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The role of altered protein 
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Acetylation is a key post-translational modification (PTM) involved in the 

regulation of both histone and non-histone proteins. It controls cellular 

processes such as DNA transcription, RNA modifications, proteostasis, aging, 

autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation 

is essential to maintain neuronal plasticity and therefore essential for memory 

and learning. Homeostasis of acetylation is maintained through the activities 

of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, 

with alterations to these tightly regulated processes reported in several 

neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). 

Both hyperacetylation and hypoacetylation can impair neuronal physiological 

homeostasis and increase the accumulation of pathophysiological proteins 

such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, 

respectively. Additionally, dysregulation of acetylation is linked to impaired 

axonal transport, a key pathological mechanism in ALS. This review article will 

discuss the physiological roles of protein acetylation and examine the current 

literature that describes altered protein acetylation in neurodegenerative 

disorders.
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Introduction

Post-translational modifications (PTMs) of proteins define the molecular complexity 
of our cells. Through mechanisms such as covalent modifications of proteins, PTMs change 
the properties of a protein to determine its activity, localization, or interaction with other 
proteins, cells, or systems (Mann and Jensen, 2003). Over 400 PTMs have been reported in 
the literature, including methylation, acetylation, ubiquitination, phosphorylation, and 
glycosylation (Duan and Walther, 2015), which change the function of the proteins, leading 
to altered gene expression, cellular signaling, protein trafficking, and cellular structure 
(Khoury et  al., 2011; Duan and Walther, 2015). Given the importance of PTMs, our 
understanding of the role of these modifications in complex neurodegenerative diseases is 
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critical to understanding the causes and finding treatments 
or cures.

Age-related neurodegenerative diseases, including Alzheimer’s 
disease (AD), Huntington’s disease (HD), prion diseases, 
Parkinson’s disease (PD), frontotemporal lobar degeneration 
(FTLD), and amyotrophic lateral sclerosis (ALS) are some of the 
leading causes of mortality and morbidity worldwide (Taylor et al., 
2002; Erkkinen et  al., 2018; Ashby, 2019). These diseases are 
progressive and heterogeneous in nature and involve adverse 
changes to the central and/or peripheral nervous system, including 
the degeneration of neurons resulting in the loss of cognitive and/
or motor functions (Lin and Beal, 2006; Hrelia et al., 2020). Due 
to the impact of neurodegenerative disease, developing targeted 
treatments based on pathological mechanisms has become a 
major focus of research. Aggregation of misprocessed proteins is 
a common feature of the major types of neurodegenerative 
disorders (Merlini et al., 2001; Tutar et al., 2013; Hrelia et al., 
2020), which can be predisposed by genetic mutations, but the 
majority of cases are of unknown etiology, or sporadic in nature 
(Tutar et al., 2013). We may be able to discern the driving factors 
behind neurodegenerative disease by understanding how PTMs 
of disease-associated proteins alter underlying pathological 
processes, through mechanisms such as impaired gene regulation, 
proteostasis, or alterations to the cytoskeleton.

The role of altered PTMs in neurodegenerative disease is 
highlighted by findings that many disease-associated aggregated 
proteins have abnormal PTMs, which can result in protein 
aggregation, mislocalization, and/or misprocessing (Schaffert and 
Carter, 2020). Such dysregulation may ultimately be  linked to 
downstream pathogenesis such as glutamate excitotoxicity, 
mitochondrial dysfunction, and activation of caspases (Hall, 
2011), suggesting that altered PTMs may be  drivers of 
neurodegeneration, and potential targets for novel therapeutic 
strategies. Studies to date have predominantly focused on the role 
of altered phosphorylation in neurodegenerative diseases (Hanger 
et al., 2009; Rudrabhatla, 2014), however, alterations in acetylation, 
particularly of cytoskeletal proteins, may also play a role in driving 
neurodegeneration (Sternberger et  al., 1985; Cavallarin et  al., 
2010; Noble et  al., 2013; Rudrabhatla, 2014; Xu et  al., 2015; 
Schaffert and Carter, 2020). This review will provide a general 
overview of the role of protein acetylation and how it can 
be dysregulated in neurodegenerative disease. As this is a vast 
topic, we  will focus on the disease-associated proteins and 
the cytoskeleton.

Acetylation

Acetylation is a key biological process for regulating the 
function and viability of all mammalian cells, by adding acetyl 
groups to the structure of proteins. Acetylation can occur on 
different chemical groups including hydroxyl, thiol, or amino 
groups (Portaleone, 2004). Although acetylation was first 
identified as a modification of histone proteins within the nucleus, 

it also occurs on several non-histone proteins, where it plays an 
essential role in regulating cellular responses and signaling in 
response to different types of stressors, both internal and external 
(Drazic et al., 2016).

Around 80–90% of proteins are acetylated at the N-terminus 
of the polypeptide chain during translation (Drazic et al., 2016). 
This N-terminal acetylation is an abundant irreversible process 
and is carried out by enzymes referred to as N-terminal 
acetyltransferases (NATs), that transfer an acetyl group from 
acetyl-coenzyme A to the α-amino acid of proteins. Such 
modifications can alter the way the proteins form their tertiary 
structure, affect their half-life, or even their localization within the 
cell (Deng and Marmorstein, 2021). While NATs can regulate the 
acetylation of terminals mostly during translation, post-
translational acetylation, which is the main subject of this review, 
occurs on the ε-amino group of lysine residues in a polypeptide 
chain and can occur as a reversible process. Post-translational 
acetylation is involved in a wide variety of processes, such as 
maintaining cellular homeostasis, protein folding, and protein 
localization, and is a tightly regulated process. The enzymes 
involve in maintaining this homeostasis are known as histone 
acetyltransferases (HATs) and histone deacetylases (HDACs; 
Figure 1; Peserico and Simone, 2010).

Histone acetyltransferases and 
histone deacetylases

HAT enzymes

Histone acetyltransferases are ubiquitously expressed and are 
broadly classified based on their localization within either the 
nucleus or cytoplasm. Nuclear HATs are chiefly responsible for the 
regulation of gene expression by acetylating the nuclear histones 
resulting in altered chromatin compaction and subsequent gene 
expression. Cytoplasmic HATs acetylate proteins in the cytoplasm; 
this includes cytoplasmic histone proteins, which are then 
transported into the nucleus for further modification. HATs 
regulate the acetylation process by transferring an acetyl group 
from acetyl-coenzyme A to the ε-amino group of lysine residues 
(Roth et  al., 2001). Depending on their functional activities, 
structure, and sequential homology, HATs can be further grouped 
into three major families; (i) the GNAT family, (ii) the MYST 
family, and (iii) the EP300/CREBBP family (Kamei et al., 1996; 
Roth et al., 2001).

The GNAT family (or KAT2/GCN5-related 
N-acetyltransferases) acetylates both histones and non-histone 
proteins (Roth et al., 2001; Kim et al., 2010; Tapias and Wang, 2017) 
and is responsible for a wide variety of functions including 
transcription regulation, response to stress, and development 
(Tapias and Wang, 2017; Shirmast et  al., 2021). Some of this 
superfamily is NATs, involved in translational modification, while 
the remaining enzymes are involved in post-translationally 
acetylating lysine residues of proteins (Deng and Marmorstein, 
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2021). The MYST family is named from its four core enzymes 
which are MOZ/histone acetyltransferase 6A, Ybf2/SaS3, SaS2, and 
Tip60/histone acetyltransferase 5 (Kim et al., 2010). The MYST 
family HATs interact with many of the core nuclear histones 
including H2A, H2AZ, H3, and H4 (Marmorstein, 2001; Roth 
et al., 2001). These enzymes are highly conserved in eukaryotes and 
regulate essential cellular functions of gene transcription, DNA 
replication and damage repair, and neurogenesis (Avvakumov and 
Côté, 2007; Tapias and Wang, 2017). The E1A binding protein 
p300/Cyclic adenosine monophosphate Response Element Binding 
protein (EP300/CREBBP) family includes the conserved HAT 
enzymes p300 and CREB binding protein (CBP), which are 
homologous and functionally similar (Roth et  al., 2001; Yang, 
2004). This family also has both nuclear histone and non-histone 
targets (Table 1; Roth et al., 2001; Yang, 2004). CBP and p300 are 
involved in gene expression by recruiting transcriptional 
machinery through acetylation and responding to cellular hypoxia, 
cellular differentiation, and early brain development (Arany et al., 
1996; Tapias and Wang, 2017).

Histone acetyltransferase enzymes have many critical roles in 
both the developing and adult brain. For example, in adult mice, 
PCAF, a member of the GNAT family has been shown to have a 
key regulatory function in the formation of both short-term and 
long-term memory following stress and anxiety (Martínez-
Cerdeño et al., 2012). Moreover, knockdown of either or both 

Elp1 and Elp3 enzymes (GNAT family), was associated with 
defective dendritic and axonal branching in motor neurons along 
with poor migration and maturation of neuronal cells (Xu et al., 
2000; Kim C. H. et al., 2012). The importance of these HATs can 
also be seen through their roles in the developing brain, as studies 
have shown conditional deletion of Gcn5 (GNAT family) resulted 
in a 26% loss of brain mass, due to dysregulation of neural 
progenitor differentiation (Martínez-Cerdeño et al., 2012). The 
MYST family enzymes are also vital for neuronal development 
and adult nervous system function. For instance, overexpression 
of TIP60 in mouse retinas at postnatal day 4 led to an increased 
level of PAX6, which plays an essential role in embryonic neuronal 
development (Georgala et  al., 2011; Kim C. H. et  al., 2012). 
Although there are few studies examining the role of MOZ, MOF, 
and HBO1 in the brain, the absence of these enzymes has been 
shown to result in impaired regulation of neuronal progenitor 
cells, embryonic lethality, and reduction of neuronal patterning 
genes (Katsumoto et al., 2006; Kueh et al., 2011; Perez-Campo 
et al., 2014; You et al., 2015). Another MYST family member, 
MORF, is highly expressed in both the embryonic and adult brain 
and it has been postulated that it plays a role in adult neurogenesis 
(Thomas et al., 2000; Kueh et al., 2011). Both, p300 and CBP have 
been shown to be expressed at a high level in the neural tube of 
mice and are essential for neuronal tube development (Katsumoto 
et al., 2006; Kueh et al., 2011; Perez-Campo et al., 2014; You et al., 

FIGURE 1

Cellular homeostasis regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Post-translational modifications regulate a 
wide range of proteins to enable appropriate transcription and maintain cellular function. HATs and HDACs are integral to this process by adding 
or removing acetyl groups to/from histone or non-histone proteins, thus changing chromatin accessibility, or protein structure, function, or half-
life.
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TABLE 1 HAT enzymes and their roles in neurodegenerative disease (NDD).

HAT family Representative 
enzymes

Subcellular 
Localisation

Histone 
substrates

Examples of non-
histone substrates

Identified eoles in brain Identified involvement in 
*NDD

GNAT family (Roth et al., 2001; Yang, 

2004; Kim et al., 2010; Wang Y. et al., 

2014; Wang et al., 2020)

HAT1 Nucleus/Cytoplasm H4, H2A HMG-N2/HMG17, AR, 

c-MYC, p53, and Ku70

- -

Gcn5 Nucleus H2B, H3 Neural progenitor differentiation 

(Martínez-Cerdeño et al., 2012)

PD (Fan et al., 2020), *SCA7 (Chen et al., 

2012)

PCAF Nucleus H3 Regulates memories (Martínez-

Cerdeño et al., 2012)

AD (Park et al., 2015), HD (Bodai et al., 

2012)

HPA2 Nucleus H3, H4 - -

HPA3 Nucleus H4 - -

Elp3 Nucleus/Cytoplasm H3, H4 Dendritic and axonal branching (Xu 

et al., 2000; Kim C. H. et al., 2012)

ALS (Simpson et al., 2009)

Elp1 Nucleus H3, H4 -

MYST family (Roth et al., 2001; Yang, 

2004; Kim et al., 2010; Wang Y. et al., 

2014; Wang et al., 2020)

TIP60 Nucleus/Cytoplasm H2A, H3, H4 Embryonic neuronal development 

(Georgala et al., 2011; Kim C. H. et al., 

2012)

AD (Müller et al., 2008), SCA1 (Gehrking 

et al., 2011)

MORF Nucleus H2A, H3, H4 Adult neurogenesis (Thomas et al., 

2000; Kueh et al., 2011)

AD (Li et al., 2021)

MOZ Nucleus H3, H4 Regulation of neuronal progenitor cells 

& patterning genes (Katsumoto et al., 

2006; Kueh et al., 2011; Perez-Campo 

et al., 2014; You et al., 2015)

AD (Li et al., 2021)

MOF Nucleus/

Mitochondria

H4 AD (Li et al., 2021)

HBO1 Nucleus H4 AD (Li et al., 2021)

Esa1 Nucleus H2AZ, H4 - -

Sas2 Nucleus H4 - -

Sas3 Nucleus H3 - -

p300/CREBBP (Roth et al., 2001; Yang, 

2004; Kim et al., 2010; Wang Y. et al., 

2014; Wang et al., 2020)

p300 Nucleus/Cytoplasm H2A, H2B, H3, 

H4

HMG1, HMG-I(Y), p53, 

GATA-1, TCF, IF-2, ACTR 

(nuclear receptor 

coactivator), and SRC-1

Neuronal tube development 

(Katsumoto et al., 2006; Kueh et al., 

2011; Perez-Campo et al., 2014; You 

et al., 2015) and memory formation (Li 

et al., 2002; Korzus et al., 2004)

AD (Lu et al., 2014), PD (Kontopoulos et al., 

2006), HD (Bodai et al., 2012) 

CBP Nucleus/Cytoplasm H2A, H2B, H3, 

and H4

AD (Caccamo et al., 2010), PD (Kontopoulos 

et al., 2006; Song et al., 2010), HD (Cong 

et al., 2005), ALS (Rouaux et al., 2003), and 

*SCA3 (Chai et al., 2002)

AR, Androgen receptor; GATA-1, GATA-binding factor 1; HMG, high mobility group chromosomal protein; IF2, Initiation factor 2; SCA1, spinocerebellar ataxia type 1; SCA3, spinocerebellar ataxia type 3; SCA7, spinocerebellar ataxia type 7; SRC, Proto-
oncogene tyrosine-protein kinase; and TCF, T-cell factor. *NDD: neurodegenerative disease.
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2015). They are also thought to be critical to homeostasis and 
some aspects of memory formation in the adult brain, due to high 
expression in young and adult mice (Li et al., 2002; Korzus et al., 
2004). Moreover, studies suggest that p300 may be involved in 
oligodendrocyte differentiation in the developing rat brain (Zhang 
et al., 2016). While it is important to note the varied functions of 
HATs in brain function, this process does not function in isolation 
and is tightly regulated by balancing acetylation and deacetylation.

HDAC enzymes

To allow regulation of the homeostasis of cellular processes 
controlled by lysine acetylation through HATs, the process of 
acetylation must be  able to be  reversed. This occurs through 
enzymes known as HDACs. HDACs were named after their 
initially identified role in deacetylating nuclear histone proteins 
to regulate transcription. However, HDACs are now recognized 
as playing important roles in deacetylating non-nuclear histones 
and non-histone proteins (Table  2) both in the nucleus and 
cytoplasm that have other cellular mechanisms including 
metabolism, protein degradation, and modulation, facilitating 
DNA damage repair, immune process, oxidative stress, 
angiogenesis, and apoptosis (Ruijter et al., 2003; Seto and Yoshida, 
2014; Van Helleputte et al., 2014; Didonna and Opal, 2015; Li 
G. et al., 2020). Eighteen different HDACs have been identified in 
humans, which are known as HDAC1-11 and SIRT1-7. These are 
classified into four major classes named class I–IV depending on 
their distinguishable role in cellular processes and the subcellular 
regions in which they function (Glozak et  al., 2005). The 
superfamily of HDAC proteins can be  first divided into two 
classes depending on the type of cofactor involved in 
deacetylation; the zinc-dependent HDACs’ (also known as 
classical HDACs) and the sirtuin HDACs, which use nicotinamide 
adenine dinucleotide as a cofactor. The zinc-dependent HDACs 
are further subclassified into classes I, II, and IV whereas the 
sirtuin family makes up the class III HDAC enzymes depending 
on their functional and structural properties (Park and 
Kim, 2020).

The class I HDACs includes HDAC1, 2, 3, and 8, and while 
most function within the nucleus, HDAC3 shuttles between the 
nucleus and cytoplasm for transcriptional regulation (Yao and 
Yang, 2011; Didonna and Opal, 2015; Park and Kim, 2020). Class 
II HDACs are further classified into class IIa and IIb based on 
their structural specifications. HDAC4, 5, 7, and 9 all contain a 
common N-terminal binding domain and belong to the class IIa 
HDACs, while HDACs 6 and 10 belong to the class IIb group. 
Class IIa HDACs shuttle between the nucleus and cytoplasm 
whereas class IIb enzymes are predominantly localized to the 
cytoplasm (Marsoni et al., 2008; Li G. et al., 2020). The class III 
HDACs (SIRT1-SIRT7) are structurally distinct from class I and 
class II HDACs. Among the SIRT proteins, SIRT1, 6, and 7 are 
abundant in the nucleus, although under certain conditions SIRT1 
can be  retained in the cytoplasm (Frye, 2000; Blander and 

Guarente, 2004; Michishita et al., 2005; Ramadori et al., 2008; 
Shoba et  al., 2009). On the other hand, SIRT3, 4, and 5 are 
primarily present in mitochondria and SIRT2 is commonly found 
in the cytoplasm (Frye, 2000; Blander and Guarente, 2004; 
Michishita et al., 2005; Ramadori et al., 2008; Shoba et al., 2009). 
Lastly, class IV, HDACs contain only HDAC11. This enzyme 
carries homologous features to class I and II HDACS. HDAC11 is 
mainly found in the nucleus; however, it can be found co-localized 
with HDAC6  in the cytoplasm (Ruijter et  al., 2003; Seto and 
Yoshida, 2014).

The function and localization of HDACs have been investigated 
in several different models. For example, class I HDAC enzymes 
are ubiquitously expressed at different levels in all tissues (Uhlén 
et al., 2015), whereas the other classes HDACs may have more 
tissue-specific expression (Kuwahara et al., 2003; Nakagawa et al., 
2006; Zupkovitz et al., 2006; Montgomery et al., 2007; Knutson 
et al., 2008; Trivedi et al., 2008; Soriano and Hardingham, 2011). 
Multiple studies have shown the critical roles of these enzymes in 
developing the heart, skeletal muscle, liver, bone, vascular system, 
and immune system (Kuwahara et al., 2003; Chang et al., 2004; 
Méjat et al., 2005; Chang et al., 2006; Cohen, 2006; Nakagawa et al., 
2006; Zupkovitz et al., 2006; Arnold et al., 2007; Montgomery et al., 
2007; Knutson et  al., 2008; Trivedi et  al., 2008; Soriano and 
Hardingham, 2011; Seto and Yoshida, 2014; Parra, 2015; Li et al., 
2016; Wang et al., 2017; Liu et al., 2020). All these HDACs are 
expressed in the brain and the class IV HDAC11 is expressed at the 
highest level in the brain compared to other classes (Frye, 2000; 
Blander and Guarente, 2004; Michishita et al., 2005; Broide et al., 
2007; Ramadori et al., 2008; Haberland et al., 2009b; Shoba et al., 
2009; Parra, 2015; Uhlén et al., 2015; Wey et al., 2016).

Like HATS, HDACs have been shown to be responsible for 
carrying out essential functions in both the developing and adult 
brains, such as maintaining synaptic plasticity, dendritic outgrowth, 
and axon regeneration (Morris and Monteggia, 2013). Class 1 
HDACs may have a particularly important role in cortical 
development and function (Morris and Monteggia, 2013), due to 
their high expression in cortical tissue (Broide et al., 2007; Wey 
et al., 2016). Furthermore, studies have shown that both HDAC1 
and HDAC2 have roles in neurogenesis in developing brains 
(Cunliffe, 2004; Yamaguchi et al., 2005; Ye et al., 2009; Harrison 
et  al., 2011) as their deletion in glial fibrillary acidic protein 
(GFAP)-Cre transgenic mice led to an impairment in the generation 
of neurons from neural progenitors and increased neuronal death 
(Montgomery et al., 2009). Studies have also demonstrated that 
HDAC2 is involved in memory formation and regulating synaptic 
plasticity by restricting the maturation of adult neuronal synapses 
(Guan et al., 2009). Studies in the olfactory system of Drosophila 
suggest that both HDAC1 and HDAC2 are involved in the 
establishment of nervous system connections as they are required 
for appropriate dendritic growth (Tea et  al., 2010) along with 
facilitating microglial maturation and function (Alliot et al., 1999). 
HDAC3, which is expressed at the highest level in the rat brain 
compared to other enzymes from class I (Broide et al., 2007) is 
responsible for regulating neuronal homeostasis (Soriano and 
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TABLE 2 HDAC enzymes and their roles in neurodegenerative disease (NDD).

HDAC classes Representative 
enzymes

Subcellular 
Localization

Histone 
substrates

Examples of 
non-histone 
substrates

Identified roles in 
brain

Identified 
involvement in 
NDD

Mislocalization in 
NDD

Class I (Ma and 

Schultz, 2008; 

Dovey et al., 2010; 

Yao and Yang, 2011; 

Lv et al., 2012; Wang 

et al., 2012; 

Chakrabarti et al., 

2015; Park and Kim, 

2020)

HDAC1 Nucleus H4 MEF2, ATM, p53, 

MeCP2

Neurogenesis in developing 

brains (Cunliffe, 2004; 

Yamaguchi et al., 2005; Ye 

et al., 2009; Harrison et al., 

2011), dendritic growth (Tea 

et al., 2010) & microglial 

maturation (Alliot et al., 1999)

AD (Pao et al., 2020), HD (Jia 

et al., 2012b), FTLD (Pao 

et al., 2020)

Cytoplasm (Simões-Pires 

et al., 2013)

HDAC2 Nucleus H2A/2B, H3,H4 NF-κB, MeCP. IRS-1 AD (Pao et al., 2020), HD 

(Mielcarek et al., 2011), ALS 

(Janssen et al., 2010)

-

HDAC3 Nucleus H4 NF-κB, HDAC4, 

HDAC5, HDAC7, 

HDAC9, pRb

Regulating neuronal 

homeostasis (Soriano and 

Hardingham, 2011; Norwood 

et al., 2014), axonal 

regeneration & memory 

formation (Fischle et al., 2002; 

McQuown et al., 2011)

AD (Pao et al., 2020), ALS 

(Janssen et al., 2010), HD (Jia 

et al., 2012b)

-

HDAC8 Nucleus/Cytoplasm H2A/2B HSP70 Neuronal differentiation 

(Katayama et al., 2018) & skull 

development (Haberland et al., 

2009a)

PD (Quan et al., 2021) -

(Continued)
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TABLE 2 (Continued)

HDAC classes Representative 
enzymes

Subcellular 
Localization

Histone 
substrates

Examples of 
non-histone 
substrates

Identified roles in 
brain

Identified 
involvement in 
NDD

Mislocalization in 
NDD

Class IIa (Yao and 

Yang, 2011; Wang 

et al., 2012; Wang Z. 

et al., 2014; Caslini 

et al., 2019; Park 

and Kim, 2020; 

Wang et al., 2021)

HDAC4 Nucleus/Cytoplasm H4 FOXO, p53, p21, 

HDAC3, Runx2, MEF2

Memory formation and 

synaptic plasticity (Broide 

et al., 2007; Kim M. S. et al., 

2012), Purkinje cell 

differentiation & postnatal 

cerebellum development 

(Majdzadeh et al., 2008) 

AD (Chen Y.-A. et al., 2020), 

PD (Wu et al., 2017), HD 

(Mielcarek et al., 2011), ALS 

(Pegoraro et al., 2020), FTLD 

(Whitehouse et al., 2015)

Cytoplasm (Mielcarek et al., 

2013)/Nucleus (Wu et al., 

2017) 

HDAC5 Nucleus/Cytoplasm H4 HDAC3, MEF2, Runx2 Differentiation of neuronal 

stem cells (Schneider et al., 

2008) 

AD (Agis-Balboa et al., 2013), 

PD (Mazzocchi, 2021), HD 

(Yeh et al., 2013), ALS 

(Janssen et al., 2010), FTLD 

(Whitehouse et al., 2015) 

-

HDAC7 Nucleus/Cytoplasm H3 HDAC3, PML, Runx2, 

MEF2

Dendric growth, neurogenesis, 

neuronal protection, & 

maturation (Lai et al., 2010; 

Sugo et al., 2010; Ma and 

D’Mello, 2011)

AD (Lu et al., 2019), PD 

(Mazzocchi, 2021)

-

HDAC9 Nucleus/Cytoplasm H3, H4 HDAC3, MEF2, CAM -

Class IIb (Yao and 

Yang, 2011; Wang 

et al., 2012; Park 

and Kim, 2020)

HDAC6 Cytoplasm - α-tubulin, Cortractin, 

HDAC11, HSP90, PP1

Dendritic growth & branching 

(Kim et al., 2009)

AD (Simões-Pires et al., 

2013), PD (Simões-Pires 

et al., 2013), HD (Simões-

Pires et al., 2013), ALS-FTLD 

(Simões-Pires et al., 2013), 

CMT (d'Ydewalle et al., 2011)

Perinuclear (Simões-Pires 

et al., 2013) 

HDAC10 Cytoplasm - LcoR, and PP1 Dendric growth, neurogenesis, 

neuronal protection, and 

maturation (Lai et al., 2010; 

Sugo et al., 2010; Ma and 

D’Mello, 2011)

-

(Continued)
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TABLE 2 (Continued)

HDAC classes Representative 
enzymes

Subcellular 
Localization

Histone 
substrates

Examples of 
non-histone 
substrates

Identified roles in 
brain

Identified 
involvement in 
NDD

Mislocalization in 
NDD

Class III (Yao and 

Yang, 2011; Wang 

et al., 2012; Seto and 

Yoshida, 2014; Park 

and Kim, 2020)

SIRT1 Nucleus/Cytoplasm H3, H4 NF-κB, p300, p53, 

Ku70, PCAF, TIP60

Neuronal development, axonal 

growth, regeneration, & 

neuroprotection (Pandithage 

et al., 2008; Tiberi et al., 2012; 

Li X. H. et al., 2013; Kaluski 

et al., 2017; Sidorova-Darmos 

et al., 2018; Garcia-Venzor and 

Toiber, 2021)

AD (Bonda et al., 2011), PD 

(Li X. et al., 2020), HD (Jęśko 

et al., 2017), ALS (Outeiro 

et al., 2008)

Cytoplasm (Zschoernig and 

Mahlknecht, 2008) 

SIRT2 Cytoplasm H3, H4 α-tubulin AD (Jęśko et al., 2017), PD 

(Outeiro et al., 2007), HD 

(Outeiro et al., 2007)

-

SIRT3 Mitochondria H4  Ku70, GDH, SOD2 AD (Jęśko et al., 2017), PD 

(Salvatori et al., 2017), HD 

(Salvatori et al., 2017), ALS 

(Salvatori et al., 2017)

-

SIRT4 Mitochondria - GDH AD (Jęśko et al., 2017), ALS 

(Körner et al., 2013)

-

SIRT5 Mitochondria - Cytochrome c, CPS1 AD (Akter et al., 2021) PD 

(Maszlag-Török et al., 2021), 

ALS (Harlan et al., 2019)

-

SIRT6 Nucleus H3 TNF-α ALS (Körner et al., 2013) -

SIRT7 Nucleus H3 p53 - -

Class IV (Wang 

et al., 2012; Núñez-

Álvarez and Suelves, 

2022)

HDAC11 Nucleus/Cytoplasm H3, H4 HDAC6, Cdt1 Maturation and development 

of neuronal cells and 

oligodendrocytes (Liu et al., 

2008, 2009)

HD (Kumar et al., 2022), ALS 

(Janssen et al., 2010)

-

ATM, Ataxia-telangiectasia-mutated; CAM, calmodulin; CPS1, Carbamoyl phosphate synthetase 1; Cdt1, chromatin licensing and DNA replication factor 1; FOXO, Forkhead box O; GDH, glutamate dehydrogenase; HSP, heat shock protein; IRS, insulin receptor 
substrate; LcoR, ligand-dependent receptor co-repressor; MeCP, methyl-CpG-binding domain protein; MEF, myocyte enhancer factor; NF-κB, nuclear transcription factor-kappa B; PP1, protein phosphatase, pRb, retinoblastoma protein; Runx, Runt-related 
transcription factor; SOD, superoxide dismutase; and TNF, tumor necrosis factor.
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Hardingham, 2011; Norwood et al., 2014). Studies in transgenic 
mice suggest that HDAC3 may also play a role in axon regeneration 
and negatively regulate long-term memory formation (Fischle et al., 
2002; McQuown et al., 2011). Little is known about the regulatory 
roles of HDAC8 in brain function, but it is the least expressed from 
its class in the rat brain (Broide et al., 2007). However, it has been 
shown to negatively regulate neuronal differentiation (Katayama 
et al., 2018), and it regulates skull development in vertebrates, where 
the absence of this enzyme caused skull instability followed by 
perinatal lethality in a mouse model (Haberland et al., 2009b).

Although studies have revealed vital roles of class II HDACs 
in CNS development, most of the functions of these enzymes 
are still unknown. HDAC4 has been shown to impair memory 
formation and synaptic plasticity when knocked out of mice 
(Broide et al., 2007; Kim M. S. et al., 2012) and is essential for 
regulating postnatal cerebellum development and Purkinje cell 
differentiation in posterior lobes (Majdzadeh et  al., 2008). 
However, Price and colleagues (2012) did not see abnormalities 
when HDAC4 was knocked out of forebrain neurons (Price 
et al., 2013) suggesting cell/region-specific roles for HDAC4 
during early CNS development. HDAC5, the second most 
highly expressed class II enzyme in brain tissue, has been found 
to be involved in facilitating the differentiation of neuronal stem 
cells (Schneider et al., 2008). Several HDACs have roles in the 
cytoplasm of neurons and are involved in axonal integrity and 
dynamics. For example, HDAC5, much like HDAC3 and 
HDAC6, may be  involved in axonal regeneration following 
injury by deacetylating microtubules, which is required for 
optimizing growth cone dynamics (Cho and Cavalli, 2012). 
Studies in cerebral and hippocampal cells have shown that 
HDAC6 like HDAC2 plays a crucial role in regulating the 
processes of dendritic growth and branching (Kim et al., 2009). 
Although HDAC6 was upregulated during axonal injury and 
neuronal oxidative stress (Witte et  al., 2008), its role in 
development may be less important, as HDAC6 knockout mice 
have not shown any abnormalities other than increased 
microtubule acetylation (Zhang et al., 2008). The other HDACs 
from this class, HDAC7, 9, and 10, have also been shown to 
function in dendric growth, neurogenesis, neuronal protection, 
and maturation (Lai et  al., 2010; Sugo et  al., 2010; Ma and 
D'Mello, 2011). The class IV HDAC11 is yet to be  studied 
widely, however, a few studies have demonstrated its function 
in the maturation and development of neuronal cells and 
oligodendrocytes (Liu et al., 2008, 2009).

Among the class III sirtuins, SIRT2, SIRT3, and SIRT5 are 
most abundantly expressed in the brain (Sidorova-Darmos et al., 
2014) and enzymes from this class are also involved in regulating 
neuronal development, axonal growth, regeneration, and 
neuroprotection like other HDACs (Pandithage et al., 2008; Tiberi 
et al., 2012; Li X. H. et al., 2013; Kaluski et al., 2017; Sidorova-
Darmos et al., 2018; Garcia-Venzor and Toiber, 2021). However, 
genetic modifications of most of these HDACs in animal models 
have been shown to be embryonically lethal, as such their core 
roles are remained to be elucidated.

Role of altered acetylation in 
neurodegenerative disease

A number of different PTMs have been implicated in the 
pathogenesis of neurodegenerative diseases (Didonna and Benetti, 
2016). Most studies have focused on examining alterations to 
phosphorylation (Tenreiro et al., 2014); acetylation has been less 
well studied. However, dysregulation of acetylation has been 
reported to occur in several neurodegenerative diseases, such as 
AD, ALS, and HD (Saha and Pahan, 2006) and although not well 
characterized, some studies have postulated that dysregulation of 
HATs and HDACs may be  paramount to the onset and/or 
progression of neurodegenerative disease (Saha and Pahan, 2006). 
For example, HATs and HDACs interact with a range of 
non-histone substrates that may be  implicated in 
neurodegenerative diseases, such as p53, NF-KB, and STAT1 
(Boutillier et  al., 2003; Rouaux et  al., 2003), while failing to 
maintain appropriate regulation of HATs and HDACs can result 
in activation of apoptotic pathways and widespread dysregulation 
in neuronal cells (Rouaux et al., 2003). Whether alterations to 
these enzymes are upstream drivers of neurodegeneration or 
secondary to other pathological processes is not well understood. 
Janssen et al. (2010) demonstrated that increased levels of HDAC2 
and reduced HDAC11 mRNA were related to apoptotic neuronal 
death in human brain tissue from people diagnosed with ALS 
(Janssen et  al., 2010). Additionally, accumulated mutant 
huntingtin (htt) protein in HD has also been shown to interact 
with the HAT domain of the CBP enzyme, decreasing HAT 
activity in post-mortem human brain tissue (Rouaux et al., 2004).

There is much work to do to fully understand alterations to 
the enzymes involved in acetylation as well as alteration to 
acetylation of proteins associated with neurodegenerative disease. 
Here we  review the current literature on two key pathways 
implicated in neurodegenerative diseases; proteostasis (protein 
folding, aggregation, and degradation) as well as correct 
functioning of the cytoskeleton. We  review both the role of 
acetylation in these physiological processes as well as reported 
alterations in disease since it is important to know how these 
physiological processes are regulated through acetylation to 
understand the dysregulations in neurodegenerative diseases.

Protein folding, aggregation, 
degradation, and metabolism

The prerequisite step for a functionally active protein is its 
folding into a three-dimensional structure. This protein folding 
process occurs in the endoplasmic reticulum (ER) and involves 
PTMs including acetylation (Stevens and Argon, 1999). 
Acetylation of proteins is also important for controlling their 
degradation. Each intracellular protein or protein complex has a 
specific lifespan after which it is degraded by the proteasome or 
by autophagy and acetylation has a crucial role in regulating both. 
For example, it has been shown that acetylated proteins are 
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protected from ubiquitin-induced protein modification and 
degradation by the proteasome which increases the lifespan and 
functions of these proteins (Knorre et  al., 2009). Conversely, 
studies have shown that histone degradation requires the addition 
of acetyl groups to undergo the proteasome activator PA200/
Blm10-based degradation process (Qian et al., 2013). Furthermore, 
acetylation also controls aspects of the degradation machinery. 
Acetylation can aid in the regulation of autophagy from activation 
of core autophagic proteins, fusion of autophagosomes with 
lysosomes, and autophagic cargo assembly (Xu and Wan, 2022). 
ATG proteins, which play an essential role in phagophore 
formation, are maintained by HATs/HDACs to fine-tune the 
inhibition or activation of autophagy (Bánréti et al., 2013). For 
example, acetylation of ATG9A autophagic proteins in the lumen 
of the ER prevents activation of autophagosomes whereas 
deacetylation of ATG9A induces the formation of autophagosomes 
(Pehar and Puglielli, 2013). During stress conditions, like 
starvation, SIRT1 deacetylates these ATG proteins to facilitate 
autophagy (Bánréti et  al., 2013). Additionally, acetylation of 
microtubules also occurs in response to stress and activates the 
MAPK/JNK autophagic signaling pathway (Bánréti et al., 2013). 
Alongside the established roles of acetylation as a post-
translational modification, it is also linked to many aspects of 
metabolism. Studies have demonstrated that the acetyl-CoA 
metabolite availability is essential for acetylation to occur during 
histone or non-histone protein modifications (Peleg et al., 2016). 
This largely depends on the extent of mitochondrial production of 
acetyl-CoA available within the cell (Peleg et  al., 2016). 
Additionally, other metabolite cofactors such as NAD+ are 
required for the deacetylase activities of sirtuins (Choudhary et al., 
2014). While mitochondrial and metabolic activity is essential for 
acetylation to occur, studies have also shown that acetylation can 
regulate mitochondrial homeostasis, including storage and 
utilization of cellular energy. For example, a deficit of SIRT3 
results in the production of reactive oxygen species along with 
altered oxidative metabolism (Guarente, 2011; Baeza et al., 2016). 
Interestingly, most of the enzymes involved in metabolic processes 
such as glycolysis, urea cycle, and gluconeogenesis have been 
found to be acetylated (Arif et al., 2010).

Acetylation and altered proteostasis in 
neurodegenerative disease

In neurodegenerative diseases, altered acetylation has been 
implicated in contributing to failure of protein clearance 
mechanisms through autophagy and the proteosome 
(Sambataro and Pennuto, 2017; Son et al., 2021). For instance, 
studies have reported that increased activity of p300/CBP 
enzyme altered autophagic flux resulting in excessive secretion 
of tau protein in transgenic AD mice (Chen X. et al., 2020). 
Furthermore, the HDAC inhibitor, 4b (preferentially inhibit 
HDAC1 and HDAC3 enzymes), was shown to improve 
cognitive function in a transgenic HD mouse model by clearing 

Huntingtin protein through proteasome and lysosome 
pathways (Jia et al., 2012a). Altered proteostasis may also result 
from protein aggregation, which is a pathophysiological 
hallmark for neurodegenerative diseases (Tutar et al., 2013). 
Aggregation is thought to result from several different 
conditions occurring in aggregate-prone proteins such as 
mutations, oxidative stress, or altered PTM causing proteins to 
misfold and generate insoluble aggregates (Tutar et al., 2013). 
These aggregates are thought to impair the structural and 
functional activities of neurons, which further facilitate the 
pathogenic process of disease conditions in AD, PD, FTLD, 
HD, and ALS (Tutar et al., 2013).

The majority of research investigating links between protein 
aggregation and PTMs has focused on abnormal phosphorylation, 
however, as most of these disease-related proteins can become 
acetylated, alterations to acetylation could contribute to protein 
misfolding and protein aggregate formation in neurodegenerative 
diseases (Schaffert and Carter, 2020). Here we  focus on what 
we know about altered acetylation in some of the key proteins 
which become aggregated in neurodegenerative diseases.

Transactive response DNA binding protein 
43 in ALS/FTD

Transactive response DNA binding protein 43, or TDP-43 is 
a transcription and RNA metabolism regulator protein primarily 
localized to the nucleus (Sephton et al., 2010). This protein is 
encoded by the human TARDBP gene and contains two RNA 
recognition motifs, a prion-like domain in the C-terminal region 
and a folded N-terminal domain. Like many proteins, TDP-43 
also undergoes PTMs (François-Moutal et  al., 2019). Protein 
pathology has been linked to hyperphosphorylation of the protein; 
however, more recent studies have implicated acetylation in the 
normal and pathological role of TDP-43. It has been shown that 
CBP-associated acetylation of lysine 145 and 192 regulates the 
binding of TDP-43 with target RNA and is a core site for regulating 
additional acetylation events (Cohen et al., 2015; Buratti, 2018). 
Another study demonstrated that the regulatory role of acetylation 
at lysine 136 site of TDP-43 where transfection with SIRT1 
targeting lysine 136 sites reduced TDP-43 aggregation in studied 
shTDP-43-HEK293E cells (Garcia Morato et al., 2022). In ALS/FTD 
(frontotemporal dementia), studies have shown that 
hyperacetylation of TDP-43 caused a reduction in its splicing 
ability to targeted RNA and led to the aggregation of TDP-43 in 
the cytoplasm, inducing neuronal stress (Buratti, 2018). 
Acetylation of lysine 82 and lysine 192 of TDP-43 has also been 
associated with pathogenic mislocalization of TDP-43 to the 
cytoplasm (Kametani et al., 2016).

Fused in sarcoma in ALS/FTD
Fused in sarcoma (FUS), like TDP-43, is a predominantly 

nuclear RNA binding protein involved in RNA metabolism. This 
protein has been shown to contain N- and C-terminal nuclear 
localization signal (NLS) sites which undergo acetylation to 
regulate their function (Bock et  al., 2021; Farina et  al., 2021). 
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Furthermore, acetylation at lysine 315/316 in the RNA recognition 
motif of FUS, regulates its binding with RNA whereas acetylation 
at lysine 510 of the C-terminal NLS may facilitate increased 
aggregation of the protein in the cytoplasm (Farina et al., 2021). 
Moreover, a liquid chromatography assay revealed that imbalance 
of N-terminal acetylation may also prompt FUS to aggregate in 
ALS/FTD diseases (Bock et al., 2021; Farina et al., 2021).

Tau (MAPT) in AD and PD
Tauopathy is one of the major pathophysiological 

signatures of both AD and FTLD. Tau is a microtubule-
associated protein (MAP) that has a crucial role in assembling 
and stabilizing microtubules (Weingarten et al., 1975; Goedert 
et  al., 1989). Phosphorylation of tau and its links to 
neurodegenerative diseases have been extensively studied 
(Brotzakis et al., 2021), however acetylation of tau also occurs 
at the N-terminus and lysine residues and may regulate the 
binding of tau with microtubules (Derisbourg et  al., 2015; 
Brotzakis et al., 2021). For example, in post-mortem AD tissue 
as well as in transgenic mouse model of tauopathy, the amino 
acid KXGS motif, which resides in the microtubule-binding 
region of tau protein was hypoacetylated which was shown to 
impair tau activity and result in accumulation in neurofibrillary 
tangles (Cook et al., 2014a). Additionally, hyperphosphorylation 
of this motif prevents tau acetylation which again causes 
dissociation of tau from microtubules, reducing the stability of 
microtubules and axonal transport (Cook et al., 2014b). While 
hypoacetylation of tau has been associated with increased 
toxicity, research also points to a relationship between elevated 
acetylated tau and tauopathies in AD (Min et  al., 2010). A 
study by Sohn et al. (2016) demonstrated that hyperacetylation 
of tau was involved in the pathogenesis of AD, by impairing 
axonal initial segment and microtubule dynamics. The axon 
initial segment functions to maintain neuronal polarity 
between the axonal domain and somatic dendritic domain. 
Sohn demonstrated an increased acetylated level of tau at 
lysines 274 and 281 and destabilization of the axon initial 
segment in the superior temporal gyrus of human AD brain 
tissue (Sohn et al., 2016). In the human neuroblastoma-derived 
SHSY5Y PD model, both tau and α-synuclein, a key 
pathological PD protein, were found to be hyperacetylated, 
which was linked to HAT p300 modulation of the deacetylase 
enzymes SIRT2 and HDAC6 (Esteves et  al., 2019). Beyond 
functional modifications related to altered tau acetylation itself 
in neurodegenerative disease, altered acetylated tau has been 
related to neurofibrillary tangle formation in AD through 
reduced clearance of tau protein. It has been shown that 
acetylation at lysine 311 of the human leukocyte antigen 
DRB1*04, which specifically binds with tau, is associated with 
the clearance of tau by T cells, and subsequent slowing down 
of neurodegeneration (Le Guen et al., 2021). Altered acetylation 
of tau has also been associated with neurodegenerative diseases 
like Pick’s disease and corticobasal degeneration in human 
tissue. It was reported that insoluble and aggregated 

neurofibrillary tangles in human tissue from these diseases had 
altered the acetylation of the K280 lysine residues of tau 
(Cohen et al., 2011). Additionally, there are other examples 
where acetylation of microtubules has altered binding of 
molecules such as of motor proteins dynein/dynactin and 
kinesin-1 to microtubules, or alter axonal transport such as of 
BDNF in HD (Dompierre et  al., 2007). Acetylation of 
microtubules may further facilitate binding of microtubule-
associated proteins such as tau, which can interact with tubulin 
and alter the pathophysiological events of accumulated tau 
proteins in neurodegenerative diseases (Selenica et al., 2014; 
Saunders et al., 2022).

Alpha-synuclein in PD and dementia with Lewy 
bodies

Alpha-synuclein aggregates are core pathology in PD and 
dementia with Lewy bodies. Under normal conditions, this 
protein is predominantly found in neuronal presynaptic terminals 
and is involved in regulating synaptic vesicle trafficking for the 
release of neurotransmitters (Vargas et al., 2014). Alpha-synuclein 
undergoes N-terminal acetylation which modulates its binding 
with tubulin, actin, and lipids (Iyer et al., 2016; Deng et al., 2020). 
Additionally, in studies of PD, altered acetylation of α-synuclein 
at lysine 6 and 10 resulted in aggregation leading to 
synucleinopathies and neuronal toxicity (De Oliveira et al., 2017; 
Vinueza-Gavilanes et al., 2020).

Huntingtin in Huntington’s disease
The function of htt protein which is aggregated in Huntington’s 

disease is not well understood, however, it has been implicated in 
axonal transport and vesicle trafficking (DiFiglia et al., 1995; Vitet 
et al., 2020). Mass spectroscopy of the protein synthesized in HEK 
293 T cell lines demonstrated five acetylation sites including 
acetylation at lysine 9, 178, 236, 345, and 444 (Cong et al., 2011). 
These acetylation sites along with other PTMs have been 
implicated in the physiological and pathological functions of 
huntingtin protein, such as modifying its structure, 
oligomerization, modulating the binding with membrane and 
other proteins, and formation of fibrils (Chiki et al., 2017). Further 
research has shown that huntingtin binding protein, HYPK, is 
involved in regulating N-terminal acetylation, while mutation of 
HYPK in HD reduces the aggregation of huntingtin protein 
through altered N-terminal acetylation (Arnesen et  al., 2010; 
Gottlieb et  al., 2021). In addition, acetylation of lysine 444 
promotes the removal of aggregated huntingtin protein through 
autophagy which is altered in HD pathophysiology (Jeong 
et al., 2009).

Beta-amyloid in Alzheimer’s disease
The beta-amyloid (Aβ) peptide, which is a cleavage product of 

the amyloid precursor protein, is the core component of amyloid 
plaques in AD. It contains two key acetylation sites; lysine 16 and 
28. Acetylation at these sites has been implicated in reducing 
aggregation, oligomerization, and fibril formation of Aβ peptides 
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(Pilkington et  al., 2019; Guha and Subramaniyam, 2021). In 
contrast, another study suggested acetylated Aβ created 
amorphous aggregates resulting in increased reactive oxygen 
species and cytotoxicity in studied SH-SY5Y neuronal cells 
(Adhikari et al., 2020).

Superoxide dismutase 1 in ALS
The reactive oxygen species scavenging enzyme superoxide 

dismutase 1 (SOD1) is a key pathological protein linked to 
neurodegeneration in ALS (Ralph et al., 2005; Barber et al., 
2006). Studies have suggested acetylation of lysine 70, which is 
regulated by SIRT1, caused the inactivation of the antioxidant 
function of SOD1 (Banks and Andersen, 2019). Furthermore, 
acetylation at lysine site 122 suppressed mitochondrial 
respiration which subsequently increased the oxidative stress 
scavenging activity of SOD1 (Banks and Andersen, 2019). 
Acetylation at lysine 123 of SOD1 has been shown to have 
regional and cell type specificity in the healthy adult mouse 
CNS which may indicate its essential function in these cells 
(Kaliszewski et al., 2016). One study suggested alteration of 
acetylation at lysine 123 facilitated protein aggregation and 
pathogenesis in a SOD1 knockout ALS model. Not only was 
acetylation of lysine 123 increased, but high levels of acetylated 
SOD1 misfolded protein were found to be  aggregated in 
primary cilia of astrocytes and in the vesicles which were 
derived from these primary cilia (Kaliszewski, 2016). These 
vesicles containing misfolded acetylated SOD1 were taken up 
by neurons, leading to neurodegeneration (Kaliszewski, 2016).

Clinical acetylation sites in neurodegenerative 
disease

Despite much research into the role of acetylation in NDD, 
there have been few studies to investigate sites of clinical relevance 
to limit neurotoxic proteins (Min et al., 2015, 2018; Dave et al., 
2021). Of note, hyperacetylation of tau at lysine 174 was an early 
occurrence in post-mortem human AD brains and in the 
hippocampus of PS19 AD mice (Min et al., 2015). Acetylation at 
this site slowed tau turn over, promoted accumulation of the 
protein, and resulted in reduced hippocampal volume in vivo. 
Moreover, a model of tau lys174 deacetylation led to improved 
cognitive performance in behavioral tasks. Small molecule 
inhibition of p300 also improved cognitive outcomes in PS19 AD 
mice (Min et al., 2015).

The cytoskeleton

Cytoskeletal alterations have been implicated in many 
neurodegenerative diseases (Cairns et  al., 2004) and 
acetylation of many cytoskeletal proteins plays a key role in 
their regulation (Scott et al., 2012; Latario et al., 2020). An 
understanding of the normal role of acetylation in the 
regulation of the cytoskeleton is important to understand 
changes in neurodegenerative disease.

Regulation of actin filaments

Actin filaments are involved in numerous cellular processes 
including maintaining cell shape and mobility and are important 
in neurons for neurite outgrowth, maintaining the structure of the 
axon as well as cytoplasmic transport (Kirkpatrick and Brady, 
1999). To regulate these cellular activities, all three types of actin 
isoforms (alpha, beta, and gamma) have been reported to 
be acetylated along with actin regulatory proteins such as the 
actin-related protein (Arp) 2/3 complex involved in the regulation 
of actin filaments, and cortactin, which recruits the Arp  2/3 
complex to the cortical actin cytoskeleton (Choudhary 
et al., 2009).

Although the impact of acetylation on these proteins is yet 
to be fully understood, some functional information has been 
demonstrated. For instance, acetylation at lysine 61 of the 
gamma isoform relates to the stabilization of stress fiber (Kim 
et  al., 2006; Choudhary et  al., 2009) and six subunits of the 
Arp2/3 complex have been shown to be acetylated to regulate 
actin nucleation, the first step in polymerization to F-actin 
(Choudhary et al., 2009), a critical component of structures 
such as dendritic filopodia and synapses. The F-actin regulatory 
protein cortactin has also been reported to be  acetylated 
through p300/CBP (Weaver, 2008; Zhang et  al., 2009) and 
deacetylated via HDAC6 and SIRT2 (Li Y. et  al., 2013; Kim 
et  al., 2020). Overexpression of HDAC6 also hinders the 
association of cortactin with F-actin, leading to lower levels of 
polymerized and branched actin (Zhang et  al., 2007). 
Additionally, altered acetylation of cortactin by HDAC6 is 
involved in the fusion of autophagosomes and lysosomes, 
alterations to which contribute to neurodegeneration (Li 
Y. et al., 2013; Kim et al., 2020).

Regulation of microtubules

Acetylation of the cytoskeleton has been most widely studied 
in microtubules, and interestingly the first ever cytoplasmic 
acetylation protein that was studied was in association with 
microtubules (Sadoul et  al., 2010). Microtubules are hollow 
tubular structures that act as tracks for cargo to move down the 
axon as required. These hollow tubes consist of two heterodimer 
subunits; α- and β-tubulin, and undergo continuous structural 
modification allowing growth and shrinkage according to the 
cellular demand (Figure 2; Guo and Van Den Bosch, 2018). In 
addition, microtubules are found in specialized structures such as 
mitotic spindles which are required for cell division. These 
functional activities of microtubules are widely regulated by PTM 
processes, particularly through acetylation of their α subunit 
(Janke, 2014). Acetylation of microtubules has mostly been 
studied at the lysine residue 40 of α-tubulin, although it also 
occurs at other lysine residues of both α- and β-tubulin 
(Choudhary et al., 2009). Acetylation of tubulin is related to the 
formation and stabilization of microtubule bundles and increasing 
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the level of microtubule polymerization protein TPPP/p25 
(Ogawa-Goto et al., 2007; Tőkési et al., 2010). These acetylated 
microtubule bundles are not only found in the cytoplasm of major 
cellular types like neurons, but also in the microtubular 
substructures such as flagella, mitotic spindles, and cilia (Reed 
et al., 2006; Sadoul et al., 2010). In addition, acetylation aids the 
binding and mobility of the axonal motor proteins kinesin and 
dynein to the microtubules during axonal transport (Reed et al., 
2006; Sadoul et al., 2010).

As mentioned above, HDAC6 plays an essential role in 
regulating the acetylation of both the α and β-tubulins of 
microtubules. Both in vivo and in vitro studies have shown that 
hypoacetylation or hyperacetylation of α-tubulin occurs by 
overexpressing or inhibiting HDAC6, respectively (Zhang et al., 
2003). HDAC6 is present in the perinuclear region and is 
co-localized with microtubule-associated motor complexes, 
particularly with dynactin p150glued suggesting a role in 
microtubule-associated transport (Hubbert et al., 2002). Osseni 
et al. (2020) demonstrated that HDAC6 function is critical for 
neuromuscular junction stability and organization, involving not 
only the structure of microtubules but also the maintenance of the 
acetylcholine receptor clusters (Osseni et al., 2020). The class III 
HDAC SIRT2 also predominantly localizes to the cytoplasm and 
is involved in deacetylating α-tubulin at lysine-40. SIRT2 and 
HDAC6, when overexpressed, have been shown to 
coimmunoprecipitate suggesting that they belong to the same 
multiprotein network. However, they can be  inhibited 
independently to achieve the hyperacetylation of α-tubulin (North 
et al., 2003).

Regulation of intermediate filaments

The acetylation of intermediate filaments has been less well 
studied, however, both vimentin and cytokeratin 8 have been 
shown to be acetylated in their lysine residues destabilizing the 
polymer structure and affecting their ability to maintain the 
cellular shape and rigidity (Leech et al., 2008; Drake et al., 2009). 
Less is known about the acetylation of intermediate filaments 
expressed in the brain such as the neurofilament proteins, and 
astrocytes expressing GFAP (Gao et al., 2007). A study examining 
the effect of two global HDACs inhibitors, Trichostatin A, and 
Sodium Butyrate on primary cultured astrocytes demonstrated 
that HDACs are responsible for maintaining the ratio of the two 
isoforms of GFAP; GFAPδ, and GFAPα (Gao et al., 2007), through 
transcription and splicing. Increased levels of GFAPδ resulted in 
a collapse of the GFAP cytoskeletal network (Kanski et al., 2014).

Altered acetylation of cytoskeletal 
proteins in neurodegenerative diseases

There is growing evidence of the links between altered 
cytoskeletal proteins and neurodegenerative disease, including 

alterations to microtubule stability which can be detrimental to 
axonal transport, as well as impairments in actin dynamics 
potentially leading to altered plasticity and accumulation of 
intermediate filament proteins (Luo, 2002; Saha and Pahan, 2006; 
Kapitein and Hoogenraad, 2015; Esteves et al., 2019). While there 
has been a focus on examining alterations to phosphorylation, a 
growing body of evidence has also implicated altered acetylation 
of these proteins in disease (Zhang and Benson, 2001; Cartelli 
et al., 2010; Esteves et al., 2019; Kim et al., 2020). The acetylation 
of the microtubule-associated protein tau has been discussed in 
the previous section; below we  expand on other cytoskeletal 
proteins that may be  implicated as contributing to 
neurodegenerative disease.

Altered acetylation of microtubules

Several studies have demonstrated altered acetylation of 
microtubules in neurodegenerative diseases and this has been 
linked to facilitating the aggregation of toxic proteins in axons 
(Liu et al., 2012; Brunden et al., 2017). Kim C. H. et al. (2012) 
reported a decrease in acetylated α-tubulin in the frontal cortex of 
13-month-old 5XFAD AD mice, which overproduced Aβ proteins. 
The decreased acetylated α-tubulin was linked to alterations in 
axonal transport. Multiple studies have shown that increased 
acetylation of microtubules can rescue axonal transport in AD 
mouse models (Kim C. et  al., 2012; Brunden et  al., 2017). 
Inhibiting deacetylation in an AD mouse model restored axonal 
transport of mitochondria, which was associated with improved 
cognition (Kim C. et al., 2012). Another study by Zhang et al. 
(2014) used the APPswe/PS1ΔE9 mouse model of AD and showed 
that HDAC6 was increased in this model leading to higher levels 
of microtubule instability. Treatment with HDAC6 inhibitors 
(Tubastatin A & ACY-1215) resulted in increased acetylation of 
α-tubulin and improvement of mitochondrial transport due to 
recruitment of more kinesin-1 and dynein to the microtubules, 
which facilitated fusion of lysosomes and autophagosomes 
enhancing the removal of Aβ plaques from neuronal cells. This 
study suggested the connection between impaired cognitive 
function in AD and altered acetylation of microtubules (Zhang 
et al., 2014). Further studies support this hypothesis, as decreased 
microtubule acetylation in AD has also been associated with 
increased microtubule severing by the severing protein katanin, 
destabilizing the microtubules and affecting the transport of 
axonal cargo (Mao et al., 2017).

In PD, a number of proteins implicated in disease, including 
parkin (a ubiquitin-protein ligase protein), TPPP/p25 (involved in 
microtubule bundle formation), PINK1 (autophagy triggering 
protein), LRRK2 (regulates immune response), and α-synuclein, are 
linked to microtubules and have been shown to be  involved in 
altered microtubule acetylation and PD pathogenesis (Bonifati, 2014; 
Oláh et al., 2017). Esteves et al. (2019) demonstrated that there was 
decreased microtubule acetylation in a cybrid cell model involving 
PD patient mitochondrial DNA that was linked to impaired axonal 
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transport and altered cellular distribution of mitochondria (Esteves 
et al., 2014). Conversely, mutant α-synuclein has been shown to 
hyperacetylate microtubules, which accumulated in dopaminergic 
neurons and result in altered binding to kinesin 1 and destabilization 
(Smith and Stillman, 1991; Alim et al., 2004). Several studies have 
linked altered acetylation of microtubules with altered interaction 
between LRRK2 with microtubules in growth cones. As LLRK2 is 
involved in stabilizing microtubule dynamics, genetic mutations to 
LLRK2 impact the homeostasis of microtubule acetylation and 
axonal transport system leading to motor impairment (Esteves and 
Cardoso, 2017). In addition, parkin and α-synuclein have also been 
linked to increased accumulation of acetylated microtubules in 
dopaminergic neurons of the midbrain (Feng, 2006).

Like PD and AD, neuronal damage in ALS has also been linked 
to altered cytoskeletal properties, axon transport, and axonal 
degeneration (Peters et  al., 2015) with altered acetylation of 
microtubules of particular importance (Gal et  al., 2013). Over-
expression of mutant SOD1 in animal models has been proposed to 
alter the acetylation of microtubules by interacting with the HDAC6 
enzyme (Gal et al., 2013). One study in three SOD1 transgenic 
mouse models (A4V, G93A, and G85R) showed that mutant SOD1 
and HDAC6 formed a complex, which promoted intraneuronal 
aggregation of HDAC6, hindering the enzymes’ microtubule 
deacetylation activity and leading to hyperacetylated microtubules 

in neurons. The hyperacetylated microtubules were related to 
increased levels of axonal transport and promoted the spread of 
pathology in the models (Gal et al., 2013). On the contrary, other 
studies suggest that decreased microtubule acetylation is implicated 
in mutant SOD1-associated ALS. For example, an in vitro study 
demonstrated that the microtubule-dependent ER-Golgi transport 
system was impaired by mutant SOD1 due to decreased microtubule 
acetylation and reduced microtubule stability in cultured motor 
neuron cells (Soo et  al., 2015). Additionally, acetylated tubulin 
inclusions were found in mutant SOD1 aggregates (Soo et al., 2015). 
Other aggregated proteins present in the cytoplasm of induced 
pluripotent stem cells (iPSCs) derived from ALS patients, including 
TDP-43 and FUS, have also been linked with altered HDAC6 
activity leading to impaired microtubule stability, ER vesicle 
dynamics, and mitochondria-dependent axonal transport (Fiesel 
et al., 2010; Guo et al., 2017; Naumann et al., 2018). Fiesel et al. 
(2010) investigated the effects of altered TDP-43 activity on HDAC6 
and microtubule stability. They silenced the TDP-43 gene in both 
HEK293E and SH-SY5Y cell lines to simulate the disease condition 
where the nuclear activity of TDP-43 is downregulated and showed 
that this resulted in reduced HDAC6 mRNA and protein synthesis 
which was confirmed by the presence of hyperacetylated tubulin 
(Fiesel et al., 2010). Another study examined iPSC-derived motor 
neurons from ALS patients with point mutations in the FUS gene, 

FIGURE 2

The role of acetylation and deacetylation on microtubule stability. Microtubules are constantly being modified through the addition and removal 
of acetylation by HATs and HDACs. Binding of Microtubule associated proteins or MAPs to microtubules is also regulated by acetylation and also 
affects their stability (Cohen et al., 2011). These modifications allow for the rapid expansion and removal of microtubule structures for neurite 
outgrowth, synapse formation, transport through the axon, and maintaining the overall structure of the axon.
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demonstrating impaired axonal transport and lowered ER vesicle 
transportation which was rescued by HDAC6 inhibitors (Guo 
et al., 2017).

Altered acetylation of microtubules and resultant alterations in 
axonal transport is also implicated in HD pathogenesis (Mac Donald 
et al., 2003; Gauthier et al., 2004; Lee et al., 2004). Trushina et al. 
(2003) reported increased microtubule deacetylation after binding 
of mutant huntingtin protein with microtubules in primary neuronal 
culture models and transgenic mice (Trushina et al., 2003). Altered 
acetylation of microtubules in HD has been linked with impaired 
transport of brain-derived neurotrophic factor (BDNF), along with 
decreased recruitment of motor complexes such as dynein/dynactin 
and kinesin-1 to microtubules in studied primary cell culture and 
transgenic HD mouse models (Dompierre et al., 2007). Such deficits 
could be  rescued by pharmacological intervention to increase 
microtubule acetylation and prevent neuronal damage (Dompierre 
et  al., 2007). Furthermore, in vitro studies have also linked 
hyperacetylated microtubules with reduced vulnerability of striatal 
cells in HD, by improving autophagic flux and preventing mutant 
huntingtin diffusing into the neurons (Guedes-Dias et al., 2015).

Altered acetylation in microtubule-associated transport has 
been linked to a number of other neurodegenerative diseases such 
as Charcot–Marie–Tooth disease (CMT) and Rett syndrome 
(RTT) (Xu et al., 2014; Picci et al., 2020). A recent study of an 
inducible CMT type-2A (CMT2A) mutant MFN2R94Q mouse 
model with progressive motor and sensory neuronal degeneration 
demonstrated decreased acetylated α-tubulin in the distal sciatic 
nerves (Picci et al., 2020). Additionally, CMT type-2D (CMT2D) 
has been shown to have hypoacetylated α-tubulin-related axonal 
transport deficits in human stem cell models with the mutant 
glycyl-tRNA synthetase protein (gene mutation linked to CMT 
pathophysiology) found to bind to HDAC6 and increase its 
activity, causing a subsequent reduction in acetylated α-tubulin in 
peripheral nerves (Smith et  al., 2022). The dynamin 2 gene 
(another gene mutation linked to CMT pathophysiology) is also a 
microtubule-associated protein, and mutations in the encoded 
protein have been shown to alter microtubule acetylation in 
patient-derived cells of CMT. Mutations of dynamin 2 resulted in 
the altered formation of the Golgi apparatus and microtubule-
dependent transport, causing neurodegeneration and neuropathies 
(Tanabe and Takei, 2009). In RTT, lower levels of acetylated 
microtubules were present in cultured neuronal cells derived from 
the MeCP2 knock-out transgenic RTT mouse model, again altering 
BDNF vesicle transport, which was linked to altered dendritic 
growth and synaptic activity (Xu et al., 2014). Lebrun et al. (2021) 
recently linked loss of motor function and seizures in the Mecp2308/y 
transgenic RTT mouse model, where altered MeCP2 levels either 
caused overexpression of HDAC6 or impaired expression of 
microtubule-associated proteins, which was rescued with HDAC6 
inhibitors (Lebrun et  al., 2021). Another study used a MeCP2 
deficient cell culture model which also resulted in overexpression 
of HDAC6, decreasing microtubule acetylation and reducing the 
structural stability of cilia (Frasca et al., 2020), and impairing the 
cilium-related Sonic Hedgehog signaling cascade pathway, which 

is required for forebrain development, The phenotype was 
improved by using HDAC6 inhibitor, tubacin (Frasca et al., 2020).

Role of altered acetylation in glial cells in 
neurodegenerative diseases

While there is a wide base of literature surrounding the role of 
acetylation in neurons during NDD, altered acetylation has been 
also studied in glial cells, and has been associated with 
neurodegeneration. Microglia have been implicated in the 
progression of several neurodegenerative diseases through 
inflammatory responses, synapse loss, failure to clear protein 
aggregates, or by activating neurotoxic astrocytes (Hansen et al., 
2018; Madore et  al., 2020). Studies have demonstrated the 
regulatory role of acetylation in the activation of microglia and 
their inflammatory responses in neurodegenerative diseases. For 
example, the pan HDAC inhibitor trichostatin A (TSA) 
potentiated lipopolysaccharide-induced inflammatory responses 
of microglia in murine N9 and rat primary cultured cells 
(Suuronen et  al., 2003). On the contrary, in a transgenic 
Cx3cr1CreERT2 Hdac1fl/flHdac2fl/fl mouse model, deletion of 
HDAC1 and HDAC2 from microglial cells enhanced microglial 
phagocytic activity, which aided in clearing amyloid plaques and 
improved cognitive function (Datta et al., 2018). Another study 
demonstrated that acetylated and phosphorylated STAT3 
(transcription factor) further activated the studied primary 
microglial cells (Eufemi et al., 2015).

Additionally, astrocytes have been shown to be  regulated 
through post-translational acetylation processes. In a glial cell 
culture model, HDAC inhibitors such as TSA upregulated release 
of neurotrophic factors including GDNF and BDNF from 
astrocytes followed by protecting dopaminergic neurons (Chen 
et al., 2006; Wu et al., 2008). On the other hand, SIRT2 inhibitor 
AGK2 reduced the astrocyte activation level as well as 
pro-inflammatory factors in a primary cell culture AD model 
(Scuderi et al., 2014). These data indicate the complex regulatory 
function of acetylation in glial cells in both healthy and disease 
states (Neal and Richardson, 2018).

The future of PTMs as 
therapeutics for neurodegenerative 
disease

In this review, we have discussed the vital role of acetylation 
in the nervous system, and how dysregulation can contribute to 
the pathogenesis or degeneration seen in neurodegenerative 
disease. Although we are still in the early stages of research into 
therapeutics targeting HATs, HDAC inhibitors (HDACi) have 
been developed in both the preclinical and clinical settings for 
several years. Treatments targeting HDACs have been widely 
implicated in cancer therapies, possibly due to an imbalance in 
acetylation levels closely related to the occurrence of cancers 
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(Mohamed et al., 2007; Chen et al., 2013; Hashimoto et al., 2013; 
Xu et al., 2019; Wu et al., 2020). Indeed, multiple pan-HDACi have 
been approved by the FDA for the treatment of cancer, including 
vorinostat/suberoylanilide hydroxamic acid (SAHA; Marks and 
Breslow, 2007), belinostat (PXD-101; Foss et  al., 2015), and 
panobinostat (LBH589; Moore, 2016). SAHA was the first 
FDA-approved HDACi in 2006 and has been successful in treating 
T-cell lymphomas by reducing the expression of mutant regulatory 
proteins such as oncogene mutant p53 (Foggetti et  al., 2019). 
Additionally, both pan-HDACi belinostat and panobinostat have 
been used to treat cutaneous T-cell lymphoma and myeloma 
(Eckschlager et al., 2017).

Given the success of HDACi in cancer treatment, 
researchers have sought to repurpose these FDA-approved 
drugs for neurodegenerative disease, with some FDA-approved 
HDACi being effective for treating models of HD (Hockly 
et al., 2003), ALS, PD, and AD (Athira et al., 2021). However, 
due to the broad range of pan-HDACi targets within cells, 
more targeted HDACi are being tested pre-clinically such as 
the HDAC6 specific molecules like ACY-738 or tubastatin 
A. ACY-1215/Ricolinostat was one of the first HDAC6 specific 
inhibitors to enter clinical trials for myeloma, lymphoma and 
metastatic breast cancer (Vogl et al., 2017; Silva et al., 2020; 
Amengual et al., 2021). The same compound is also in phase 
II clinical trials for diabetic neuropathy (NCT03176472) and 
CMT (Benoy et al., 2017). Recently discovered HDACi such 
as EVP-0334, RDN-929, and CKD-504 are under different 
phases of clinical trials for the treatment of FTLD, AD, PD, 
and HD (Rodrigues et al., 2020), and similar compounds such 
as ACY-738 and Tubastatin A have also shown promising 
results ameliorating the disease progression in preclinical 
studies of AD, ALS-FUS, and MS (Multiple Sclerosis) (Kim 
C. et al., 2012; Guo et al., 2017; LoPresti, 2019). Despite the 
promise shown by HDACi in treating neurodegenerative 
diseases, a few caveats need to be considered, including the 
use of therapies that can cause global hypo or hyper-
acetylation in the nervous system.

Although many studies show hypoacetylation to be critical 
to neurodegeneration processes (Saha and Pahan, 2006), other 
studies have demonstrated that hyperacetylation is implicated 
in the pathogenesis of neurodegenerative diseases (Bonet-
Ponce et al., 2016; Sohn et al., 2016). In the healthy nervous 
system, acetylation is highly redundant and exquisitely 
regulated, however, the use of HAT modifying enzymes or 
HDACi may lead to off-target effects. The use of HDACi like 
sodium butyrate has led to hyperacetylation of histone H4 
which subsequently facilitated the expression of an oxidative 
stress-sensitive protein known as PKCδ and caused 
neurotoxicity in human dopaminergic neuronal cells (Jin et al., 
2014). Additionally, oxidative stress molecules that are 
produced during the progression of these neurodegenerative 
diseases have been shown to hyperacetylate microtubules and 
disrupt autophagic trafficking in studied ARPE-19 cells which 
were exposed to Rotenone drug to induce oxidative stress. This 

stress-induced microtubule hyperacetylation was successfully 
reduced by using free radical scavenger drugs like 
N-acetylcysteine (Bonet-Ponce et al., 2016). Further studies are 
required to elucidate whether hypoacetylation or 
hyperacetylation has therapeutic benefits for axons in 
neurodegenerative diseases.

There are several hurdles to overcome for the use of HDACi 
in treating neurodegenerative diseases, that focus on two core 
themes: target preference (developing HDACi for selective 
isoforms or families), and selective delivery (the ability to 
target specific tissue or cell type for therapy). Small molecule 
inhibitors, such as ACY molecules, ACY-738, and ACY-1215 
are prime examples of target preference and specificity, as both 
compounds have been reported to be  HDAC6-specific 
inhibitors (Santo et  al., 2012). However, their specificity 
depends greatly on the tissue uptake and overall dose. For 
example, high levels of ACY-738 have been reported to alter H3 
acetylation levels in mesangial cell lines and the spinal cord of 
WT mice (Regna et  al., 2015; Rossaert et  al., 2019). Target 
specificity also remains a caveat in the use of PTM modifying 
drugs in the clinic for neurodegenerative diseases. For instance, 
reports have suggested that HDAC6i ACY-738 increased the 
life span by 41 days in transgenic FUS+/+ HDAC6 knock-out 
mice, suggesting potential off-target activity of ACY-738 drug 
(Rossaert et  al., 2019). Additionally, some other off-target 
effects of these inhibitors can be cellular apoptosis or T-cell-
mediated immune responses (Majid et al., 2015).

Further difficulty for potential drug candidates of NDD is 
the ability for novel small molecule inhibitors to cross the blood 
brain barrier (BBB). HDACi such as MS-275, SAHA, valproic 
acid and Tubastatin A showed low BBB permeability in studies 
(Choi et  al., 2019). As a result, achieving the required 
therapeutic efficacy requires higher dosing, which can lead to 
potential off-target effects (Choi et al., 2019). Literature suggests 
that benzylic amide derivatives showed higher BBB permeability 
and inhibitory activity in the baboon model against HDAC1 
and 2. The BBB permeability of these drug derivatives were 
optimized through image guided synthetic process (Seo et al., 
2014). Another recent study designed benzoheterocycle 
derivatives that were structurally different from the available 
HDACi and identified benzothiazole derivative 9b which 
showed higher BBB permeability than SAHA. These approaches 
for developing HDACi should be further studied to achieve the 
desired therapeutic treatment for neurodegenerative diseases 
(Choi et al., 2019). Further refinement of selectivity and delivery 
methods remain to be developed. To overcome the limitations 
of tissue specificity and off-target effects of HDACi, advanced 
genomic targeting methodologies such as CRISPR-Cas has been 
used to control targeted HAT/HDAC activity. Studies have 
successfully fused dCas9 to the p300 acetyltransferase to 
catalyze acetylation of H3 followed by transcriptional activation 
of the targeted genes (Hilton et al., 2015; Shrimp et al., 2018), 
however, methods for cell-type specific treatment remain to 
be developed.
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Conclusion

In conclusion, acetylation plays a critical role in maintaining 
the homeostasis of cellular proteins and cytoskeleton. This tightly 
regulated process has been shown to be  dysregulated in 
neurodegenerative disease; however, the underlying 
pathophysiological mechanisms are yet to be fully understood. 
Nevertheless, through emerging therapeutics, altered acetylation 
can be a promising target to limit or prevent the pathological 
processes that lead to protein aggregation or defects of axonal 
transport in neurodegenerative diseases.
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