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Objective: To identify the genetic linkage mechanisms underlying Parkinson’s 

disease (PD) and periodontitis, and explore the role of immunology in the 

crosstalk between both these diseases.

Methods: The gene expression omnibus (GEO) datasets associated with whole 

blood tissue of PD patients and gingival tissue of periodontitis patients were 

obtained. Then, differential expression analysis was performed to identify the 

differentially expressed genes (DEGs) deregulated in both diseases, which were 

defined as crosstalk genes. Inflammatory response-related genes (IRRGs) were 

downloaded from the MSigDB database and used for dividing case samples of 

both diseases into different clusters using k-means cluster analysis. Feature 

selection was performed using the LASSO model. Thus, the hub crosstalk 

genes were identified. Next, the crosstalk IRRGs were selected and Pearson 

correlation coefficient analysis was applied to investigate the correlation 

between hub crosstalk genes and hub IRRGs. Additionally, immune infiltration 

analysis was performed to examine the enrichment of immune cells in both 

diseases. The correlation between hub crosstalk genes and highly enriched 

immune cells was also investigated.

Results: Overall, 37 crosstalk genes were found to be overlapping between 

the PD-associated DEGs and periodontitis-associated DEGs. Using clustering 

analysis, the most optimal clustering effects were obtained for periodontitis 

and PD when k = 2 and k = 3, respectively. Using the LASSO feature selection, five 

hub crosstalk genes, namely, FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1, 
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were identified. In periodontitis, MANSC1 was negatively correlated and the 

other four hub crosstalk genes (FMNL1, PLAUR, RNASE6, and TCIRG1) were 

positively correlated with five hub IRRGs, namely, AQP9, C5AR1, CD14, CSF3R, 

and PLAUR. In PD, all five hub crosstalk genes were positively correlated with 

all five hub IRRGs. Additionally, RNASE6 was highly correlated with myeloid-

derived suppressor cells (MDSCs) in periodontitis, and MANSC1 was highly 

correlated with plasmacytoid dendritic cells in PD.

Conclusion: Five genes (i.e., FMNL1, MANSC1, PLAUR, RNASE6, and TCIRG1) 

were identified as crosstalk biomarkers linking PD and periodontitis. 

The significant correlation between these crosstalk genes and immune  

cells strongly suggests the involvement of immunology in linking both 

diseases.

KEYWORDS

neurodegenerative disease, Parkinson’s disease, periodontitis, crosstalk genes, 
bioinformatics

Introduction

Parkinson’s disease (PD) is a chronic, debilitating, 
neurodegenerative disorder with both motor and nonmotor 
symptoms that gradually worsen over time (Blaszczyk, 2016). 
Systemic inflammatory response plays a critical role in the 
progression of PD by activating microglial cells and initiating the 
cascade of neurodegeneration (Kaur et al., 2016). Periodontitis is a 
highly prevalent, multifactorial, chronic inflammatory disease of the 
periodontium, which causes destruction of the supportive tissues of 
the teeth and, eventually, tooth loss (Kaur et  al., 2018). Several 
previous epidemiological studies have indicated a possible link 
between periodontal disease and PD. Some studies have reported 
that PD patients have a higher prevalence and risk of developing 
periodontal disease compared to a person without PD (Schwarz 
et  al., 2006; Hanaoka and Kashihara, 2009). The cognitive 
dysfunction of PD patients prevented them from effectively 
performing routine daily oral hygiene activities (Al-Omari et al., 
2014). Additionally, one of the side effects of multiple medications 
was altered salivary flow rates, thereby affecting self-cleaning oral 
mechanisms (Auffret et al., 2021). In other studies, periodontitis was 
found to be associated with an increased risk of developing PD 
(Chen et al., 2017). The ulcerations in the periodontal pocket lining 
provided easy access for periodontal pathogens (e.g., Aggregatibacter 
actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), 
Tannerella forsythia (Tf), Treponema denticola (Td), and 
Fusobacterium nucleatum (Fn)) and inflammatory mediators (e.g., 
pro-inflammatory cytokines) to infiltrate the systemic peripheral 
blood circulation (Scannapieco, 2004). Lipopolysaccharide (LPS), 
an endotoxin and component of the Gram-negative bacterial cell 
wall, caused the breakdown of the blood brain barrier (BBB) and 
activated the microglial cells, which led to the necrosis and apoptosis 
of dopaminergic neurons in the substantia nigra (SN) of the 
midbrain (Bohatschek et al., 2001; Olsen et al., 2020).

Apart from inflammatory response, systemic immune 
activation may be another link connecting periodontitis and 
PD. It is suggested that periodontitis triggers the systemic 
immune response, following which the activated immune 
cells from the peripheral blood overcome the BBB and 
promote central nervous system (CNS) inflammation in PD 
patients (Zhang et  al., 2021). Further, certain genetic 
susceptibility factors have been demonstrated to increase the 
risk of both periodontitis and PD (Tettamanti et al., 2017; 
Karimi-Moghadam et al., 2018). A previous study conducted 
by João Botelho and colleagues analyzed the Genome-Wide 
Association Studies (GWAS) data and identified the protein 
variants strongly associated with PD and periodontitis onset 
(Botelho et al., 2020). However, it may be worthy to note that 
a potential limitation of this research is that its study design 
was not from an inflammatory or immunological perspective. 
Thus, to fill this gap, our current study aimed to explore the 
missing genetic links between PD and periodontitis, 
particularly focusing on inflammatory response-associated 
genes and immune cells.

Many previous studies used computational biology 
approaches to explore the shared genetic linkages between 
two pathogenesis-related diseases (Li et al., 2018; Chen et al., 
2021, 2022; He et al., 2021; Alves et al., 2022; Pan et al., 2022; 
Yan et al., 2022; Liu et al., 2022a,b). In order to investigate the 
shared genetic links between PD and periodontitis, integrated 
bioinformatics analyses were also utilized. First, differentially 
expressed genes (DEGs) deregulated in both diseases were 
obtained, and crosstalk genes were identified. The hub 
crosstalk genes were selected by performing k-means cluster 
analysis based on inflammatory response-related genes 
(IRRGs). Then, the correlation between hub crosstalk genes 
and IRRGs as well as the correlation between hub crosstalk 
genes and immune cells were investigated.

https://doi.org/10.3389/fnagi.2022.1032401
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnagi.2022.1032401

Frontiers in Aging Neuroscience 03 frontiersin.org

Materials and methods

Study design of the current research

Figure 1 used a schematic diagram to show the study flowchart 
of the current research. Firstly, differential expression analysis was 

performed to identify the DEGs belonging to PD and periodontitis 
respectively, and thus crosstalk genes were identified. Secondly, 
IRRGs were obtained and used for performing the K-means 
cluster analysis, and then differentially expressed (DE)- cluster 
crosstalk genes were identified. Thirdly, hub crosstalk genes were 
identified by building the Lasso logistic regression model. Lastly, 

FIGURE 1

The study flowchart of the current research.
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hub crosstalk genes as the investigation focus were researched 
from many aspects, for example, correlation with IRRGs; 
expression patterns of hub crosstalk genes in clusters of both 
diseases; correlation with immune cells; related PPI network; 
related pathway network.

Datasets

The datasets related to periodontitis and PD were, respectively, 
downloaded from the gene expression omnibus (GEO)1 database 
(Edgar et al., 2002). The inclusion criteria for the periodontitis-
related GEO datasets are as below: (1) The study design should 
be set as: established periodontitis samples as the experimental 
group and healthy gingival samples as the control group. (2) 
Periodontitis was defined in accordance with the case definition 
presented in the 2017 World Workshop: ① interdental CAL 
detectable at ≥2 nonadjacent teeth or ② buccal or oral with CAL 
≥3 mm with pocketing >3 mm detectable at ≥2 teeth (Tonetti 
et al., 2018). (3) The sample size of the disease samples should 
be more than 20. The inclusion criteria for the PD-related GEO 
datasets are as below: (1) The study design should aim to compare 
the transcriptomic profiling of the blood samples (e.g., whole 
blood, peripheral blood mononuclear cells) between PD patients 
and healthy control subjects. (2) The sample size of the disease 
samples should be more than 20. Following such inclusion criteria, 
the GSE16134 dataset (Papapanou et al., 2009; Kebschull et al., 
2014) was selected to be a periodontitis-related GEO dataset, and 
three datasets [GSE6613 (Scherzer et al., 2007, 2008), GSE49126 
(Mutez et al., 2014), and GSE99039 (Shamir et al., 2017)] were 
selected to be  PD-related datasets. Table  1 shows detailed 
information about these four included datasets.

By downloading the human gene set “HALLMARK_
INFLAMMATORY_RESPONSE”2 from the MSigDB database3 
(Lopez et al., 2018), 200 IRRGs were obtained. In addition, the 
gene signatures of 28 tumor-infiltrating lymphocytes were 
downloaded from the TISIDB database4 (Zhang et al., 2013).

1 http://www.ncbi.nlm.nih.gov/

2 https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/

HALLMARK_INFLAMMATORY_RESPONSE.html

3 https://www.gsea-msigdb.org/gsea/msigdb/

4 http://cis.hku.hk/TISIDB/download.php

Data preprocessing

The Probe ID in the expression matrix was converted to the 
gene symbol based on the respective platform information for the 
downloaded data. If one Probe ID corresponds to multiple gene 
symbols, the gene symbols were de-duplicated based on the average 
of the sample expression values. When the number of samples with 
a gene of 0 in the expression matrix exceeds half of the total number 
of samples, the gene was removed from the expression matrix. In 
addition, Log2 was calculated for the dataset with large sample 
expression values, in order to achieve data standardization.

For PD, three datasets related to PD (i.e., GSE6613, GSE49126, 
GSE99039) were combined based on a common Gene Symbol. 
These three datasets were designed under different experimental 
platforms: GSE6613—GPL96 [HG-U133A] Affymetrix Human 
Genome U133A Array; GSE49126—GPL4133 Agilent-014850 
Whole Human Genome Microarray 4x44K G4112F (Feature 
Number version); GSE99039—GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array. After merging, 
the ComBat funtion in the “sva” package (version 4.1.3) (Leek et al., 
2019) was used to eliminate the batch effect of the merged data. The 
PCA analysis was carried out, respectively, on the combined 
expression matrix and the expression matrix after ComBat 
correction, in order to examine the effects after ComBat correction.

Differential expression analysis

The “limma” package (version 3.15) (Ritchie et al., 2015) was 
used to analyze the differential expression between Case-sample 
and Normal-sample and identify the DEGs. DEGs were identified 
according to different thresholds of P.adjust and log2FC (log2 fold 
change) for periodontitis dataset and PD dataset, respectively. The 
P.adjust<0.05 and | log2FC | > 0.5 were selected as the threshold 
for selecting DEGs in periodontitis dataset. The P.adjust<0.05 and 
| log2FC | > 0.15 was selected as the threshold when selecting 
DEGs in PD datasets.

Cross-talk gene between periodontitis 
disease and PD

To explore potential relationships between Periodontitis 
disease and PD, DEGs deregulated in periodontitis and DEGs 
deregulated in PD were obtained respectively, and their intersection 
genes were labelled as cross-talk genes. These intersection genes 
could be considered as the bridge genes connecting the relationship 
between periodontitis and PD. The “pheatmap” package (version 
1.0.12) (Kolde and Kolde, 2018) was used to analyze the expression 
level of these cross-talk genes. The “ClusterProfiler” package 
(version 3.15) (Yu et al., 2012; Wu et al., 2021) in R was utilized to 
analyze the cross-talk gene for Gene Ontology (GO) term-
biological processes (BPs) and KEGG pathways to observe the 
biological functions affected by these cross-talk genes.

TABLE 1 Datasets of periodontitis and Parkinson’s disease.

Periodontitis Parkinson’s

Series GSE16134 GSE99039 GSE6613 GSE49126

Platform GPL570 GPL570 GPL96 GPL4133

Tissue Gingival Whole blood

Case 241 205 50 30

Control 69 233 22 20

Total sample 310 438 72 50
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Consensus cluster plus analysis of 
periodontitis and Parkinson’s based on 
the IRRG dataset

The differentially expressed IRRGs were obtained from 
periodontitis and PD, respectively. Then the expression values of 
the differentially expressed IRRGs in case samples were obtained 
for periodontitis and PD, respectively. The Consensus Cluster Plus 
algorithm (Wilkerson and Hayes, 2010) was utilized to carry out 
k-means cluster analysis based on the expression matrix of 
case samples.

Before using the Consensus Cluster Plus algorithm, it is 
important to determine the number of clusters. To determine 
the optimal number of samples, the interval silhouette width 
and elbow method were used to analyze the IRRGs expression 
matrix of periodontitis and PD, respectively. The fviz_nbclust 
method of “factoextra” package (version 1.0.7) (Kassambara 
and Mundt, 2017) was used for the analysis. The average 
silhouette width automatically calculated the number of the 
optimum clusters. The elbow method was used to observe the 
slope change of the vertical within sum of square (WSS). 
When the WSS decreases very slowly, increasing the number 
of clusters can no longer increase the clustering effect, and 
the existence of this “elbow point” is the optimal number of 
clusters. The optimal number of clusters was determined by 
considering the results of the two methods together. The 
“ConsensusClusterPlus” algorithm was used, and optimum 
cluster value was defined as the value of the parameter 
maxK. The case samples in periodontitis and PD were divided 
into different clusters based on IRRGs. Afterward, the 
expression levels of IRRG in different clusters were analyzed.

Identification of hub cross-talk genes 
based on cluster

The expression values of cross-talk gene in the case sample of 
the two diseases were obtained, and then “limma” package 
(version 3.15) (Ritchie et al., 2015) was used to analyze the cross-
talk gene differentially expressed in different clusters according to 
the respective cluster categories. The cross-talk genes of p.adjust 
<0.01 were labeled as DE-cluster cross-talk genes. The least 
absolute shrinkage and selection operator (LASSO) Logistic 
Regression approach was used to further filter the DE-cluster 
cross-talk gene.

The expression values of the DE-cluster cross-talk gene in 
the respective disease’s case samples were obtained, and then 
LASSO model was used for feature screening according to the 
respective cluster. According to the lambda.min value in the 
analysis results, the feature genes of both diseases were 
obtained. Finally, the intersection of the feature genes of the 
two diseases were obtained, and these intersection genes were 
regarded as the final hub cross-talk genes. These hub cross-
talk genes were not only differentially expressed in 

periodontitis and PD, but also had a potential relationship 
with IRRG.

The correlation between hub cross-talk 
genes and IRRGs

To observe the relationship between hub cross-talk genes and 
IRRGs, the overlapping between IRRGs and cross-talk genes were 
obtained and considered as the IRR cross-talk genes. The 
expression values of hub cross-talk genes and IRR cross-talk genes 
in the case sample of two diseases were obtained. The Pearson 
correlation coefficient analysis was used to analyze the relationship 
among hub cross-talk genes, as well as the correlation between 
hub cross-talk genes and hub IRRGs.

Hub cross-talk gene expression analysis

The expression matrix of hub cross-talk genes in periodontitis 
and PD were obtained, and the Wilcoxon test was performed to 
examine the significance of hub cross-talk genes. Meanwhile, the 
expression matrix of the hub cross-talk genes under different 
clusters were obtained. Periodontitis data set has two clusters, and 
Wilcoxon test was used to examine the significance of hub cross-
talk genes. PD-related data set had three clusters, and Kruskal test 
was used to examine the significance of hub cross-talk genes. ROC 
analysis was carried out to investigate the predictive effects of hub 
cross-talk genes, based on the expression matrices of these genes 
in case-samples and control-samples.

Immune infiltrates

After downloading the immune cell-related data from TISDB 
database, we performed ssGSEA quantitative analysis was performed 
to calculate the abundance of immune cells in both diseases. The 
“GSVA” package (version 3.15) (Hänzelmann et al., 2013) was used 
in this analysis. The enriched and abundant immune cells were 
obtained through hierarchical clustering. The correlation between 
the abundant immune cells and other immune cells was analyzed by 
using Pearson correlation coefficient analysis. The Wilcoxon test was 
performed to analyze the differences of the abundance levels of these 
immune cells between case samples and control samples.

Correlation between immune cells and 
hub cross-talk genes

The fractions of abundant immune cells in the case samples 
and the expression of hub cross-talk gene in the case samples were 
obtained. The correlation between immune cells and the hub 
cross-talk genes were analyzed by using the Pearson correlation 
coefficient analysis.

https://doi.org/10.3389/fnagi.2022.1032401
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Hub cross-talk gene PPI network and 
pathway network

The protein–protein interaction (PPI) relationship pair 
between the Hub cross-talk gene and other genes were 
extracted from the human protein reference database (HPRD)5 
(Peri et  al., 2004) and the biological general repository for 
interaction datasets (BIOGRID)6 (Oughtred et al., 2021). These 
interaction pairs were regarded as the hub cross-talk genes-
target interaction pairs. The relevant genes under all pathways 
were procured from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database7 (Kanehisa and Goto, 2000). The 
hub cross-talk gene-pathway relationship pair was firstly 
obtained. Afterward, the pathway-target relationship pair was 
obtained according to the pathways in the hub cross-talk gene-
pathway interaction pairs. Therefore the hub cross-talk gene-
pathway-target interaction pairs were identified, based on 
which the complex network of Hub cross-talk gene-Target and 
Hub cross-talk gene-Pathway-Target were constructed by using 
Cytoscape software (version 3.8) (Shannon et al., 2003).

Results

Data preprocessing

The three datasets related to PD (i.e., GSE6613, GSE49126, 
GSE99039) were merged, and then the PCA analysis was 
performed (Figure 2A). Figure 2A shows that the 3 datasets 
differed significantly. Figure 2B shows that the batch effect 
generated by merging datasets was significantly eliminated. 

5 http://www.hprd.org/

6 http://thebiogrid.org/

7 https://www.kegg.jp/

By comparing Figures  2A,B, it was found that the  
differences between the three datasets were significantly  
reduced.

Differentially expressed genes

Differential expression analysis was conducted for the 
periodontitis and PD-related datasets. For periodontitis-related 
dataset (GSE16134), the genes of P.adjust < 0.05 and |log2FC| > 0.5 
were selected as DEGs, where log2FC >0.5 was the upregulated 
DEGs and log2FC < −0.5 was the downregulated DEGs. For 
PD-related datasets (GSE6613, GSE49126, GSE99039), the genes 
of P.adjust < 0.05 and | log2FC| > 0.15 were selected as DEGs, 
where log2FC > 0.15 were upregulated DEGs and log2FC < −0.15 
were down-regulated DEGs. Table  2 shows the number of 
upregulated and downregulated DEGs deregulated in 
periodontitis and PD.

A volcano map was utilized to show the distribution of DEGs 
in Periodontitis- (Figure 3A) and PD-related data (Figure 3B). The 
top5 up-regulated and down-regulated DEGs with the most 
significant P.adjust values were labeled.

Cross-talk gene

The common DEGs of Periodontitis disease and PD were 
extracted, and thus 37 Cross-talk genes were obtained 
(Figure 4A). Then the expression values of 37 cross-talk genes 
in periodontitis and PD were extracted, base on which 
heatmaps were plotted for periodontitis (Figure 4B) and PD 
(Figure 4C).

The “ClusterProfiler” package in R was used to identify the 
BPs and KEGG pathways enriched by 37 cross-talk genes. The 
p < 0.05 was established as statistical significance and the top 20 
terms were visualized (Figures 5A,B; Tables 3, 4).

A B

FIGURE 2

PCA analysis plots before (A) and after batch correction (B) of Parkinson’s disease related dataset.
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The cross-talk genes were mainly involved in several BPs, for 
example, cellular defense response, leukocyte degranulation, 
neutrophil migration, and neutrophil activation involved in 
immune response (Figure 5A; Table 3). In addition, cross-talk 
genes regulate several KEGG pathways, for instance, phagotsome, 
leukocyte transendothelial migration, neutrophil extracellular 
trap formation, staphylococcus aureus infection, cell adhesion 
molecules, and Fc epsilon RI Signaling pathways (Figure  5B; 
Table 4).

Consensus cluster plus analysis results

The differentially expressed IRRGs in periodontitis and PD 
were extracted; thereby 47 periodontitis-related IRRGs and 9 

PD-related IRRGs were identified. The expression values of 
periodontitis-related IRRGs and PD-related IRRGs were obtained, 
respectively. Afterward, the IRRG-related expression profiles were 
analyzed by using the average silhouette width and elbow method 
(Figures 6A–D).

The clusters’ numbers of Periodontitis disease were 
determined as 2 (Figure 6A) and 5 (Figure 6C) respectively. Based 
on this, the maxK parameter was set as 5 when periodontitis 
dataset was calculated by using “Consensus Cluster Plus” function. 
The clusters’ numbers of PD are 2 (Figure 6B) and 3 (Figure 6D). 
Based on this, the maxK parameter was set as 3 when PD-related 
data set was calculated by using “Consensus Cluster Plus” 
function.

By using “Consensus Cluster Plus” function, two diseases’ 
clustering results were obtained (Figures 7A–D). Figures 7A,C 

TABLE 2 DEG statistical results.

Datasets Periodontitis Parkinson’s

GSE16134 GSE6613 GSE49126 GSE99039

P.adjust P.adj < 0.05 P.adj < 0.05

|Log2(FC)| |Log2(FC)| > 0.5 |Log2(FC)| > 0.15

DEG up 795 199

DEG down 546 12

Total DEG 1,341 211

A B

FIGURE 3

Volcanic map of the differentially expressed gene of (A) Periodontitis disease (A) and (B) Parkinson’s disease.
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show that the periodontitis-related data achieved the best 
clustering effects when k = 2. Figures  7B,D show that the 
PD-related data achieved the best clustering effects when k = 3. 

Figures 7E,F shows the sample correlation results when k = 2 being 
selected for periodontitis data (Figure 7E) and when k = 3 being 
selected for PD data (Figure 7F).

A

B

C

FIGURE 4

Cross-talk gene expression level. (A) Venn diagram of periodontitis disease and Parkinson’s disease differentially expressed genes; (B,C) cross-talk 
gene at the level of expression of Periodontitis disease and Parkinson’s disease.
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A B

FIGURE 5

Cross-talk gene significant enrichment of biological processes (A) and pathway (B).

TABLE 3 The top 20 biological processes enriched by the crosstalk genes.

ID Description GeneRatio BgRatio p-value P.adjust q-value geneID Count

GO:0006909 Phagocytosis 9/32 308/18723 1.58E-09 1.46E-06 9.79E-07 929/11151/2207/3055/3385/3684/3689/4689/399 9

GO:0006968 Cellular defense response 5/32 54/18723 3.13E-08 1.45E-05 9.71E-06 728/10578/4046/653361/10312 5

GO:0002274 Myeloid leukocyte activation 7/32 223/18723 8.09E-08 2.49E-05 1.67E-05 728/8530/2207/3684/3689/5730/399 7

GO:0043299 Leukocyte degranulation 5/32 73/18723 1.45E-07 2.71E-05 1.82E-05 11,151/3055/3684/3689/5730 5

GO:0050900 Leukocyte migration 8/32 369/18723 1.47E-07 2.71E-05 1.82E-05 728/11151/1441/2207/3055/3689/4318/399 8

GO:0042554 Superoxide anion generation 4/32 44/18723 9.09E-07 0.000140002 9.39E-05 3684/3689/653361/4689 4

GO:0001774 Microglial cell activation 4/32 47/18723 1.19E-06 0.000157107 0.000105418 728/8530/3684/3689 4

GO:1990266 Neutrophil migration 5/32 122/18723 1.89E-06 0.000218547 0.000146644 728/1441/2207/3689/399 5

GO:0002283 Neutrophil activation involved in immune 

response

3/32 18/18723 3.64E-06 0.000373357 0.000250521 2207/3684/3689 3

GO:0097530 Granulocyte migration 5/32 148/18723 4.89E-06 0.000451796 0.000303153 728/1441/2207/3689/399 5

GO:0008360 Regulation of cell shape 5/32 154/18723 5.94E-06 0.000498738 0.000334651 11,151/752/3055/3689/399 5

GO:0006801 Superoxide metabolic process 4/32 74/18723 7.43E-06 0.000572401 0.000384078 3684/3689/653361/4689 4

GO:0002275 Myeloid cell activation involved in immune 

response

4/32 91/18723 1.69E-05 0.001202578 0.000806925 2207/3684/3689/5730 4

GO:0002532 Production of molecular mediator involved 

in inflammatory response

4/32 95/18723 2.01E-05 0.001323779 0.00088825 241/653361/57326/23646 4

GO:0030593 Neutrophil chemotaxis 4/32 103/18723 2.76E-05 0.001475695 0.000990185 728/1441/2207/3689 4

GO:0042116 Macrophage activation 4/32 106/18723 3.09E-05 0.001475695 0.000990185 728/8530/3684/3689 4

GO:0042119 Neutrophil activation 3/32 36/18723 3.12E-05 0.001475695 0.000990185 2207/3684/3689 3

GO:0045742 Positive regulation of epidermal growth 

factor receptor signaling pathway

3/32 36/18723 3.12E-05 0.001475695 0.000990185 4318/653361/5329 3

GO:0097529 Myeloid leukocyte migration 5/32 220/18723 3.33E-05 0.001475695 0.000990185 728/1441/2207/3689/399 5

GO:0045730 Respiratory burst 3/32 37/18723 3.39E-05 0.001475695 0.000990185 3055/653361/4689 3
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Hub cross-talk genes screening

A multi-group differential expression analysis of cross-talk 
genes were carried out based on the clusters of two diseases, and 
genes with P.adjust < 0.01 were selected to be the DE-cluster cross-
talk genes. The DE-cluster cross-talk genes for both diseases were 
overlapped and thereby 26 common DE-cluster cross-talk genes 
were obtained (Figure 8A). Based on the clusters of both diseases, 
LASSO regression analysis was used to further screen the 
DE-cluster cross-talk genes (Figures  8B–E). After further 
screening for DE-cluster cross-talk genes common to both 
diseases, 5 Hub cross-talk genes (i.e., FMNL1, MANSC1, PLAUR, 
RNASE6, TCIRG1) were obtained (Figure 8F).

Correlation between hub cross-talk 
genes and hub IRRGs

The inflammatory response-related cross-talk genes were 
obtained and 5 genes (i.e., AQP9, C5AR1, CD14, CSF3R, 
PLAUR) were labeled as hub IRRGs. The expression values of 
5 hub IRRGs and 5 hub cross-talk genes in the case sample of 
periodontitis and PD were obtained. Afterward, the 
relationship among the hub cross-talk genes, as well as the 
relationship between the hub cross-talk genes and the hub 
IRRGs were analyzed by using the Pearson correlation 
coefficient analysis (Figures 9A,B; Tables 5–6). MANSC1 was 
significantly negatively correlated with 4 hub cross-talk genes 

in periodontitis, and MANSC1 was significantly negatively 
correlated with 5 hub IRRGs. There was a significant positive 
correlation among the remaining 4 hub cross-talk genes, and 
the remaining 4 Hub cross-talk genes were also significantly 
positively correlated with 5 Hub IRRGs (Figure 9A). Five hub 
cross-talk genes were significantly positively correlated with 
five hub IRRGs in PD. Among these correlation, the 
correlation between CD14 and five hub cross-talk genes 
showed comparatively higher correlation (Figure 9B).

Hub cross-talk genes’ expression level 
analysis

The expression values of five hub cross-talk genes in 
periodontitis and PD were obtained. The Wilcoxon test results 
showed that five hub cross-talk genes had significant differences 
between disease samples and normal samples (Figures 10A,B). 
Afterward, the expression matrix of the five hub cross-talk genes 
in different clusters were obtained. The Wilcoxon test and Kruskal 
test results showed that the five hub cross-talk genes had significant 
differences between different cluster samples (Figures  10C,D). 
Furthermore, ROC analysis results showed that the AUC values of 
all five hub cross-talk gene in periodontitis were greater than 70% 
(Figure 10E). The AUC values of the five hub cross-talk gene in PD 
were greater than 58%. The AUC values of FMNL1 and PLAUR in 
PD were comparatively higher compared to the remaining three 
hub cross-talk genes (Figure 10F).

TABLE 4 The top 20 signaling pathways enriched by the crosstalk genes.

ID Description GeneRatio BgRatio p-value p.adjust q-value geneID Count

hsa04145 Phagosome 7/24 152/8160 1.80E-07 1.31E-05 1.00E-05 929/11151/3684/3689/653361/4689/10312 7

hsa05152 Tuberculosis 7/24 180/8160 5.70E-07 1.74E-05 1.33E-05 929/11151/2207/3684/3689/4046/10312 7

hsa04670 Leukocyte transendothelial migration 6/24 114/8160 7.14E-07 1.74E-05 1.33E-05 3684/3689/4318/653361/4689/399 6

hsa04613 Neutrophil extracellular trap formation 6/24 190/8160 1.40E-05 0.000255023 0.000194899 366/728/3684/3689/653361/4689 6

hsa05140 Leishmaniasis 4/24 77/8160 6.75E-05 0.000985329 0.000753027 3684/3689/653361/4689 4

hsa04610 Complement and coagulation cascades 4/24 85/8160 9.94E-05 0.001209374 0.000924251 728/3684/3689/5329 4

hsa05150 Staphylococcus aureus infection 4/24 96/8160 0.000159591 0.00166431 0.001271931 728/3684/3689/25984 4

hsa05134 Legionellosis 3/24 57/8160 0.000589439 0.005378627 0.004110558 929/3684/3689 3

hsa05133 Pertussis 3/24 76/8160 0.00136523 0.01107353 0.008462828 929/3684/3689 3

hsa04640 Hematopoietic cell lineage 3/24 99/8160 0.002913961 0.020016567 0.015297448 929/1441/3684 3

hsa05146 Amoebiasis 3/24 102/8160 0.003171487 0.020016567 0.015297448 929/3684/3689 3

hsa05417 Lipid and atherosclerosis 4/24 215/8160 0.003290395 0.020016567 0.015297448 929/4318/653361/4689 4

hsa04514 Cell adhesion molecules 3/24 157/8160 0.010513557 0.059037667 0.045118909 3385/3684/3689 3

hsa05221 Acute myeloid leukemia 2/24 67/8160 0.016316475 0.081667353 0.062413406 929/3684 2

hsa04664 Fc epsilon RI signaling pathway 2/24 68/8160 0.016780963 0.081667353 0.062413406 241/2207 2

hsa05202 Transcriptional misregulation in cancer 3/24 193/8160 0.018292556 0.083459789 0.063783256 929/3684/4318 3

hsa05415 Diabetic cardiomyopathy 3/24 203/8160 0.020897732 0.089737318 0.068580791 4318/653361/4689 3

hsa05323 Rheumatoid arthritis 2/24 93/8160 0.030142526 0.12224469 0.093424204 3689/10312 2

hsa04666 Fc gamma R-mediated phagocytosis 2/24 97/8160 0.032573664 0.125151447 0.095645662 3055/653361 2

hsa04625 C-type lectin receptor signaling pathway 2/24 104/8160 0.037008335 0.135080423 0.103233777 2207/4046 2
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Immune infiltration analysis of 
periodontitis and PD

The immune cell-related dataset were obtained from TISDB 
database, which included 782 genes and 28 types of immune 
cells. The immune infiltration quantification analysis was 
performed by using the ssGSEA algorithm, and the enrichment 
fractions of immune cells in periodontitis and PD were 
obtained. The “pheamap” package of R was used to demonstrate 
immune-infiltrating cell scores for case samples in periodontitis 
and PD. The results showed that central memory CD4 T cell, 
MDSC, Effector memory CD8 T cell, plasmacytoid dendritic 
cell, activated CD8 T cell, activated dendritic cell and monocyte 
were highly expressed in periodontitis and PD (Figures 11A,B).

The correlation between these high-abundance immune cells 
and other immune cells were analyzed by using the Pearson 

correlation coefficient, and the immune cells with value of p <0.05 
were visualized (Table 7). The results showed that MDSC was 
highly positively related with active B cell, type 1 T helper cell, 
regulatory T cell, and immature B cell in periodontitis (cor > 0.8; 
Figure 11C). Activated CD4 T cell and Activated CD8 T cell were 
positively correlated in PD (cor = 0.6; Figure 11D). The active 
CD4 T cell was positively correlated with activated CD8 T cell 
in periodontitis.

The violin plots were used to show the fractional 
distribution of high-abundance immune cells in periodontitis 
and PD, and the Wilcoxon test was applied to observe the 
significance of samples. The results showed that the high 
abundance of immune cells varied greatly between case 
samples and normal samples in periodontitis (Figure 11D). 
The high-abundance immune cells differed less between case 
samples and normal samples in PD (Figure 11E). The effector 

A B

C D

FIGURE 6

Results of a cluster analysis of periodontitis and Parkinson’s disease. (A,B) Results of a silhouette width analysis of the IRRGs associated with 
periodontitis and the average of IRRGs associated with Parkinson’s disease; (C,D) Results of an elbow method analysis of Periodontitis disease-
related IRRGs and Parkinson’s disease-related IRRGs.
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FIGURE 7

Consensus Cluster Plus analysis results. (A,B) Consistent cumulative distribution function (CDF) plot of periodontitis and Parkinson’s 
disease. This plot shows the cumulative distribution function of the score when k takes different values, which is used to determine 
when k is taken, CDF reaches an approximate maximum, and the cluster analysis results are the most reliable. That is, consider the 
k-value of the CDF descent slope is small. (C,D) The k and k-1 relative changes in area under the CDF curve in periodontitis and 
Parkinson’s disease. The total area under the CDF curve at k = 2 (the area below the line in (A,B) rather than the relative change in area). 
To select the final k-value, we should consider that the descending slope of the midline of (A,B) is as small as possible, and also 
consider that the relative change in the area under k and k-1 in (C,D) compared to the CDF curve is as small as possible. (E,F) Consistent 
cluster diagram of periodontitis and Parkinson’s disease.
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FIGURE 8

Hub cross-talk gene screening. (A) DE-cluster cross-talk gene of periodontitis and Parkinson’s disease’s. (B–D) Results of LASSO analysis for 
periodontitis and Parkinson’s disease. Each line in the graph represents a gene, and a larger value of the log lambda as the gene tends to 0 
indicates that the gene is more critical. (C–E) cross-validation results of Periodontitis disease and Parkinson’s disease model. (F) Periodontitis 
disease and Parkinson’s disease’s hub cross-talk genes.
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memory CD8 T cell was highly enriched in both 
periodontitis and PD.

Relationship between high-abundance 
immune cells and hub cross-talk genes

The case sample scores for 7 high-abundance immune 
cells and 5 hub cross-talk genes were obtained. The 

correlation analysis was carried out to invesitgate the 
correlation between immune cells and hub cross-talk genes. 
The relationship pairs with value of p < 0.05 was defined to 
be significant. The absolute value of correlation coefficient 
was calculated and the results of the top12 were visualized. 
The results shwoed that RNASE6 gene was highly correlated 
with MDSC in periodontitis (Figure 12). MANSC1 was highly 
correlated with plasmacytoid dendritic cell in PD (Figure 13; 
Table 8).

A

B

FIGURE 9

The relationships among Hub cross-talk genes and Hub IRRG in (A) Periodontitis disease and (B) Parkinson’s disease. The matrix graph in the lower 
left part of the figure shows the correlation coefficient between the hub cross-talk gene and the hub cross-talk gene, and the upper right part of 
the network diagram shows the correlation coefficient between the hub cross-talk gene and the hub IRRG.
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Hub cross-talk gene PPI-pathway 
network

The 192 hub cross-talk gene-target interaction pairs were 
obtained from the HPRD and BIOGRID database. Based on 
the KEGG database, 105 hub cross-talk gene-pathway-target 

TABLE 5 The correlation among hub crosstalk genes in periodontitis 
and Parkinson’s disease, respectively.

Hub gene Hub gene Cor. p-value Sig.

Periodontitis

FMNL1 TCIRG1 0.776680579 8.72E-64 ***

TCIRG1 FMNL1 0.776680579 8.72E-64 ***

FMNL1 RNASE6 0.630304404 9.84E-36 ***

RNASE6 FMNL1 0.630304404 9.84E-36 ***

RNASE6 TCIRG1 0.623645546 8.28E-35 ***

TCIRG1 RNASE6 0.623645546 8.28E-35 ***

FMNL1 PLAUR 0.519504303 7.95E-23 ***

PLAUR FMNL1 0.519504303 7.95E-23 ***

PLAUR TCIRG1 0.463852082 6.06E-18 ***

TCIRG1 PLAUR 0.463852082 6.06E-18 ***

PLAUR RNASE6 0.356920531 9.59E-11 ***

RNASE6 PLAUR 0.356920531 9.59E-11 ***

MANSC1 PLAUR −0.501651214 3.67E-21 ***

PLAUR MANSC1 −0.501651214 3.67E-21 ***

MANSC1 RNASE6 −0.508910042 7.94E-22 ***

RNASE6 MANSC1 −0.508910042 7.94E-22 ***

MANSC1 TCIRG1 −0.583097828 1.25E-29 ***

TCIRG1 MANSC1 −0.583097828 1.25E-29 ***

FMNL1 MANSC1 −0.687320353 1.13E-44 ***

MANSC1 FMNL1 −0.687320353 1.13E-44 ***

Parkinson’s disease

FMNL1 TCIRG1 0.714413971 1.39E-88 ***

TCIRG1 FMNL1 0.714413971 1.39E-88 ***

MANSC1 PLAUR 0.542333646 3.87E-44 ***

PLAUR MANSC1 0.542333646 3.87E-44 ***

FMNL1 PLAUR 0.375957267 3.05E-20 ***

PLAUR FMNL1 0.375957267 3.05E-20 ***

PLAUR RNASE6 0.373867758 5.10E-20 ***

RNASE6 PLAUR 0.373867758 5.10E-20 ***

PLAUR TCIRG1 0.369494651 1.48E-19 ***

TCIRG1 PLAUR 0.369494651 1.48E-19 ***

RNASE6 TCIRG1 0.294141212 1.22E-12 ***

TCIRG1 RNASE6 0.294141212 1.22E-12 ***

MANSC1 RNASE6 0.268167983 1.12E-10 ***

RNASE6 MANSC1 0.268167983 1.12E-10 ***

FMNL1 MANSC1 0.181137877 1.61E-05 ***

MANSC1 FMNL1 0.181137877 1.61E-05 ***

FMNL1 RNASE6 0.151556057 0.000319114 ***

RNASE6 FMNL1 0.151556057 0.000319114 ***

MANSC1 TCIRG1 0.110844015 0.008657743 **

TCIRG1 MANSC1 0.110844015 0.008657743 **

**p <= 0.01, ***p <= 0.001.

TABLE 6 The correlation between hub crosstalk genes and hub IRRGs 
in periodontitis and Parkinson’s disease.

Hub gene Hub IRRG Cor. p-value Sig.

Periodontitis

RNASE6 CD14 0.764628729 1.02E-60 ***

PLAUR C5AR1 0.671344512 5.74E-42 ***

TCIRG1 CD14 0.664226041 8.15E-41 ***

FMNL1 CSF3R 0.645560153 6.13E-38 ***

FMNL1 CD14 0.643618516 1.19E-37 ***

FMNL1 C5AR1 0.590656767 1.54E-30 ***

RNASE6 C5AR1 0.569100882 5.29E-28 ***

TCIRG1 CSF3R 0.568078374 6.90E-28 ***

RNASE6 CSF3R 0.550156788 6.35E-26 ***

PLAUR CSF3R 0.542527119 4.02E-25 ***

FMNL1 PLAUR 0.519504303 7.95E-23 ***

PLAUR CD14 0.509187187 7.48E-22 ***

TCIRG1 C5AR1 0.479173686 3.36E-19 ***

TCIRG1 PLAUR 0.463852082 6.06E-18 ***

PLAUR AQP9 0.424911367 5.07E-15 ***

RNASE6 AQP9 0.4075901 7.75E-14 ***

RNASE6 PLAUR 0.356920531 9.59E-11 ***

FMNL1 AQP9 0.263403908 2.57E-06 ***

TCIRG1 AQP9 0.179628798 0.001494316 **

MANSC1 AQP9 −0.245665691 1.21E-05 ***

MANSC1 C5AR1 −0.407813463 7.49E-14 ***

MANSC1 PLAUR −0.501651214 3.67E-21 ***

MANSC1 CSF3R −0.533100941 3.68E-24 ***

MANSC1 CD14 −0.620737902 2.06E-34 ***

Parkinson’s disease

TCIRG1 CSF3R 0.739465803 5.77E-98 ***

FMNL1 CSF3R 0.730984072 1.14E-94 ***

MANSC1 C5AR1 0.723131244 9.90E-92 ***

PLAUR C5AR1 0.69290086 2.67E-81 ***

MANSC1 AQP9 0.631283537 1.35E-63 ***

PLAUR AQP9 0.630607165 2.01E-63 ***

MANSC1 PLAUR 0.542333646 3.87E-44 ***

PLAUR CSF3R 0.505325432 1.25E-37 ***

PLAUR CD14 0.440176835 6.11E-28 ***

FMNL1 C5AR1 0.422459064 1.20E-25 ***

RNASE6 AQP9 0.41039563 3.66E-24 ***

FMNL1 PLAUR 0.375957267 3.05E-20 ***

RNASE6 PLAUR 0.373867758 5.10E-20 ***

TCIRG1 C5AR1 0.372498455 7.13E-20 ***

TCIRG1 PLAUR 0.369494651 1.48E-19 ***

TCIRG1 CD14 0.363230267 6.59E-19 ***

RNASE6 C5AR1 0.359788021 1.48E-18 ***

FMNL1 CD14 0.358011298 2.24E-18 ***

RNASE6 CD14 0.355084478 4.39E-18 ***

MANSC1 CSF3R 0.347787555 2.29E-17 ***

MANSC1 CD14 0.324463762 3.40E-15 ***

RNASE6 CSF3R 0.282898522 9.14E-12 ***

TCIRG1 AQP9 0.231098723 3.17E-08 ***

FMNL1 AQP9 0.205778472 9.04E-07 ***

**p <= 0.01, ***p <= 0.001.
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interaction pairs were obtained. The Cytoscape software was 
used to integrate the hub cross-talk gene-target pairs with the 
hub cross-talk gene-pathway-target interaction pairs; thereby 
a hub cross-talk gene related complex network was constructed 
(Figure  14). Figure  14 shows that PLAUR interacted with 
other genes and regulated the composite and coagulation 
cascades pathway. TCIRG1 interacted with other hub cross-
talk genes and was involved in regulating oxidative 
phosphorylation pathway and phagosome pathway.

Discussion

The main findings of the current study identified five hub 
crosstalk genes (i.e., FMNL1, MANSC1, PLAUR, RNASE6, and 
TCIRG1) to be the linking mechanisms between periodontitis and 
PD. In addition, this study also identified several signaling 
pathways enriched by the crosstalk genes, for example, 
complement and coagulation cascades, neutrophil extracellular 
trap formation, transendothelial leukocyte migration, and 

A B
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FIGURE 10

Hub cross-talk gene expression level and ROC analysis in periodontitis and Parkinson’s disease. (A,B) Hub cross-talk gene expression levels and 
differences between disease samples and normal samples in periodontitis and Parkinson’s disease, respectively. (C,D) Hub cross-talk gene 
expresses levels and differences in different clusters of periodontitis and Parkinson’s disease. The smaller the test result, the more “*” on the plot, 
and the correspondence between the p value and the “*” sign is ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. (E,F) ROC 
analysis results regarding the diagnostic accuracy of hub cross-talk genes in periodontitis and Parkinson’s disease.
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FIGURE 11

Immune infiltrative analysis of Periodontitis disease and Parkinson’s disease. (A) The abundance fraction of immune cells in disease samples of 
Periodontitis disease and Parkinson’s disease. (B,C) Correlation of higher abundance immune cells and other immune cells in Periodontitis disease 
and Parkinson’s disease. (D,E) Immune cell enrichment fractions in different sample types of Periodontitis and Parkinson’s disease.
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TABLE 7 The correlation between immune cells in periodontitis and Parkinson’s disease.

Immune cell Type 1 Immune cell Type 2 r-value p-value Significance

Periodontitis

Activated B cell MDSC 0.84697554 1.60E-67 ***

Type 1 T helper cell MDSC 0.840122561 1.95E-65 ***

Regulatory T cell MDSC 0.837361374 1.26E-64 ***

Immature B cell MDSC 0.816824025 5.01E-59 ***

Activated dendritic cell Monocyte 0.764481625 1.80E-47 ***

Monocyte Activated dendritic cell 0.764481625 1.80E-47 ***

Activated dendritic cell Plasmacytoid dendritic cell 0.722465839 3.53E-40 ***

Plasmacytoid dendritic cell Activated dendritic cell 0.722465839 3.53E-40 ***

Central memory CD4 T cell Monocyte 0.714514793 6.01E-39 ***

Monocyte Central memory CD4 T cell 0.714514793 6.01E-39 ***

T follicular helper cell Activated dendritic cell 0.711295204 1.84E-38 ***

MDSC Plasmacytoid dendritic cell 0.707824783 6.05E-38 ***

Plasmacytoid dendritic cell MDSC 0.707824783 6.05E-38 ***

Natural killer cell Effector memory CD8 T cell 0.706920024 8.23E-38 ***

Activated B cell Plasmacytoid dendritic cell 0.705392312 1.38E-37 ***

Activated dendritic cell MDSC 0.697836471 1.69E-36 ***

MDSC Activated dendritic cell 0.697836471 1.69E-36 ***

Macrophage MDSC 0.686624343 6.05E-35 ***

Macrophage Activated dendritic cell 0.67722499 1.08E-33 ***

Central memory CD4 T cell MDSC 0.66604896 2.87E-32 ***

MDSC Central memory CD4 T cell 0.66604896 2.87E-32 ***

T follicular helper cell MDSC 0.664832249 4.07E-32 ***

Activated dendritic cell Central memory CD4 T cell 0.657279808 3.43E-31 ***

Central memory CD4 T cell Activated dendritic cell 0.657279808 3.43E-31 ***

Natural killer T cell Activated dendritic cell 0.653593529 9.49E-31 ***

Type 1 T helper cell Activated dendritic cell 0.65032303 2.31E-30 ***

Activated CD8 T cell MDSC 0.644174127 1.20E-29 ***

MDSC Activated CD8 T cell 0.644174127 1.20E-29 ***

Natural killer T cell MDSC 0.64259343 1.82E-29 ***

Immature B cell Plasmacytoid dendritic cell 0.637325431 7.19E-29 ***

Central memory CD4 T cell Effector memory CD8 T cell 0.636332538 9.29E-29 ***

Effector memory CD8 T cell Central memory CD4 T cell 0.636332538 9.29E-29 ***

Monocyte Plasmacytoid dendritic cell 0.618419171 8.02E-27 ***

Plasmacytoid dendritic cell Monocyte 0.618419171 8.02E-27 ***

Central memory CD4 T cell Plasmacytoid dendritic cell 0.61554209 1.60E-26 ***

Plasmacytoid dendritic cell Central memory CD4 T cell 0.61554209 1.60E-26 ***

Activated dendritic cell Effector memory CD8 T cell 0.612911102 2.98E-26 ***

Effector memory CD8 T cell Activated dendritic cell 0.612911102 2.98E-26 ***

Activated B cell Central memory CD4 T cell 0.609622487 6.46E-26 ***

Gamma delta T cell MDSC 0.609155618 7.20E-26 ***

Type 1 T helper cell Plasmacytoid dendritic cell 0.606999798 1.19E-25 ***

Regulatory T cell Plasmacytoid dendritic cell 0.602434095 3.39E-25 ***

Effector memory CD8 T cell Monocyte 0.595426389 1.64E-24 ***

Monocyte Effector memory CD8 T cell 0.595426389 1.64E-24 ***

Activated B cell Activated dendritic cell 0.582637192 2.64E-23 ***

Type 1 T helper cell Activated CD8 T cell 0.582132066 2.93E-23 ***

Type 1 T helper cell Central memory CD4 T cell 0.58162473 3.27E-23 ***

Regulatory T cell Activated dendritic cell 0.58144374 3.39E-23 ***

Type 1 T helper cell Effector memory CD8 T cell 0.574544534 1.44E-22 ***
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TABLE 7 (Continued)

Immune cell Type 1 Immune cell Type 2 r-value p-value Significance

Eosinophil MDSC 0.572134369 2.36E-22 ***

Activated CD4 T cell Activated CD8 T cell 0.569621164 3.94E-22 ***

Effector memory CD8 T cell MDSC 0.569618568 3.94E-22 ***

MDSC Effector memory CD8 T cell 0.569618568 3.94E-22 ***

Effector memory CD8 T cell Plasmacytoid dendritic cell 0.563135876 1.45E-21 ***

Plasmacytoid dendritic cell Effector memory CD8 T cell 0.563135876 1.45E-21 ***

Natural killer cell MDSC 0.561420539 2.04E-21 ***

Natural killer cell Plasmacytoid dendritic cell 0.552501589 1.16E-20 ***

Regulatory T cell Activated CD8 T cell 0.549123737 2.21E-20 ***

T follicular helper cell Activated CD8 T cell 0.54876323 2.36E-20 ***

Activated CD8 T cell Effector memory CD8 T cell 0.545321557 4.52E-20 ***

Effector memory CD8 T cell Activated CD8 T cell 0.545321557 4.52E-20 ***

Central memory CD8 T cell MDSC 0.54186573 8.60E-20 ***

Natural killer T cell Plasmacytoid dendritic cell 0.541209893 9.71E-20 ***

MDSC Monocyte 0.54120915 9.71E-20 ***

Monocyte MDSC 0.54120915 9.71E-20 ***

Central memory CD8 T cell Activated dendritic cell 0.541083811 9.93E-20 ***

Central memory CD8 T cell Central memory CD4 T cell 0.540839323 1.04E-19 ***

Gamma delta T cell Plasmacytoid dendritic cell 0.531789461 5.38E-19 ***

T follicular helper cell Monocyte 0.531104362 6.09E-19 ***

Immature B cell Activated CD8 T cell 0.529705171 7.81E-19 ***

Regulatory T cell Central memory CD4 T cell 0.528671052 9.38E-19 ***

Activated B cell Effector memory CD8 T cell 0.528579509 9.54E-19 ***

Type 1 T helper cell Monocyte 0.504458027 5.80E-17 ***

Macrophage Plasmacytoid dendritic cell 0.500397599 1.12E-16 ***

Activated B cell Activated CD8 T cell 0.499708365 1.25E-16 ***

T follicular helper cell Effector memory CD8 T cell 0.497187741 1.88E-16 ***

Eosinophil Activated CD8 T cell 0.485978771 1.09E-15 ***

Immature B cell Central memory CD4 T cell 0.485824724 1.12E-15 ***

T follicular helper cell Plasmacytoid dendritic cell 0.485378278 1.20E-15 ***

Natural killer cell Activated dendritic cell 0.48420841 1.43E-15 ***

Natural killer T cell Activated CD8 T cell 0.475167393 5.60E-15 ***

Natural killer cell Central memory CD4 T cell 0.472655726 8.13E-15 ***

Central memory CD8 T cell Monocyte 0.471236629 1.00E-14 ***

Activated CD4 T cell MDSC 0.463909411 2.90E-14 ***

Immature B cell Effector memory CD8 T cell 0.46250849 3.54E-14 ***

Activated B cell Monocyte 0.460718763 4.57E-14 ***

Macrophage Activated CD8 T cell 0.457572029 7.13E-14 ***

Natural killer T cell Effector memory CD8 T cell 0.456250217 8.58E-14 ***

Natural killer cell Monocyte 0.451913064 1.57E-13 ***

Macrophage Monocyte 0.447029978 3.05E-13 ***

Regulatory T cell Effector memory CD8 T cell 0.444491073 4.30E-13 ***

T follicular helper cell Central memory CD4 T cell 0.441533585 6.40E-13 ***

Central memory CD8 T cell Plasmacytoid dendritic cell 0.439049415 8.89E-13 ***

Activated CD8 T cell Activated dendritic cell 0.436269671 1.28E-12 ***

Activated dendritic cell Activated CD8 T cell 0.436269671 1.28E-12 ***

CD56dim natural killer cell Activated dendritic cell 0.433192287 1.91E-12 ***

Activated CD8 T cell Central memory CD4 T cell 0.43163635 2.34E-12 ***

Central memory CD4 T cell Activated CD8 T cell 0.43163635 2.34E-12 ***

Immature B cell Activated dendritic cell 0.426458372 4.54E-12 ***
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TABLE 7 (Continued)

Immune cell Type 1 Immune cell Type 2 r-value p-value Significance

Gamma delta T cell Activated dendritic cell 0.420832272 9.21E-12 ***

Mast cell MDSC 0.414996797 1.89E-11 ***

Gamma delta T cell Central memory CD4 T cell 0.407666833 4.58E-11 ***

Macrophage Central memory CD4 T cell 0.400362875 1.08E-10 ***

Neutrophil Activated dendritic cell 0.367303528 4.12E-09 ***

Gamma delta T cell Activated CD8 T cell 0.366367009 4.54E-09 ***

Natural killer T cell Central memory CD4 T cell 0.363634497 6.02E-09 ***

CD56dim natural killer cell Monocyte 0.363021235 6.41E-09 ***

Macrophage Effector memory CD8 T cell 0.353705384 1.64E-08 ***

Immature dendritic cell Central memory CD4 T cell 0.353607436 1.66E-08 ***

Immature dendritic cell Activated dendritic cell 0.349212099 2.56E-08 ***

Natural killer T cell Monocyte 0.345840064 3.55E-08 ***

Eosinophil Plasmacytoid dendritic cell 0.34454255 4.02E-08 ***

Natural killer cell Activated CD8 T cell 0.344293922 4.12E-08 ***

CD56dim natural killer cell Effector memory CD8 T cell 0.338007281 7.48E-08 ***

Neutrophil Plasmacytoid dendritic cell 0.336720129 8.44E-08 ***

Regulatory T cell Monocyte 0.327379534 1.99E-07 ***

Activated CD8 T cell Plasmacytoid dendritic cell 0.323496414 2.83E-07 ***

Plasmacytoid dendritic cell Activated CD8 T cell 0.323496414 2.83E-07 ***

Eosinophil Effector memory CD8 T cell 0.320532888 3.68E-07 ***

Eosinophil Central memory CD4 T cell 0.302555673 1.71E-06 ***

Parkinson’s disease

Activated CD4 T cell Activated CD8 T cell 0.599074977 3.77E-29 ***

Neutrophil Plasmacytoid dendritic cell 0.500181503 1.90E-19 ***

Effector memory CD4 T cell Plasmacytoid dendritic cell 0.484410676 3.56E-18 ***

Activated CD4 T cell Central memory CD4 T cell 0.476766534 1.40E-17 ***

Macrophage Activated dendritic cell 0.473049766 2.68E-17 ***

Activated CD8 T cell Effector memory CD8 T cell 0.456873144 4.20E-16 ***

Effector memory CD8 T cell Activated CD8 T cell 0.456873144 4.20E-16 ***

Effector memory CD4 T cell Activated CD8 T cell 0.443595434 3.61E-15 ***

MDSC Plasmacytoid dendritic cell 0.435338298 1.31E-14 ***

Plasmacytoid dendritic cell MDSC 0.435338298 1.31E-14 ***

Neutrophil Activated dendritic cell 0.433717488 1.68E-14 ***

Natural killer cell Activated dendritic cell 0.4192127 1.48E-13 ***

Effector memory CD4 T cell Central memory CD4 T cell 0.416668771 2.14E-13 ***

Macrophage Monocyte 0.405530203 1.04E-12 ***

Mast cell Activated dendritic cell 0.400738176 2.03E-12 ***

Mast cell Plasmacytoid dendritic cell 0.388706161 1.03E-11 ***

Gamma delta T cell Activated CD8 T cell 0.384135928 1.87E-11 ***

Type 2 T helper cell Central memory CD4 T cell 0.363258068 2.57E-10 ***

Immature dendritic cell Plasmacytoid dendritic cell 0.351256754 1.07E-09 ***

Activated CD8 T cell Central memory CD4 T cell 0.349402777 1.32E-09 ***

Central memory CD4 T cell Activated CD8 T cell 0.349402777 1.32E-09 ***

Central memory CD4 T cell Effector memory CD8 T cell 0.340048326 3.82E-09 ***

Effector memory CD8 T cell Central memory CD4 T cell 0.340048326 3.82E-09 ***

Macrophage Plasmacytoid dendritic cell 0.333212561 8.11E-09 ***

Gamma delta T cell Plasmacytoid dendritic cell 0.330016388 1.15E-08 ***

Natural killer cell Monocyte 0.326552107 1.66E-08 ***

Immature dendritic cell Activated CD8 T cell 0.310533819 8.69E-08 ***

Type 2 T helper cell Activated CD8 T cell 0.309078509 1.00E-07 ***

***p <= 0.001.
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phagosome formation. In this section, previous literature were 
reviewed to explain the linking role of these genetic factors in the 
pathogenesis of both diseases.

The formin FRL1 (FMNL1) resides in the actin-rich cores of 
primary macrophage podosomes. During adhesion and migration 
of macrophages, FMNL1 is responsible for modifiying actin at the 
podosome in macrophages (Mersich et al., 2010). By stabilizing 

podosome lifespans without interacting with fast-growing actin 
termini, FMNL1 promotes migration and recruitment activity of 
macrophages (Miller et  al., 2017). Additionally, FMNL1 is 
upregulated in the course of monocyte differentiation to 
macrophages (Mersich et  al., 2010), which might be  used for 
explaining the significant correlation between FMNL1 and 
monocytes in periodontitis (Table  8: r = 0.701080924; 

FIGURE 12

Relationship between high-abundance immune cells and hub cross-talk genes in periodontitis.

https://doi.org/10.3389/fnagi.2022.1032401
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnagi.2022.1032401

Frontiers in Aging Neuroscience 22 frontiersin.org

p = 5.82E-37) and PD (Table 8: r = 0.143364384; p = 0.015428656). 
The potential role of FMNL1 in enhancing macrophage activity 
might be involved in the mechanism of periodontitis inducing PD 
progression. In periodontitis, overgrowth of Gram-negative 
bacteria and LPS access to the blood circulation may enhance the 
activation of macrophages in peripheral blood (Pussinen et al., 
2004). One of the hallmarks of PD is the impairment of BBB 
integrity and function (Al-Bachari et  al., 2020), due to which 
immune cells, including macrophage clusters, can infiltrate from 
the peripheral blood into the CNS (Su and Zhou, 2021). The 

periodontal pathogen, Escherichia coli (E. coli), can also penetrate 
the impaired BBB of a PD patient. In a study, the LPS extracted 
from the cell wall of E. coli was found to induce rapid and intense 
activation of microglia and macrophages (Blaylock, 2017). The 
macrophages stimulated by LPS caused robust neurotoxicity and 
immunoexcitotoxicity, which may play a central role in 
PD-associated neurodegeneration progression (Blaylock, 2017). 
Based on these studies, it may be suggested that the crosstalk gene 
FMNL1 is a common link between periodontitis and PD via 
macrophage activation. However, there is no published research 

FIGURE 13

Relationship between high-abundance immune cells and hub cross-talk gene in Parkinson’s disease.

https://doi.org/10.3389/fnagi.2022.1032401
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnagi.2022.1032401

Frontiers in Aging Neuroscience 23 frontiersin.org

TABLE 8 The correlation between hub crosstalk genes and immune cells in periodontitis and Parkinson’s disease, respectively.

Hub crosstalk genes Immune cells r-value abs_r value p-value Significance

Periodontitis

RNASE6 MDSC 0.804313666 8.04E-01 5.98E-56 ***

FMNL1 Monocyte 0.701080924 7.01E-01 5.82E-37 ***

FMNL1 MDSC 0.674505139 6.75E-01 2.42E-33 ***

FMNL1 Central memory CD4 T cell 0.668905401 6.69E-01 1.26E-32 ***

TCIRG1 Monocyte 0.651103432 6.51E-01 1.87E-30 ***

RNASE6 Central memory CD4 T cell 0.647773522 6.48E-01 4.60E-30 ***

RNASE6 Plasmacytoid dendritic cell 0.620123162 6.20E-01 5.31E-27 ***

FMNL1 Effector memory CD8 T cell 0.618680488 6.19E-01 7.53E-27 ***

FMNL1 Plasmacytoid dendritic cell 0.582572461 5.83E-01 2.67E-23 ***

TCIRG1 Central memory CD4 T cell 0.555225112 5.55E-01 6.85E-21 ***

FMNL1 Activated dendritic cell 0.55205012 5.52E-01 1.26E-20 ***

PLAUR Activated dendritic cell 0.532123801 5.32E-01 5.07E-19 ***

TCIRG1 MDSC 0.506582068 5.07E-01 4.09E-17 ***

RNASE6 Activated dendritic cell 0.468481658 4.68E-01 1.50E-14 ***

RNASE6 Activated CD8 T cell 0.446647646 4.47E-01 3.22E-13 ***

PLAUR Monocyte 0.443562776 4.44E-01 4.88E-13 ***

RNASE6 Monocyte 0.437623294 4.38E-01 1.07E-12 ***

TCIRG1 Activated dendritic cell 0.427129687 4.27E-01 4.17E-12 ***

TCIRG1 Plasmacytoid dendritic cell 0.420248526 4.20E-01 9.90E-12 ***

TCIRG1 Effector memory CD8 T cell 0.40759104 4.08E-01 4.62E-11 ***

PLAUR Effector memory CD8 T cell 0.383329366 3.83E-01 7.43E-10 ***

RNASE6 Effector memory CD8 T cell 0.376706992 3.77E-01 1.53E-09 ***

FMNL1 Activated CD8 T cell 0.346157886 3.46E-01 3.44E-08 ***

PLAUR Plasmacytoid dendritic cell 0.345852593 3.46E-01 3.54E-08 ***

PLAUR Central memory CD4 T cell 0.342304629 3.42E-01 4.98E-08 ***

PLAUR MDSC 0.318805279 3.19E-01 4.28E-07 ***

TCIRG1 Activated CD8 T cell 0.234786142 0.234786142 0.000235579 ***

MANSC1 Activated CD8 T cell −0.231175404 0.231175404 0.000295404 ***

MANSC1 Central memory CD4 T cell −0.529187133 5.29E-01 8.56E-19 ***

MANSC1 Effector memory CD8 T cell −0.532649636 5.33E-01 4.61E-19 ***

MANSC1 Plasmacytoid dendritic cell −0.539617258 5.40E-01 1.30E-19 ***

MANSC1 MDSC −0.576288835 5.76E-01 1.00E-22 ***

MANSC1 Activated dendritic cell −0.60804292 6.08E-01 9.33E-26 ***

MANSC1 Monocyte −0.625435826 6.25E-01 1.45E-27 ***

Parkinson’s disease

MANSC1 Plasmacytoid dendritic cell 0.551790642 0.551790642 4.15E-24 ***

MANSC1 Activated dendritic cell 0.467804822 0.467804822 6.65E-17 ***

PLAUR Plasmacytoid dendritic cell 0.451944976 0.451944976 9.43E-16 ***

RNASE6 Plasmacytoid dendritic cell 0.381089523 0.381089523 2.77E-11 ***

MANSC1 MDSC 0.33920803 0.33920803 4.19E-09 ***

PLAUR MDSC 0.292493364 0.292493364 4.99E-07 ***

RNASE6 MDSC 0.251153249 0.251153249 1.78E-05 ***

PLAUR Activated dendritic cell 0.233308169 0.233308169 7.00E-05 ***

MANSC1 Monocyte 0.226357563 0.226357563 0.000115866 ***

PLAUR Monocyte 0.183419906 0.183419906 0.001875335 **

TCIRG1 Effector memory CD8 T cell 0.169561529 0.169561529 0.004094811 **

RNASE6 Activated CD8 T cell 0.167950803 0.167950803 0.004467738 **

FMNL1 Monocyte 0.143364384 0.143364384 0.015428656 *

TCIRG1 Monocyte 0.143009576 0.143009576 0.015687724 *
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https://doi.org/10.3389/fnagi.2022.1032401
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnagi.2022.1032401

Frontiers in Aging Neuroscience 24 frontiersin.org

investigating the deregulation and function of FMNL1 in linking 
periodontitis and PD to date.

The Plasminogen Activator Urokinase (PLAU) gene encodes 
the receptor for Urokinase-type Plasminogen Activator (uPA). 
uPA has a role in localizing and promoting plasmin formation and 
was found to be implicated in the pathological processes associated 
with cell-surface plasminogen activation and localized 
degradation of the extracellular matrix. In periodontitis, uPA 
converts plasminogen to plasmin, leading to the uPA proteolytic 

cascade activated by P. gingivalis and inducing tissue destruction, 
particularly, alveolar bone loss (Fleetwood et  al., 2015). 
Additionally, uPA was found to be  a marker of macrophage 
activation based on its role in regulating macrophage motility and 
macrophage-mediated matrix degradation in periodontitis 
(Fleetwood et  al., 2014). In PD, uPA was found to act as an 
activator protease in the process of plasminogen activation and 
upregulate the expression of the serine protease inhibitor (serpin) 
plasminogen activator inhibitor-1 (PAI-1), leading to 

TABLE 8 (Continued)

Hub crosstalk genes Immune cells r-value abs_r value p-value Significance

RNASE6 Monocyte 0.131393959 0.131393959 0.026550632 *

TCIRG1 Activated dendritic cell −0.120360896 0.120360896 0.042317655 *

FMNL1 Central memory CD4 T cell −0.12064161 0.12064161 0.041835486 *

PLAUR Activated CD8 T cell −0.123935985 0.123935985 0.036514285 *

FMNL1 MDSC −0.143148162 0.143148162 0.015586084 *

FMNL1 Activated CD8 T cell −0.206836013 0.206836013 0.000440536 ***

MANSC1 Effector memory CD8 T cell −0.281186359 0.281186359 1.41E-06 ***

MANSC1 Activated CD8 T cell −0.292814914 0.292814914 4.85E-07 ***

*p <= 0.05,**p <= 0.01, ***p <= 0.001.

FIGURE 14

Hub cross-talk gene related complex network. The network consists of 210 nodes and 303 edges.
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neuroinflammation (Reuland and Church, 2020). Further, an 
increased expression of Urokinase Plasminogen-activator 
Receptor (uPAR) was observed in activated microglia in the brain 
of a patient with another neurodegenerative disease (Alzheimer’s 
disease), and uPAR expression was found to be  mediated by 
oxidative stress-related mechanisms (Walker et al., 2002).

TCIRG1 (T Cell Immune Regulator 1, ATPase H+ 
Transporting V0) encodes the a3 isoform of V-ATPase a subunit, 
which is essential for osteoclastic bone resorption. The promoter 
activity of serial-deletion fragments of the TCIRG1 gene 
promoter was observed to be  enhanced throughout the 
osteoclastic differentiation process of osteoclast RAW264.7 cells, 
and such alteration was found to be  induced by the receptor 
activator of nuclear factor kB ligand (RANKL) (Beranger et al., 
2007). TCIRG1 expression was found to induce the bone 
resorption activity of osteoclasts in periodontal disease (Heo 
et al., 2022). TCIRG1 was highly expressed in myeloid cells and 
involved in myeloid cell activation and microglial 
neuroinflammation (Funatsu et al., 2022). The mRNA expression 
of TCIRG1 gene was recently examined in human alloactivated 
T lymphocytes, which indicates that TCIRG1 was essential in T 
cell activation (Heinemann et al., 1999). Our present study found 
that the TCIRG1 expression level was positively correlated with 
effector memory cluster of differentiation (CD)8+ T cells 
(r = 0.41; p = 4.62E-11) in periodontitis. Similarly, a positive and 
significant correlation was found between the TCIRG1 expression 
level and effector memory CD8+ T cells (r = 0.17; p = 0.004) in 
PD. In periodontitis, the CD8+ T cells with an effector memory 
phenotype were shown to release anti-inflammatory cytokines 
(interleukin [IL]-10 and transforming growth factor [TGF]-β) 
and suppress bone-destructive cytokines (interferon [IFN]-γ and 
IL-17), and thus play a protective role for the alveolar bone 
(Cardoso and Arosa, 2017). In PD, the cytotoxic attack of a robust 
CD8+ T cell infiltration might initiate and propagate neuronal 
death and synucleinopathy by secreting cytolytic enzymes 
(granzymes A, B, and K) and/or pro-inflammatory cytokines 
(IFN-γ) (Galiano-Landeira et al., 2020). These studies validated 
the possibility of our findings that the hub crosstalk gene TCIRG1 
links periodontitis and PD via regulating effector memory CD8+ 
T cells.

The complement and coagulation cascade pathway was found to 
be enriched by the crosstalk genes linking periodontitis and PD. The 
complement system plays a vital role in immune surveillance, 
homeostasis, and bridges the innate and adaptive immune systems 
(Ricklin et al., 2010). A study showed that suppressing component 3 
(C3) in the complement cascade directly inhibits periodontal 
inflammation and indirectly counteracts dysbiosis, thus showing 
promising clinical potential for treating periodontitis (Hajishengallis 
et al., 2019). The complement C3-positive astrocytes were increased 
in the ventral midbrain of the intrastriatal α-synuclein preformed 
fibril (PFF)-injected mice, and C3 secreted from astrocytes could 
induce the degeneration of dopaminergic neurons, suggesting the 
potential involvement of complement and coagulation cascades in 
dopaminergic neurodegeneration in PD (Ma et  al., 2021). 
Considering the involvement of complement system activation in 

both periodontitis and PD, this pathway might link both diseases by 
means of neuroimmune interaction. The complement system 
activation triggered by periodontitis may regulate the migration and 
invasion function of the peripheral immune cells (Merle et al., 2015), 
which may penetrate the damaged BBB and induce 
neuroinflammation and neurodegeneration in PD patients (Chao 
et al., 2014). Apart from the complement and coagulation cascade 
pathway, oxidative phosphorylation was identified to be  an 
important pathogenic pathway contributing the linkages between 
both diseases. It is through oxygen oxidative phosphorylation that 
oxygen inhaled by the body is used to produce energy (Cole, 2016). 
Mutations in mitochondrial DNA result in reduced efficiency of 
oxidative phosphorylation and ATP production, overproduction of 
ROS, and a significant reduction in mitochondrial membrane 
potential (MMP) levels in pathophysiological conditions (Xu et al., 
2021). The downregulation of PD-related gene-complex I was found 
to be involved in oxidative phosphorylation by leading to reduced 
ATP formation in neurons and further inducing neuronal apoptosis 
(Ali and Dholaniya, 2022). In addition, P. gingivalis infection was 
found to promote mitochondrial fragmentation and dysfunction, 
increase the levels of mitochondrial reactive oxygen species 
(mtROS), and upregulate the phosphorylation of Drp1 gene (Xu 
et al., 2021).

The current study found that several immune cells (e.g., 
central memory CD4 T cells, effector memory CD8 T cells, 
activated CD8 T cells, myeloid-derived suppressor cells (MDSCs), 
plasmacytoid dendritic cells, activated dendritic cells, and 
Monocytes) were highly expressed in periodontitis disease and 
PD. Among these immune cells, MDSCs and dendritic cells 
obtained our particular interest. It is believed that MDSCs have 
the most potential for restoring homeostasis after inflammation, 
as well as being able to suppress adaptive immunity by suppressing 
T cell response (Kauppinen et al., 2020). The MDSCs was detected 
to be significantly increased in peripheral blood of patients with 
PD compared with healthy control individuals, which led to the 
increased production of immunosuppression-related genes 
[arginase 1 (ARG1), interleukin-10 (IL-10), and cyclooxygenase 2 
(COX-2)] (Yang et  al., 2018). MDSCs were also found to 
be  expanded, activated, and recruited as the result of the 
inflammatory response induced by P. gingivalis infection in 
periodontitis (Valero-Monroy et  al., 2016; Su et  al., 2017). As 
professional antigen-presenting cells, dendritic cells link innate 
and adaptive immunity and are vital to the induction of protective 
immune responses against pathogens (Liu et al., 2021). Peripheral 
blood dendritic cells in chronic periodontitis was found to carry 
P. gingivalis. Such microbial carriage state not only enhanced the 
differentiation of monocytes into immature myeloid dendritic 
cells, but also promoted the production of matrix 
metalloproteinase-9 and upregulated C1q, heat shock protein 60, 
heat shock protein 70, CCR2, and CXCL16 (Carrion et al., 2012). 
The recruitment of activated subsets of dendritic cells in the brain 
was found to increase the production of pro-inflammatory 
cytokines (e.g., TNFα, IL1β, and IL6) and aggregate alpha 
synuclein (Agg α-syn) fuels neuroinflammation in PD (Magnusen 
et al., 2018).
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It is noteworthy to highlight the limitation of the current 
study. The genetic factors identified in the current study are 
obtained solely using computational prediction based on the 
periodontitis-and PD-associated datasets; however, these factors 
were not validated by performing related experiments. The 
representative periodontal pathogen P. gingivalis or its derived LPS 
could be used for infecting the microglia and its activated immune 
and inflammation-related signaling pathways could be examined. 
The transcriptomic alterations of microglial cells under such 
stimulation can be  examined by performing next generation 
sequencing approach. The animal model with PD could 
be established to identify the influence of P. gingivalis or its derived 
LPS on the immune cells in the brain. Another limitation is 
regarding the GEO datasets analyzed in the current research. 
Although four datasets were included and analyzed in the current 
research, the sample size included in each dataset restricted the 
prediction accuracy of the results. In addition, there is no public 
dataset integrating both diseases and investigating the alteration 
in mRNA expression of the peripheral blood tissue in PD with/
without periodontitis. Nevertheless, this study has potential for 
clinical application by suggesting putative genetic mechanisms 
underlying the increased risk of periodontitis in PD progression. 
The five hub crosstalk genes discussed in this study hold promise 
to be developed as a chair-side kit for predicting the risk of PD in 
elderly periodontitis patients. Further investigation is needed to 
validate the prediction accuracy of these genetic findings.

Conclusion

Five genes (i.e., FMNL1, MANSC1, PLAUR, RNASE6, and 
TCIRG1) were identified as crosstalk biomarkers linking PD and 
periodontitis. The significant correlation between these crosstalk 
genes and immune cells strongly suggests the involvement of 
immunology in linking both diseases.
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