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Parkinson’s disease (PD) is the second most common age-related 

neurodegenerative disease with cardinal motor symptoms. In addition to 

motor symptoms, PD is a heterogeneous disease accompanied by many 

non-motor symptoms that dominate the clinical manifestations in different 

stages or subtypes of PD, such as cognitive impairments. The heterogeneity 

of PD suggests widespread brain structural changes, and axonal involvement 

appears to be critical to the pathophysiology of PD. As α-synuclein pathology 

has been suggested to cause axonal changes followed by neuronal 

degeneration, diffusion tensor imaging (DTI) as an in vivo imaging technique 

emerges to characterize early detectable white matter changes due to PD. 

Here, we  reviewed the past 5-year literature to show how DTI has helped 

identify axonal abnormalities at different PD stages or in different PD subtypes 

and atypical parkinsonism. We also showed the recent clinical utilities of DTI 

tractography in interventional treatments such as deep brain stimulation 

(DBS). Mounting evidence supported by multisite DTI data suggests that 

DTI along with the advanced analytic methods, can delineate dynamic 

pathophysiological processes from the early to late PD stages and differentiate 

distinct structural networks affected in PD and other parkinsonism syndromes. 

It indicates that DTI, along with recent advanced analytic methods, can assist 

future interventional studies in optimizing treatments for PD patients with 

different clinical conditions and risk profiles.
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Introduction

Parkinson’s disease (PD) is the second most common age-related neurodegenerative 
disease and has no cure. In addition to the cardinal motor manifestations of PD, non-motor 
symptoms involving cognitive impairment, autonomic dysfunction, and sleep disorders 
come to dominate the clinical manifestations, with the progression of neurodegeneration 
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and advancing disease (Williams-Gray et al., 2007; Kalia and Lang, 
2015). The abnormal α-synuclein aggregation has been found in 
the brains of patients with PD in post-mortem autopsies of the 
brain. Although detecting these aggregates in a live human brain 
using imaging has been challenging, other imaging techniques, 
such as diffusion-weighted magnetic resonance imaging (DWI) 
have advanced, allowing in vivo characterization of microstructural 
changes (Le Bihan et  al., 2001) caused by PD, such as axonal 
involvement (Chung et al., 2009). Axonal involvement appears to 
be important in the pathophysiology of PD and manifests as white 
matter changes (Nigro et al., 2016; Tagliaferro and Burke, 2016; 
Lanskey et al., 2018; Koirala et al., 2019; Zhang and Burock, 2020). 
Moreover, a plausible PD mechanism known as retrograde axonal 
degeneration (Tagliaferro and Burke, 2016) has been suggested 
that α-synuclein accumulation may begin in the presynaptic 
terminals, causing axonal transporter changes and following 
axonal degeneration before affecting neurons (Chung et al., 2009; 
Nigro et  al., 2016). Therefore, white matter changes could 
be measured as an early detectable structural change in PD using 
the DWI technique (Burke and O'malley, 2013; Lanskey 
et al., 2018).

Diffusion-weighted magnetic resonance imaging is sensitive 
to the random motion of water molecules in tissues, allowing a 
quantitative means to describe tissue microstructural 
characteristics (Le Bihan et al., 2001). Diffusion tensor imaging 
(DTI) is the most common method using a single-tensor model 
to measure diffusion tensors from DWI data and provides four 
different typical quantitative DTI metrics as follows (Basser and 
Pierpaoli, 1996): fractional anisotropy (FA) describes the 
orientation distribution of organic tissues; mean diffusivity (MD) 
represents the general water diffusion of tissues that can reflect the 
degree of axonal/neuronal loss; axial diffusivity (AD) and radial 
diffusivity (RD) respectively describe the diffusion of water 
molecules along the principle and transverse axis. Furthermore, 
diffusion MRI tractography (DT) enables noninvasive 
visualization of in-vivo white matter bundle connections (Basser 
et al., 2000). Based on DWI data, it has been widely applied to 
facilitate the detection of axonal abnormalities along the tract 
bundle and assist in guiding interventional treatments for PD 
patients [e.g., deep brain stimulation (DBS; Calabrese, 2016)].

In this review, we  attempt to provide a comprehensive 
overview of how different DTI analytic methods and tractography 
have recently been used in (1) detecting axonal deterioration in 
different stages and subtypes of PD, (2) differentiating patients 
with idiopathic PD or other parkinsonism disorders, and (3) 
improving interventional treatments.

Materials and methods

We performed a systematic search in the PubMed database, 
with the following key terms: “Parkinson’s Disease” and “diffusion 
MRI”; or “Parkinson’s Disease” and “diffusion tensor”; or 
“Parkinson’s Disease” and “diffusion tractography.” Since this is a 

narrative review, objective-systematic reviews/meta-analysis 
methods to extract articles do not apply. Thus, the articles were 
thereby hand-selected when meeting the following criteria: studies 
published after 2018, published in the English language, article 
types of original research and randomized clinical trial, topic 
focusing on white matter microstructures, and studies using 
typically clinical DTI acquisition. The selected articles with regard 
to DTI changes in different PD conditions are listed in Table 1.

Recent advances in diffusion 
tensor imaging analytic methods

Diffusion tensor imaging is sensitive to cortical 
microstructural changes in de novo PD patients, even with the 
absence of obvious atrophy observed on T1-weighted imaging 
(Tessa et al., 2008). Early DTI studies beyond past decades have 
drawn much attention to diffusion changes of the nigrostriatal 
pathway as an imaging hallmark in early PD, because this pathway 
links the substantia pars compacta (SNpc) to the striatum, where 
the dopaminergic depletion in the early PD stage will lead to the 
lack of motor control (Delong, 1990). More findings beyond the 
nigrostriatal circuit have been addressed with the recent advances 
in automated DTI analytic methods. These methodologies include 
the ROI analysis, voxel-based analysis (VBA), skeletonized 
approaches [i.e., Tract-based spatial statistics (TBSS; Smith et al., 
2006], fixel-based analysis (FBA; Raffelt et al., 2015), and graph 
theory with network-based analysis (summarized in Figure 1).

In brief, ROI analysis is an automated method to extract the 
mean value of a DTI index from a predefined ROI, where ROIs can 
be  obtained from automated segmentation based on different 
predefined anatomical MRI atlases. Johns Hopkins University 
(JHU) tractography atlas (Mori et al., 2008) has been widely used to 
utilize between-group comparison of a DTI index in a given fiber 
bundle ROI in PD studies (Wu et al., 2018; Juttukonda et al., 2019). 
VBA is a hypothesis-free approach to investigate microstructural 
properties in each voxel over the whole brain. Tract-Based Spatial 
Statistics (TBSS) is a popular automated approach to co-register 
individual DTI maps to the common DTI skeleton maps that allow 
statistical and objective group comparisons only on the voxels in the 
skeletonized white matter tracts (Smith et al., 2006). To date, TBSS 
is one of the most popular DTI analytic methods to investigate DTI 
changes due to PD with different neurodegenerative conditions 
(Wen et al., 2018; Ji et al., 2019; Chen et al., 2022). Unlike VBA 
investigating the overall diffusivity or anisotropy of a voxel, a fixel-
based analysis is more likely to quantify the intravoxel white matter 
properties with the exclusion of other tissue compartments. To 
achieve this, each fixel is derived from the fiber orientation 
distributions obtained by the constrained spherical deconvolution 
(CSD) technique (Jeurissen et  al., 2014). The graph-theoretical 
analysis is used to investigate differences in small-worldness, which 
is a measure to quantify global network efficiency and local 
connectivity strength within a large-scale structural topological 
organization that can be established by axonal interconnections 
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TABLE 1 Summary of diffusion tensor imaging studies in PD with different clinical conditions.

Studies Patient group Age
(years)

Disease 
duration 
(years or 
months)

UPDRS-III H&Y DTI 
analytic 
method

Number of 
diffusion 

directions

b-value 
(the degree 
of diffusion 
weighting, 

s/mm2)

Main result

DTI changes in different PD stages
Isaacs et al. (2019) 70 PD 62.01 (8.62) 6.51 (4.64) years [ON] 14.46 (7.03), 

[OFF] 29.84 (12.18)

N.A. Probabilistic 

tractography, 

TBA

60 0/1000  – [PD vs. HC] lower FA in STN-IFG, STN-ACC, STN-DLPFC, STN-preSMA in PD; no 

significant difference in tract strength

Ji et al. (2019) 57 PD 59.50 (1.21) 4.60 (0.61) years 25.00 (1.41) [mean (SD)] 

1.30 (0.35)

TBSS, graph 

theory

60 0/1000  – [PD vs. HC] lower structural-functional coupling in left CST, higher small-worldness in PD

Scamarcia et al. 

(2022)

154 PD 61.58 (7.95) 4.95 (4.84) years 28.59 (15.81) [mean (SD)] 

baseline: 1.70 

(0.81)

TBSS N.A. N.A.  – [PD vs. HC, baseline] Lower FA and higher diffusivity metrics in both WMH and NAWM 

areas in PD.

 – No significant progressive changes in all DTI metrics after 1–4 years

Shang et al. (2021) 25 PD 65.96 (14.77) 17.44 (5.19) 

months

26.88 (8.73) [mean (SD)] 

1.28 (0.45)

Deterministic 

tractography, 

TBA

32 0/1000  – [PD vs. HC] lower FA in the nigrostriatal projection associated with lower striatal 

standardized uptake value ratio in PD

Xiao et al. (2021) PPMI early drug-

naïve PD data: 141 

drug-naïve PD

61.70 (8.90) N.A. 20.80 (9.00) [mean (SD)] 

1.60 (0.50)

FBA for 

SST-CSD, 

VBA for DTI

64 0/1000  – [PD vs. HC] higher FC and FDC in PLIC, cingulum, CST, SCP in the contralateral side; 

higher FDC in the ALIC in the affected side; lower FDC in the contralateral cingulum

 – [L-PD vs. R-PD] higher FD and FDC in CST, SCP, and cingulum in the affected side in 

R-PD; higher FA and lower MD in the affected side in R-PD

DTI changes in different motor phenotypes
Nazmuddin et al. 

(2021)

54 PIGD-PD, 44 

TD-PD

66.90 (9.26), 

62.70 (8.28)

N.A. 32.09 (11.17), 31.32 

(12.52)

[subject 

number, 

stage 

1/2/3/4/5] 

15/60/19/6/0, 

39/59/0/2/0

VBA, TBA 30 0/1000  – [PIGD-PD vs. TD-PD] lower FA in the bilateral proximal-medial and-lateral NBM-WM 

tract, no significant MD difference

 – Low FA and high MD in the NBM-WM tract correlated with severe postural and gait 

symptoms in PIGD-PD

 – Significant relationships between NBM-WM integrity, attentional function, and gait 

impairment in de novo PD

Wen et al. (2018) PPMI early drug-

naïve PD data: 52 

TD-PD, 13 PIGD-PD

60.46 (9.57), 

66.66 (10.17)

7.52 (8.00), 6.54 

(6.78) months

19.77 (9.48), 22.46 

(8.83)

[subject 

number, 

stage 1/2] 

26/26, 4/9

TBSS, graph 

theory, 

network-

based analysis

64 0/1000  – [TD-PD vs. HC or PIGD-PD] regional FA increases and AD/RD decreases in TD-PD

 – [PIGD-PD vs. HC or TD-PD] widespread FA decreased and AD/RD increases in PIGD-PD

 – [PIGD-PD vs. TD-PD] PIGD-PD showed more impaired WM tracts, with stronger 

correlations with UPDRS-III

Yang et al. (2021) 34 PD-NC,19 TD-NC, 

15 PIGD-NC

57.50 (7.79), 

57.26 (7.82), 

57.80 (8.03)

12.79 (6.29), 12.53 

(5.63), 13.13 

(7.22)

[ON] 33.23 (12.81), 

33.57 (12.21), 32.38 

(13.42)

[OFF] 39.71 (12.64), 

40.68 (13.71), 38.47 

(11.47)

N.A. ROI analysis, 

probability 

tractography

33 0/1000  – Altered WM structures in the executive network in PD

 – [PIGD vs. TD] higher MD and RD in the executive network WM connections in PIGD

 – A positive correlation between MD in the SLF and verbal fluency task scores in PD-NC

(Continued)
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TABLE 1 (Continued)

Studies Patient group Age
(years)

Disease 
duration 
(years or 
months)

UPDRS-III H&Y DTI 
analytic 
method

Number of 
diffusion 

directions

b-value 
(the degree 
of diffusion 
weighting, 

s/mm2)

Main result

DTI changes relevant to non-motor symptoms

Bledsoe et al. 

(2018)

23 PD-NC, 35 PD-

MCI, 17 PD-D

72.90 (5.80), 

74.50 (6.10), 

74.50 (6.70)

9.70 (4.40), 9.40 

(4.10), 13.50 

(4.90) years

26.50 (8.70), 35.30 

(7.60), 44.00 (14.60)

[range] 2–3, 

2–4, 2–5

ROI analysis 26 0/800  – [PD-NC vs. HC] no significant difference

 – [PD-MCI or PD-D vs. HC] higher AD and RD in the most anterior segments of CC in 

PD-MCI and PD-D

 – [PD-D vs. HC] higher AD and RD in the anterior 2 segments in PD-D

 – [All PD] DTI changes in the most anterior and posterior segments in associations with 

cognitive deficits

Chondrogiorgi 

et al. (2019)

40 PD-NC, 21 PD-D 68.40 (6.00), 

70.90 (5.70)

5.70 (4.80), 7.90 

(6.80) years

N.A. [mean] 2.2, 

2.5

TBSS 16 0/700  – [PD-D vs. PD-NC] lower FA in CC, CR, and cingulum in PD-D

 – [All PD] lower cognitive performance in relation to FA/MD/AD changes in CC, prefrontal 

and limbic WM

Holtbernd et al. 

(2021)

30 RBD, 29 PD (from 

multiple sites)

66.80 (9.10), 

63.50 (8.30)

146.90 (121.40), 

89.90 (85.70) 

months

2.30 (1.80), 21.30 

(9.70)

N.A., 1.80 

(0.70)

ROI analysis [site 

1/2/3/4/5/6] 

= 60/120/54/120

30/64

0/1000  – [RBD vs. HC or PD] higher FA in the bilateral ICP, MCP, SCP in RBD

 – [RBD vs. PD] higher FA in the bilateral SCP and right ICP in RBD

 – [RBD or PD vs. HC] lower FA in CC and higher FA in right CST in both patient groups

Inguanzo et al. 

(2021)

15 PD1, 21 PD2, 26 

PD3 (data-driven 

subtypes, based on 

whole brain analysis 

maps)

[mean 

(median)] 

75.00 (14.00), 

68.00 (9.00), 

58.50 (11.00)

[mean (median)] 

7.00 (7.50), 9.00 

(9.00), 7.00 (5.50) 

years

[mean (median)] 

30.00 (1.00), 29.00 

(2.00), 30.00 (2.00)

[subject 

number, 

stage 

1/2/2.5/3] 

1/6/1/4, 

1/10/0/9, 

6/14/0/6

TBSS 30 0/1000  – [PD1 vs. HC] PD1 with the worst cognition accompanying with widespread FA reductions 

in the fronto-occipital WM tracts.

 – [PD2 or PD3 vs. HC] no significant FA changes

 – [% of PD-MCI] 67, 48, 31%

Minett et al. (2018) 93 PD-NC, 27 PD-

MCI

64.30 (10.80), 

70.50 (8.10)

18.20 (1.30), 19.00 

(1.50) months

25.90 (1.10), 29.20 

(2.20)

1.90 (0.10), 

2.30 (0.10)

TBSS 64 0/1000  – [All PD vs. HC] higher MD in bilateral CR, IC, EC, CC, IFOF, SFOF, FM, cingulum, SLF, ILF

 – [PD-MCI vs. PD-NC] no significant difference at baseline, but PD-MCI showing significant 

MD increases in frontal WM after 18 months

 – [PD-MCI vs. HC] lower FA in aforementioned tracts as well as CST

 – Baseline MD is a neural correlate of cognitive function and a predictor of motor decline

Ohlhauser et al. 

(2019)

PPMI data: 20 

prodromal PD-pRBD, 

17 prodromal PD-

npRBD

67.97 (5.70), 

67.69 (5.97)

N.A. N.A. N.A. TBSS 64 0/1000  – [PD-pRBD vs. PD-npRBD] widespread MD increases seen in prodromal PD-pRBD.

(Continued)
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Studies Patient group Age
(years)

Disease 
duration 
(years or 
months)

UPDRS-III H&Y DTI 
analytic 
method

Number of 
diffusion 

directions

b-value 
(the degree 
of diffusion 
weighting, 

s/mm2)

Main result

Wang et al. (2020) 43 PD-NC, 28 PD-

MCI

60.19 (10.72), 

63.93 (10.88)

24.00 (24.00), 

24.00 (26.00) 

months

28.58 (10.68), 30.83 

(13.83)

2.00 (1.00), 

2.50 (1.00)

Graph theory, 

network-

based analysis

26 0/1000  – [All PD vs. HC] reduced nodal efficiency in the hippocampus, parahippocampus, cingulate, 

temporal lobe, fusiform, and amygdala; the orbital nodal efficiency in PD in relation to overall 

cognitive function in PD

 – [PD-MCI vs. PD-NC] reduced nodal efficiency in the left olfactory cortex, left superior 

frontal gyrus, and medial orbital gyrus in PD-MCI

Differential diagnosis of PD and atypical parkinsonism

Abos et al. (2019) 65 PD, 31 MSA 65.40 (10.00), 

60.90 (8.40)

8.26 (6.02), 4.46 

(2.75) years

16.59 (9.22), N.A. [subject 

number, 

stage, 

1/2/3/4/5] 

10/32/22/1/0, 

0/8/11/9/3

Network-

based 

analysis, 

SVM for 

classification

30 0/1000  – [MSA vs. PD or HC] reduced number of fiber streamlines in connections between the 

bilateral striatum, ventral diencephalon, thalamus, and cerebellum in MSA

 – [MSA vs. PD] an accuracy of 0.78 for classification, with a sensitivity of 0.71, and a 

specificity of 0.86

Archer et al. (2019) Multi-site data, 278 

HC, 511 PD, 84 MSA, 

129 PSP

Average age of 

all groups, 

65.05 (9.65)

PD/MSA/PSP: 

3.87 (3.84), 2.94 

(2.77), 3.45 (3.16) 

years

PD/MSA/PSP: 30.15 

(15.02), 51.13 (17.17), 

40.65 (19.79)

N.A. ROI analysis, 

SVM

[range] 15–64 0/1000 or 0/800  – Model only trained by DTI WM features achieving the best performance of AUC (PD vs. 

atyical parkinsonism: 0·955; MSA vs. PSP: 0·926)

Seki et al. (2019) 18 PSP, 16 MSA-P, 16 

PD

67.10 (6.50), 

63.90 (7.10), 

65.20 (5.30)

2.30 (1.50), 1.90 

(1.60), 3.20 (2.00) 

years

32.30 (9.00), 40.50 

(7.20), 24.60 (6.90)

3.00 (0.375), 

3.00 (1.00), 

2.00 (1.00)

VBA, PCA, 

ROC analysis

20 0/1000  – MD and FA of the dentatorubrothalamic tract and CC were the most important 

components to achieve differential diagnosis.

 – [PSP vs. MSA or PD] an accuracy of 92%

 – [MSA-P vs. PD] an accuracy of 80%

ACC, anterior cingulate cortex; AD, axial diffusivity; ALIC, anterior limb of internal capsule; CC, corpus callosum; CR, corona radiata; CST, corticospinal tract; DLPFC, dorsal lateral prefrontal cortex; DTI, diffusion tensor imaging; EC, external capsule; FA, 
fractional anisotropy; FBA, fixel-based analysis; FC, fiber-bundle cross-section; FD, fiber density; FDC, fiber density and cross-section; FM, forceps mirror; H&Y, Hoehn-Yahr scale; HC, healthy control; IC, internal capsule; ICP, inferior cerebellar peduncle; IFG, 
inferior frontal gyrus; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; L-PD, left onset PD; MCP, middle cerebellar peduncle; MD, mean diffusivity; MSA, multiple system atrophy; MSA-P, multiple system atrophy-parkinsonian 
type; NA, not available; NAWM, normal appearing white matter; NBM, nucleus Basalis of Meynert; PD-D, PD with dementia; PD-MCI, PD with mild cognitive impairment; PD-NC, PD with normal cognition; PD-npRBD, PD with no probable rapid eye 
movement sleep behavior disorder; PD-pRBD, PD with probable rapid eye movement sleep behavior disorder; PIGD-PD, postural instability and gait difficulty subtype of PD; PLIC, posterior limb of internal capsule; PPMI, Parkinson’s progression markers 
initiative; preSMA, pre-supplementary motor AREA; PSP, progressive supranuclear palsy; RBD, rapid eye movement sleep behavior disorder; RD, radial diffusivity; ROC, receiver operating characteristic; ROI, region of interest; R-PD, right onset PD; SCP, 
superior cerebellar peduncle; SD, standard deviation; SFOF, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; SST-CSD, single-shell 3-tissue constrained spherical deconvolution; STN, sub-thalamic nucleus; SVM, support vector 
machine; TBA, tract-based analysis; TBSS, tract-based spatial statistics; TD-PD, tremor dominant subtype of PD; UF, uncinate fasciculus; UPDRS-III, unified Parkinson’s disease Rating Scale part III; VBA, voxel-based analysis; WM, white matter; WMH, white 
matter hyperintensity.

TABLE 1 (Continued)
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(Bullmore and Sporns, 2009). This analysis could help understand 
network reorganizations in response to distinct dynamic 
pathophysiological changes in different PD subtypes or other 
parkinsonism disorders (Wen et al., 2018; Abos et al., 2019).

Diffusion tensor imaging study in 
different Parkinson’s disease 
stages

DTI studies in patients with the prodromal stage of PD are 
still scarce. Rapid eye movement sleep behavior disorder (RBD) 
has been recently considered as a prodromal sign of PD. Growing 

evidence from neuroimaging studies indicates that 
pathophysiological changes substantially overlap between RBD 
and PD (Heller et  al., 2017). Holtbernd et  al. (2021) recently 
performed an ROI analysis to investigate the difference in DTI 
metrics of predefined brain atlas among PD patients, RBD 
patients, and healthy controls (HC). They identified the convergent 
pattern of axonal degeneration manifesting as lower FA in the 
corpus callosum and higher FA in the right corticospinal tract 
(CST) in both RBD and PD patients. The co-occurrence of FA 
changes in the opposite direction suggests that both the 
neurodegenerative and compensatory mechanisms are 
simultaneously proceeding, probably contributing to a continuous 
spectrum of PD development.

A C

D
B

FIGURE 1

Diffusion changes in patients with Parkinson’s disease (PD) with different disease conditions shown by four different DTI analytic methods. (A) De 
novo PD stage: voxel-based analysis shows lower mean diffusivity (MD) in de novo PD patients relative to healthy controls (HC) in the voxels located 
at the right corticospinal tract, where the blue color-scale indicates the percentage of effect size. The darkest and lightest blue colors indicate 0 and 
6% of the effect size, respectively. In addition, higher fiber cross-section in de novo PD patients was also found in the same brain region. Adapted 
from Xiao et al. (2021) with permission from John Wiley and Sons (34106502). (B) Early PD stage: tract-specific analysis using deterministic 
tractography delineates nigrostriatal fiber tracts (blue arrowhead) projecting from the substantia nigra (yellow regions of insterest [ROIs]) to the 
striatum in both HC (left) and PD (right) groups. The thinner nigrostriatal fiber tract in accordance with reduced striatal standardized uptake value 
ratio (white arrowhead) in the left side can be visualized in a PD patient. Color-encoded orientations: green for anterior–posterior, red for 
transverse, and blue for superior–inferior directions. Adapted from Shang et al. (2021) with permission from Springer Nature (34621005). (C) Mild to 
severe PD stages: patients showed decreased fractional anisotropy (FA, in red) in the tract bundles (e.g., genu, body, and splenium of corpus 
callosum, internal and external capsule, corona radiata, posterior thalamic radiation, sagittal stratum, cingulum and superior longitudinal fasciculus) 
detected by Tract-Based-Spatial-Statistics (TBSS) analysis. Slices from left to right are sagittal, coronal, and axial slices of the standard Montreal 
Neurological Institute (MNI) T1-weighted image template overlaid with the mean FA skeleton (in green). Adapted from Guimarães et al. (2018) with 
permission from Frontiers Research Foundation (30186216). (D) PD with depression: ROI analysis utilizes a between-group comparison of mean FA 
value in each ROI based on the predefined MRI atlas (Johns Hopkins University White Matter tractography atlas in this case). The figure illustrates the 
anatomical localization of FA change regions in MNI space in patients with depression. Adapted from Wu et al. (2018) with permission from 
BLACKWELL PUBLISHING (29125694).
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In the drug-naïve de novo Parkinson’s Progression Markers 
Initiative (PPMI) PD dataset, increased FA in the CST in PD 
patients was characterized by the fixel-based and VBA (Xiao et al., 
2021). Notably, Xiao et al. (2021) also showed the applicability of 
clinical DTI data to the single-shell 3-tissue-constrained spherical 
deconvolution (SST-CSD) algorithm that is able to derive the extra 
diffusion metrics of fiber cross-section (FC) and fiber density 
(FD), accounting for gray matter (GM) and cerebrospinal fluid 
(CSF) compartments. The higher FC and FD were observed in the 
right posterior limb of the internal capsule (IC), cingulum, CST, 
and superior cerebellar peduncle (SCP). Increased FC in the 
motor pathways together with the above DTI findings, were 
interpreted as the consequence of neuroplastic reorganization 
against dopaminergic nigrostriatal degeneration during the de 
novo PD phase.

The recent studies in the middle to late PD stages moved to 
investigate microstructural changes in the brain regions beyond the 
nigrostriatal pathway, especially for those regions that appear 
structurally normal or unaffected by the pathophysiology of PD 
(Isaacs et al., 2019; Scamarcia et al., 2022). Scamarcia et al. (2022) 
performed both T2-weighted imaging and DTI to understand the 
longitudinal evolution of white matter damages, respectively, 
represented by increased white matter hyperintense (WMH) volume 
and altered DTI metrics in PD patients over time (one to four years). 
WMH volume gradually increased in patients over time. However, 
altered DTI metrics were only seen at baseline. Nonetheless, their 
baseline analysis revealed extensive axonal involvement in the 
normal-appearing white matter, with lower FA and higher diffusivity 
values in PD patients. These findings may suggest two different 
patterns of longitudinal evolution during the progressive PD course, 
with earlier development of microstructural changes conferring 
vulnerability to later WMH accumulation (Promjunyakul et al., 
2018). In addition, Isaacs et al. (2019) aimed to determine whether 
the spatial registration to the standard stereotaxic space with the 
appropriate tractography atlas in the subthalamic nucleus (STN) can 
help identify more specific STN projections relevant to PD 
progression, and thereby improve the accuracy of DBS lead 
placement. They found significant FA reductions in the STN 
connections to the frontal areas, where the number of tract 
streamlines was comparable between PD and HC, suggesting higher 
sensitivity of DTI metrics than macrostructural measures. Lower FA 
in the STN connections was thought to affect preparatory motor 
control, task monitoring, and decision-making in PD.

Diffusion tensor imaging changes 
in motor subtypes of Parkinson’s 
disease

Postural instability and gait disorder 
dominant PD vs. tremor dominant PD

An early study performed manual ROI analysis and 
demonstrated lower FA and higher apparent diffusion coefficient 

values in the body of corpus callosum in PIGD-PD (Chan et al., 
2014) relative to PD. Compared to the TD-PD subtype, PIGD-PD 
has been reported to have more severe gait and cognitive 
impairments, with more involvement in non-dopaminergic 
systems (Ren et al., 2020). As such, a recent DTI study comparing 
PIGD-PD vs. TD-PD shifted their attention to non-dopaminergic 
or non-motor brain regions. Nazmuddin et al. (2021) found a 
lower FA in the frontal NBM-WM tracts in PIGD-PD than 
TD-PD using VBA analysis on the predefined cholinergic white 
matter map innervated by nucleus basalis of Meynert white matter 
(NBM-WM) in the standard common MRI space. In addition, 
there were significant correlations among the severity of gait 
impairment, attentional performance, and NBM-WM DTI values 
in PD-PIGD. These findings indicate that PD-PIGD patients, even 
in the de novo stage, have already presented the impaired 
cholinergic white matter projections as a proxy of cholinergic 
denervation. Meanwhile, another DTI study performed the tract-
specific analysis with probabilistic tractography to characterize 
white matter alterations between an executive-task-based 
functional network in both PIGD-PD and TD-PD with normal 
cognitive functions (Yang et  al., 2021). They suggested that 
PIGD-PD patients exhibited poor performance on the FAS verbal 
fluency task relative to PD-T patients and more microstructural 
white matter impairments compared to PD-PIGD patients, in 
agreement with previous TBSS findings in both phenotypes at the 
de novo stage (Wen et al., 2018). Moreover, Schulz et al. (2018) 
depicted that degeneration of the nucleus basalis of Meynert 
measured by DTI predicts the onset of cognitive impairment; 
however, this was not confirmed in the PPMI cohort (Caspell-
Garcia et al., 2017).

Diffusion tensor imaging changes 
relevant to non-motor symptoms

Normal cognition vs. mild cognitive 
impairment vs. dementia

Patients with PD can develop a spectrum of cognitive declines 
during disease progression. Compared with PD-NC, FA values in 
the corpus callosum, corona radiata, and cingulum substantially 
dropped in PD with dementia (PD-D) (Chondrogiorgi et  al., 
2019). TBSS revealed that all PD patients had lower cognitive 
performance assessed by the Parkinson’s disease-Cognitive Rating 
Scale in relation to FA/MD/AD in the prefrontal and limbic tracts 
as well as corpus callosum. Another DTI study further segmented 
the entire corpus callosum into several sub-regions and found that 
PD-D patients had increases in diffusivity metrics, not FA, in the 
most anterior callosal segment compared to HCs (Bledsoe et al., 
2018), PD-NC, and PD with mild cognitive impairment (PD-MCI), 
suggesting the PD cognitive declines primarily caused by the 
disruption across interhemispheric callosal connections (Bledsoe 
et al., 2018; Chondrogiorgi et al., 2019). Minett et al. (2018) also 
applied TBSS to characterize widespread white matter impairments 
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in both PD-NC and PD-MCI groups compared with HC beyond 
the corpus callosum and corona radiata, including the internal 
capsule, external capsule, and other association tracts. They also 
confirmed a longitudinal MD increase in the several frontal white 
matter tracts only in the PD-MCI group after 18 months, with no 
significant difference between PD and PD-MCI in any DTI metric 
at baseline. Based on their correlation results of baseline MD 
associated with executive/attention functions and longitudinal 
motor function declines, Minett et al. (2018) further suggested that 
MD can be  serve as a predictor to monitor the progressive 
PD-related motor dysfunctions, and as a potential indicator to 
evaluate the effect of cognitive treatment on patients with PD-MCI 
or PD-D. Other approaches, such as network-based analysis (Wang 
et al., 2020) and hierarchical clustering analysis (Inguanzo et al., 
2021), also demonstrated more severe deterioration in either 
network (e.g., less nodal efficiency) or DTI properties (e.g., reduced 
FA) in the frontal white matter network in PD-MCI patients 
compared with PD-NC.

Differential diagnosis of 
Parkinson’s disease and atypical 
parkinsonism

It is challenging to differentiate PD, multiple system atrophy 
(MSA), and progressive supranuclear palsy (PSP), as these 
neurodegenerative diseases share some motor and non-motor 
features (Hughes et al., 2002). An increasing number of DTI 
studies have put considerable effort into differentiating MSA 
and/or PSP from PD over the past decade. In addition to 
classical statistical comparison, the recent DTI studies 
introduced a machine-learning approach with different DTI 
features to differentiate atypical parkinsonism from PD. Archer 
et al. (2019) recently proposed a novel machine-learning model 
based on a support vector machine (SVM) to classify patients 
with PD, MSA, or PSP. Their SVM models were, respectively, 
trained by the following combinations of features obtained from 
patients: diffusion MRI features only, Movement Disorder 
Society-Sponsored Revision of the Unified Parkinson’s Disease 
Rating Scale part-III (MDS UPDRS-III) only, diffusion MRI 
features + MDS UPDRS-III. In addition, they performed a free-
water imaging method to reconstruct raw DTI data and produce 
novel diffusion MRI metrics [i.e., free-water (FW) and tissue FA 
(FAT)] as diffusion MRI features that can correct the partial 
volume effect of corticospinal fluid on FA value (Pasternak 
et al., 2009). Several PD studies have used free water imaging to 
consistently show increased FW within the posterior substantia 
nigra in PD (Planetta et al., 2016). Critically, their SVM model 
can achieve the best performance for classifying PD, MSA, and 
PSP when only using FW and FAT features. Another study 
(Abos et al., 2019) also performed SVM models, respectively, 
trained by DTI metrics, subcortical volume, or the number of 
fiber streamlines to distinguish patients with MSA from patients 
with PD. Finally, Seki et al. (2019) adopted a multimodal MRI 

approach to extract different quantitative MRI features based on 
VBA results. The following principal component analysis was 
used to reduce the high dimensionality of MRI features, and 
stepwise receiver-operating characteristic curve analysis was 
used to distinguish patients with PSP, Parkinson type of MSA 
(MSA-P), and PD. Notably, principal component analysis also 
highlighted DTI metrics of a few critical clusters to differentiate 
the three patient cohorts. These clusters were mainly distributed 
at the thalamus, dentatorubrothalamic tract, corpus callosum, 
and middle cerebellar peduncle. These findings were consistent 
with previous MRI findings (Nicoletti et  al., 2006; Ito et  al., 
2008), where the axonal degeneration of dentatorubrothalamic 
tract comprises of demyelinated fibers, tau pathology, and 
microgliosis seen in autopsy PSP subjects (Ishizawa and 
Dickson, 2001).

Deep brain stimulation therapy for 
Parkinson’s disease

DBS is a conventional therapy for PD when treatment with 
dopaminergic medication is inadequate. However, the variability 
of DBS therapy sometimes proposes a need for a more detailed 
characterization of the targeted networks and visualization of 
white matter pathways that drives the clinical outcome 
(Henderson, 2012; Calabrese, 2016; Gonzalez-Escamilla et  al., 
2022). DT has been proposed to be the only non-invasive method 
of visualizing neural structural connectivity that could guide DBS 
targeting in neurological diseases, including PD (Calabrese, 2016). 
DT can define specific axonal trajectories as the basis of pathway-
activation models to provide better anatomical/electrical volume 
conductor estimations to evaluate the strength and coverage of 
electric field covering DBS targets (Gunalan et al., 2018). As such, 
DT helped strategize the best direct or indirect DBS target by 
delineating and segmenting STN-cortical (Chen et  al., 2018; 
Gunalan et al., 2018), pallido-cortical (Middlebrooks et al., 2018), 
pedunculopontine (Raghu et  al., 2021), and cortico-cerebellar 
pathways (Strotzer et al., 2019; Coenen et al., 2020) to mitigate 
PD-related motor symptoms and minimize unwanted side effects, 
such as depression and impaired cognition (Combs et al., 2015; 
Irmen et al., 2020).

In another recent study, Gonzalez-Escamilla et  al. (2022), 
using DTI and probabilistic tractography, presented an approach 
to integrate postoperative MRI, showing the DBS contact 
locations, with WM pathways connecting the contact locations to 
essential parts of motor network in individual PD patients. 
Specifically, the authors showed that the postoperative outcome of 
STN-DBS is strongly associated with active stimulation of contacts 
connected to the primary cortex and supplementary motor area 
and that can be individually defined. In addition, both DTI profile 
and network-based connectivity have served as a preoperative 
predictor for postoperative outcome (Koirala et  al., 2018; 
Gonzalez-Escamilla et al., 2022) or a targeted indicator to trace the 
therapeutic effect (Strotzer et al., 2019; Huang et al., 2022).
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Conclusion

The above studies summarized in the Table 1 indicate that 
DTI, measuring changes in white matter microstructure, 
specifically axonal changes, might be more sensitive in the early PD 
stage than other imaging techniques. DTI can characterize 
structural changes related to PD as the disease progresses over time 
so it can be a promising biomarker for monitoring PD progression. 
It also has the potential for making a more sensitive and specific 
differential diagnosis between PD and atypical parkinsonism, such 
as MSA and PSP (de Oliveira and Pereira, 2017). DTI also sheds 
light on the underlying structural network affected in different 
subtypes of PD (PD-T vs. PD-PIGD), which can help future 
interventional studies offering optimized treatment to various 
subtypes (e.g., treating PD-PIGD patients, in the de novo stage with 
the impaired cholinergic white matter projections as a proxy of 
cholinergic denervation with the novel DBS techniques being 
developed to increase cholinergic modulation).

Moreover, identifying the network topology and 
connectivity using DTI and probabilistic tractography before 
traditional DBS surgery directly influences PD patients’ 
response to DBS and may serve as significant predictors of the 
DBS clinical outcome (Koirala et al., 2018). Finally, structural 
changes, detected by DTI, are not only linked to motor but 
also cognitive symptoms. Therefore, DTI can potentially 
characterize the structural network involved in PD cognitive 
impairment leading to dementia and differentiate PD patients 
with mild cognitive impairment from those with normal 
cognition. Moreover, DTI information linked with machine 

learning approaches will add predictive power to this 
technique to act as a biomarker for early detection of those PD 
patients at risk of cognitive decline.
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