by sex. Co-expression 
network analysis by SWIM identified unique sex-specific switch 
genes for F-AD, F-asymAD, M-AD, and M-asymAD groups.

Functional analysis of switch genes revealed several differences 
in the pathways associated with the switch genes. For instance, 
morphine addiction, platelet activation, and focal adhesion were 

A B

FIGURE 3

Pathway analysis of switch genes from females with Alzheimer’s disease (F-AD). (A) Biological and functional analysis of switch genes from F-AD 
compared to controls was performed in NetworkAnalyst. Switch genes are depicted in red. (B) The pathways are ranked according to the number 
of hits and lowest value of p. Pathways are derived from the KEGG database. The unique pathways are shown in red.
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the most overrepresented pathways in F-AD. In contrast, in 
F-asymAD, synaptic vesicle cycle, insulin secretion, and estrogen 
signaling were the most significant pathways. Though a direct 
linkage between morphine and AD has not been established, 

morphine has been associated with AD in several studies. This is 
not surprising since opioid use is widespread in community-
dwelling older adults with and without AD (Bell et al., 2011). 
However, its use has not been associated with an increased risk of 

A B

FIGURE 4

Pathway analysis of switch genes from asymptomatic females with Alzheimer’s disease (F-asymAD). (A) Biological and functional analysis of switch 
genes from F-asymAD compared to controls was performed in NetworkAnalyst. Switch genes are depicted in red. (B) The pathways are ranked 
according to the number of hits and lowest value of p. Pathways are derived from the KEGG database. The unique pathways are shown in red.

A B

FIGURE 5

Pathway analysis of switch genes from males with Alzheimer’s disease (M-AD). (A) Biological and functional analysis of switch genes from M-AD 
compared to controls was performed in NetworkAnalyst. Switch genes are depicted in red. (B)The pathways are ranked according to the number 
of hits and lowest value of p. Pathways are derived from the KEGG database. The unique pathways are shown in red.
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AD (Taipale et al., 2018). Morphine is both neuroprotective and 
neurotoxic in cellular and animal models of AD. For example, 
morphine reversed the neurotoxic effects of intracellular amyloid 
in neuronal cell cultures and rat brains in vivo (Cui et al., 2011). 
Neuroprotection afforded by morphine may be mediated through 
estradiol release by hippocampal neurons (Cui et al., 2011).

In contrast, morphine has disrupted the homeostasis in neural 
stem cells by reducing cell growth and expression of insulin-like 
growth factors and insulin receptors in in vitro models (Salarinasab 
et al., 2017). Given the interaction between opioids with insulin 
signaling, an association between opioid use and the risk of AD is 
currently debated (Salarinasab et al., 2020). GABRB2, a switch 
gene connected to morphine addiction in the F-AD network, has 
been suggested as a molecular driver of a subtype of AD 
characterized by amyloid beta neuroinflammation (Neff et al., 
2021). Because of the potential association of morphine and 
insulin signaling, a central pathway in AD pathogenesis, the use 
of morphine and opioids in AD merits future investigations.

Insulin signaling and diabetes have been extensively 
implicated in AD and neurodegeneration (Santiago et al., 2019; 
Santiago and Potashkin, 2021). Interestingly, the results from the 
pathway analysis revealed that insulin signaling and PI3K-AKT 
signaling were unique pathways associated with F-AD switch 
genes. Insulin secretion was one of the most significant and 
unique pathways in F-asymAD. Diabetes is more prevalent in men 
than women, with men having twice the odds of having diabetes 
compared with women (Wild et al., 2004; Nordstrom et al., 2016). 
Notwithstanding, women with diabetes have a greater risk of 
developing cardiovascular disease and other complications than 

men (Kautzky-Willer et al., 2016). A transcriptomic blood analysis 
revealed that gene expression profiles from women with advanced 
AD significantly overlapped and correlated negatively with those 
from diabetes (Santiago et  al., 2019). Several switch genes, 
including AKT3, LAMA2, ADCY1, RAB3A, RAPGEF4, and 
ABCC8, have been implicated in insulin signaling and diabetes. 
For example, AKT3, a heavily connected switch gene in the F-AD 
network, is implicated in insulin signaling and resistance (Sharma 
and Dey, 2021). AKT3 is downregulated in AD mice treated with 
a GLP-1 agonist and insulin (Robinson et  al., 2019). GLP-1 
agonists, drugs commonly prescribed in diabetes, have shown 
promise in slowing the progression of neurodegenerative diseases 
(Athauda et al., 2019; Holscher, 2022). Further, AKT3 is associated 
with microglial inflammation and protection against inflammatory 
demyelinating disease (DuBois et  al., 2019; Ma et  al., 2021). 
Notably, AKT3 plays a vital role in the PI3K-AKT signaling, a 
potential pathway linking diabetes and AD (Gabbouj et al., 2019; 
Santiago et al., 2019). Another switch gene, LAMA2, is a serum 
protein biomarker for pre-diabetes (Yang et  al., 2021) and is 
implicated in high-fat diet-induced obesity (Chen H. J. et  al., 
2022). ADCY1, RAB3A, and RAPGEF4 switch genes identified in 
F-asymAD play a key role in pancreatic β-cell insulin secretion 
(Arora et  al., 2012; Kitaguchi et  al., 2013; Gucek et  al., 2019; 
Zummo et al., 2022). Mutations in ABCC8 are associated with 
maturity-onset diabetes of the young (MODY) (Zhang Y. et al., 
2022), neonatal diabetes (Lyra et al., 2022), and severe congenital 
hyperinsulinism (Reyes Diaz et al., 2022). Together, these results 
suggest that impaired insulin signaling is an important trigger of 
neurodegeneration among females and may explain the greater 

A B

FIGURE 6

Pathway analysis of switch genes from asymptomatic males with Alzheimer’s disease (M-asymAD). (A) Biological and functional analysis of switch 
genes from M-asymAD compared to controls was performed in NetworkAnalyst. Switch genes are depicted in red. (B) The pathways are ranked 
according to the number of hits and lowest value of p. Pathways are derived from the KEGG database. The unique pathways are shown in red.
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prevalence of comorbidities, including cardiovascular disease in 
females with AD.

Sex hormones have been extensively implicated in sex 
disparities in AD. Estrogen regulation influences female 
reproduction and many aspects of brain health including 
emotions, memory, and cognitive functions (Luine, 2014). 
Decreased levels of estrogen characterize aging and menopause. 
This decline in estrogen levels is associated with cognitive 
impairment and the development of neurodegenerative diseases 
(Matyi et al., 2019). The role of estrogen in brain health is a subject 
of ongoing debate. Functional analysis identified estrogen 
signaling and progesterone-mediated oocyte maturation as some 
of the most significant pathways associated with F-asymAD switch 
genes. Epidemiological studies reported a higher incidence of AD 
in postmenopausal women (Fisher et  al., 2018). Endogenous 
estrogen and hormone replacement therapy correlated positively 
with higher cognitive status in late life in over 2000 women 
without dementia (Matyi et  al., 2019). Likewise, hormone 
replacement therapy is associated with a reduced risk of AD in 
older women (Zandi et al., 2002).

In contrast, estrogen failed to reduce the risk of dementia or 
cognitive decline but resulted in an increased risk of dementia in 
older women (Shumaker et al., 2004). Recently, oral contraceptive 
use and hormone therapy after menopause was associated with a 
decreased risk of AD in patients with depression (Kim et  al., 
2022). Several switch genes, including PGR, KRT17, ADCY1, and 
AKT3 associated with estrogen signaling. KRT17 is a marker of 
cervical and ovarian cancer (Bai et al., 2019; Di Fiore et al., 2022), 
and PGR plays a role in estrogen and progesterone signaling 
(Ikarashi et al., 2021; Hewitt et al., 2022). PGR and ADCY1 have 
been associated with neurodevelopment, but a direct link with 
dementia or neurodegeneration has not been found (Siegmund 
et  al., 2007; Sundararajan et  al., 2018). The involvement of 
estrogen-related switch genes in F-AD warrants further 
mechanistic studies to understand their implications in AD and 
neurodegeneration better.

In contrast to females, the unique pathways associated with 
switch genes in M-AD were oxytocin and prolactin signaling, cell 
adhesion molecules, alcoholism, adipocytokine signaling, and 
nicotine addiction. The unique pathways identified in M-asymAD 
were FcγR-mediated phagocytosis, fluid shear stress and 
atherosclerosis, and proteoglycans. Oxytocin is a neuropeptide 
hormone that plays a key role in pregnancy by inducing uterine 
contractions and lactation. In the brain, oxytocin modulates 
behavior and cognition in several neurological disorders 
(Guastella et al., 2015; Guastella and Hickie, 2016). Interestingly, 
oxytocin has been shown to elicit neuroprotection in AD. For 
instance, intranasal delivery of oxytocin restored cognitive 
functions in a rodent model of AD (El-Ganainy et al., 2022). Like 
oxytocin, prolactin is another pituitary hormone associated with 
immune system regulation, and it has been implicated in various 
neurological disorders, including AD (Duc Nguyen et al., 2022). 
Prolactin increases synaptogenesis, axon growth, neuronal 
plasticity, and memory consolidation (Carretero et al., 2019).

Furthermore, prolactin is associated with inflammatory, anti-
inflammatory effects and autoimmunity (Costanza and Pedotti, 
2016; Wang et al., 2020). Serum prolactin levels are increased in 
Huntington’s disease and multiple sclerosis (Duc Nguyen et al., 
2022), suggesting it may also be implicated in neurodegeneration. 
The potential role of oxytocin in AD males warrants a more 
thorough investigation of hormones in AD.

Alcohol consumption is a subject of extensive debate, with 
numerous epidemiological studies investigating its association 
with AD. Excessive alcohol consumption is associated with more 
significant cognitive decline and lower hippocampal volume in 
AD patients (Heymann et  al., 2016; Zhornitsky et  al., 2021). 
Drinking frequency associated with AD biomarkers in CSF fluid 
from cognitively intact older individuals (Wang et  al., 2021). 
Chronic alcohol intake induces the generation of reactive oxygen 
species and hyperglutamatergic excitotoxicity leading to white 
matter atrophy, axonal loss, demyelination, and neurodegeneration 
(Kamal et  al., 2020). Contrary to these adverse effects, recent 
studies suggest that low to moderate alcohol consumption could 
reduce the risk of AD (Andersen et al., 1999; Yang et al., 2022). 
Several of the M-AD switch genes, HDAC5, TH, and CAMKK2 
associated with alcohol. HDAC5 mRNA levels are decreased in 
the prefrontal cortex of rats sensitized to alcohol and cocaine (Xu 
S. et al., 2021). Long-term alcohol consumption promotes the 
degradation of HDAC5 and may increase vulnerability to cocaine 
addiction (Griffin Jr. et al., 2017). CAMKK2 is involved in ethanol-
induced hepatic steatosis, and treatment with caffeic acid, a 
phytochemical in coffee, increases its mRNA and protein 
expression, thereby reducing alcohol-mediated damage in mice 
(Lu et  al., 2022). Furthermore, CAMKK2 is associated with 
amyloid beta-induced neurotoxicity resulting in dendritic spine 
loss, and its inhibition protected hippocampal neurons against 
neurotoxicity in a transgenic mouse model of AD (Mairet-Coello 
et al., 2013).

Cigarette smoking is another important modifiable risk factor 
in AD. Similar to alcohol, mixed results have been reported on the 
effects of smoking on AD. For instance, heavy smoking in mid-life 
is associated with a greater than 100% increased risk of dementia 
and AD (Rusanen et  al., 2011). The mechanisms of smoking-
mediated neurodegeneration are unclear, but smoking-associated 
oxidative stress could exacerbate Aβ pathology (Moreno-Gonzalez 
et al., 2013). Imaging studies suggest that quitting smoking early 
in AD could prevent disease progression (Qiu et al., 2022). In 
contrast, numerous epidemiological and molecular studies 
indicate that smoking is neuroprotective. Several epidemiological 
studies reported a lower risk for AD among smokers after 
controlling for cardiovascular disease, emphysema, and cancer 
(van Duijn and Hofman, 1991; Brenner et al., 1993). Strikingly, the 
odds of AD risk increased by 50% every 10 years of smoking 
cessation (Aggarwal et  al., 2006). Among the neuroprotective 
effects of nicotine identified is the inhibition of Aβ aggregation, 
protection against NMDA neurotoxicity, and the prevention of 
neuronal loss by Aβ (Zamani et al., 1997; Aggarwal et al., 2006) 
reviewed in (Mehta et al., 2012). Several switch genes, including 
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GABRA1 and GABRD, were linked to nicotine addiction in 
M-AD. A mutation in GABRA1 has been reported in epileptic 
encephalopathy in children (Chen W. et al., 2022). GABRA1 was 
identified as a therapeutic target of clinical AD drugs (Aggarwal 
et al., 2006; Xu Y. et al., 2021). A network co-expression analysis 
identified GABRD in a key module of genes associated with 
learning and memory in AD brains (Zhu et al., 2020). The impact 
of alcohol, smoking, and nicotine addiction on AD is highly 
debated, and more studies are needed to understand these 
associations. Identifying switch genes involved in alcohol and 
nicotine addiction may suggest that men may be more vulnerable 
to transcriptional changes provoked by alcohol and nicotine than 
women. Another subject of investigation is whether men are more 
prone to alcohol or smoking addiction.

Regarding adipocytokine signaling, the release of adipokines 
by adipose tissue has been shown to play a role in glucose 
metabolism, lipids, and inflammation Field (Polito et al., 2020), 
central processes to the pathogenesis of AD. For example, 
adipokines are directly implicated in obesity and insulin resistance, 
both risk factors in the pathogenesis of AD (Flores-Cordero et al., 
2022). The regulation of these pathways by adipokines may 
provide neuroprotection from several neurodegenerative diseases, 
including AD. Adiponectin signaling is involved in the negative 
regulation of Aβ deposition in preclinical models (He et al., 2021). 
Similarly, leptin promoted neurogenesis and attenuated 
Aβ-mediated neurodegeneration in mice (Calio et  al., 2021). 
Impaired leptin signaling is associated with brain structural 
remodeling changes in obesity and diabetes and thus may play a 
role in AD [Hayden and Banks, 2021)]. Two switch genes, AKT3 
and CAMKK2, were linked to adipocytokine signaling in the 
M-AD network. Inhibition of CAMKK2 reduces neuronal 
apoptosis and neuroinflammation in neonatal hypoxic–ischemic 
encephalopathy and germinal matrix hemorrhage in rodents 
(Zhang et al., 2018, 2019) and may facilitate the expression of 
adiponectin, an adipokine that protects against diabetes and 
atherosclerosis (Kobayashi et al., 2022).

In order to investigate further the functional role of switch 
genes, we performed a transcription factor analysis. There were 
eight unique transcription factors associated with the F-AD switch 
genes. MEF2D is a downstream target of GSK3B associated with 
neuronal survival in AD (Wang et al., 2009). TSHZ1 regulates 
pancreatic beta cell maturation and contributes to type 2 diabetes 
(Raum et al., 2015) and obesity (Berisha et al., 2011). TSHZ1 is 
also essential for olfactory bulb development and olfaction 
(Ragancokova et al., 2014). Further, GATA3, a transcription factor 
crucial in the differentiation of Th2 cells, was identified as a 
female-specific gene of AD implicated in RNA processing 
(Eissman et al., 2022).

Analysis of F-asymAD switch genes identified 30 unique 
transcription factors. Consistent with the pathway analysis, some 
transcription factors are associated with insulin signaling. For 
example, CREB3, STAT1, and STAT3 are important regulators of 
glucose and lipid metabolism in models of high-fat diet and 
obesity (Bone et  al., 2020; Yao et  al., 2021; Kiran et  al., 2022; 

Opazo-Rios et  al., 2022; Smith et  al., 2022). In the context of 
neurodegeneration, CREB3 and STAT3 are involved in 
neuroprotective mechanisms. For example, inhibition of STAT3 
improved cognition and cerebral blood flow via reduction of 
neuritic plaques, oxidative stress, and neuroinflammation in a 
rodent model of AD (Mehla et al., 2021). Similarly, regulating 
STAT1 and STAT3 reduced cognitive dysfunction in a rodent 
model of AD (Wan et al., 2021). Further, CREB3 contributes to 
protein degradation in the endoplasmic reticulum (Oh-Hashi 
et al., 2021) and promotes growth, differentiation, and survival of 
several neuronal types through stimulation of the nerve growth 
factor signaling (Sampieri et  al., 2021). The results from the 
transcription factor analysis reinforce the involvement of insulin 
signaling in females with AD.

In contrast to females, unique transcription factors regulators 
of switch genes from M-AD and M-asymAD were predominantly 
associated with cancers. For example, ZHX1, a unique 
transcription factor in M-AD, has been implicated in gastric 
cancer, chronic lymphocytic leukemia, and gliomas (Ge and Li, 
2020; You et al., 2020; Maciel et al., 2021). TCF7 is involved in 
prostate cancer (Chen et al., 2015; Siu et al., 2017), and it is highly 
expressed in immune cells in atherosclerosis plaques (Ma et al., 
2022). HMBOX1, a transcription factor involved in innate 
immunity, showed a strong positive correlation with the Braak 
score, a measurement of tau pathology severity in AD (Li et al., 
2021). Dysregulated expression of NRF1 has been reported in 
cellular and transgenic animal models of AD (Manczak et al., 
2016; Kumar et al., 2019). The findings of transcription factors 
involved in different cancers may also be  linked to the switch 
genes associated with alcohol and smoking addiction. 
Unfortunately, information about disease comorbidities was not 
available for this study. Future consideration of comorbidities and 
medications will be essential to understand these findings better.

Analysis of chemical and drug interactions with switch genes 
revealed some sex differences in chemical exposures in AD. For 
example, nine chemicals including, 15-acetyldeoxynivalenol, 
2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 
1,6-hexamethylene diisocyanate, cupric oxide, 4-hydroxy-2-
nonenal, tobacco smoke pollution, 1-methyl-4-phenylpyridinium 
(MPP+), thapsigargin, and tert-butyl hydroperoxide were 
identified as interacting with F-AD and F-asymAD. Several of 
these chemicals have been linked to neurodegeneration. For 
instance, heterocyclic aromatic amines formed during high-
temperature cooking of meats, including PhIP, have been linked 
to Parkinson’s and Alzheimer’s diseases (Syeda and Cannon, 
2022). Exposure to cupric oxide promoted neurotoxicity and 
neurodegeneration in a Caenorhabditis elegans model (Mashock 
et al., 2016). MPP+ has been extensively studied in the context of 
neurodegeneration in Parkinson’s disease (Choi et al., 2022; Huo 
et al., 2022; Zhang J. et al., 2022). Recent evidence suggests that air 
pollutants and secondhand tobacco smoke are associated with an 
increased risk of dementia and AD (Peters et al., 2019; Zhou and 
Wang, 2021). Tert-butyl hydroperoxide triggers oxidative damage 
and neurotoxicity in neural stem cells (Huang et al., 2018). These 
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results suggest that females may be  more vulnerable to these 
chemicals than males. To the best of our knowledge, sex 
differences in the exposure to these chemicals have not 
been studied.

In males, vincristine was the only interacting drug shared 
between M-AD and M-asymAD switch genes. Vincristine is a 
chemotherapeutic drug for several cancers known to cause motor 
neurotoxicity and neuropathies (van de Velde et al., 2021; Dakik 
et al., 2022). The finding of a chemotherapeutic may also be related 
to the cancer-associated pathways and transcription factors 
regulating the switch genes identified in males.

Several limitations should be considered when interpreting 
the results of this study. As noted in the original study, the 
asymptomatic group of AD subjects may consist of a 
heterogeneous group of cognitively normal, mild cognitive 
impairment, and mixed dementias. These asymptomatic subjects 
may develop AD or maybe be resilient to the disease. Notably, the 
results presented in this study are entirely based on bioinformatics 
methods of publicly available data. In addition, there are fewer 
males than females represented in this study. Also, there is no 
information about disease comorbidities or medications in the 
original study. Comorbidities and medication usage are potential 
confounding factors that need further investigation. Future 
molecular and mechanistic studies will be required to confirm the 
functional role of these genes in driving sex differences in AD.
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