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Background: Alzheimer’s disease (AD) is the most common age-related 

neurodegenerative disorder. In view of our rapidly aging population, there 

is an urgent need to identify Alzheimer’s disease (AD) at an early stage. A 

potential way to do so is by assessing the functional connectivity (FC), i.e., 

the statistical dependency between two or more brain regions, through novel 

analysis techniques.

Methods: In the present study, we assessed the static and dynamic FC using 

different approaches. A resting state (rs)fMRI dataset from the Alzheimer’s 

disease neuroimaging initiative (ADNI) was used (n = 128). The blood-oxygen-

level-dependent (BOLD) signals from 116 regions of 4 groups of participants, 

i.e., healthy controls (HC; n = 35), early mild cognitive impairment (EMCI; n = 29), 

late mild cognitive impairment (LMCI; n = 30), and Alzheimer’s disease (AD; 

n = 34) were extracted and analyzed. FC and dynamic FC were extracted using 

Pearson’s correlation, sliding-windows correlation analysis (SWA), and the 

point process analysis (PPA). Additionally, graph theory measures to explore 

network segregation and integration were computed.

Results: Our results showed a longer characteristic path length and a 

decreased degree of EMCI in comparison to the other groups. Additionally, 

an increased FC in several regions in LMCI and AD in contrast to HC and EMCI 

was detected. These results suggest a maladaptive short-term mechanism to 

maintain cognition.

Conclusion: The increased pattern of FC in several regions in LMCI and AD 

is observable in all the analyses; however, the PPA enabled us to reduce the 

computational demands and offered new specific dynamic FC findings.
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Introduction

Alzheimer’s disease (AD) is the most prevalent progressive 
neurodegenerative disease associated with age. It typically 
starts with a preclinical stage and progresses through mild 
cognitive impairment (MCI) to clinically relevant AD (i.e., 
dementia-type AD). Although great efforts have been made to 
identify AD biomarkers, AD remains a clinical diagnosis. 
Early and accurate prediction of the disease remains limited. 
To address the increasing burden of AD, the dynamic brain 
changes associated with shifts in cognitive function that 
underpin what causes dementia must be  understood. 
Abnormal brain connectivity has been observed 20 years prior 
to the onset of brain atrophy and clinically relevant symptoms 
of AD (Ashraf et al., 2015; Nakamura et al., 2017). Thus, the 
relative risk of the development of MCI and dementia might 
be determined based on resting state functional connectivity 
(FC). It is, therefore, critical to thoroughly understand 
aberrant FC at each stage of the disease in order to improve 
strategies for early intervention.

Resting-state functional magnetic resonance imaging 
(rsfMRI) data, acquired while the participants are awake 
without performing any task, can be used to assess intrinsic 
brain functional connectivity. By means of this high spatial 
resolution neuroimaging technique, the blood-oxygen-level-
dependent (BOLD) signal across brain regions is quantified 
(Yamasaki et al., 2012; Sporns, 2013; Liu et al., 2015; Xue et al., 
2019). Some investigators have analyzed the BOLD signals 
using graph analytical methods to explore the network’s 
topological features of patients with AD (Toussaint et al., 2014; 
Jie et al., 2016; Bhuvaneshwari and Kavitha, 2017; Xu et al., 
2020). For instance, the characteristic path length supposedly 
reflects the functional integration of brain networks. Hence, a 
shorter path length indicates efficient communication between 
regions. On the other hand, the clustering or modular 
coefficients provide information regarding the segregation of 
the networks, i.e., the degree of specialization of brain regions. 
Seminal research revealed a decreased path length and 
clustering coefficients in AD in comparison to healthy patients 
(Supekar et  al., 2008; Krienen and Buckner, 2009). Other 
studies reported a decrease in clustering degree and 
modularity in AD (Brier et  al., 2014) and MCI (Seo et  al., 
2013) but a similar characteristic path length relative to 
individuals without MCI or AD.

Functional connectivity and dynamic functional 
connectivity (dFC) are measures of signal synchronicity that 
allow researchers to analyze the gradual and continuous 
changes of the BOLD signal, which are represented by signal 
correlations of the whole signal or selected windows, 
respectively (for a detailed technical description refer to Chen 
et  al., 2017; Keilholz et  al., 2017; Scarapicchia et  al., 2018; 
Zhang et al., 2020). Three metanalyses (Jacobs et al., 2013; Li 
et  al., 2015; Badhwar et  al., 2017) and another study (Kim 
et  al., 2016) using FC revealed a decrease in default mode 

network (DMN) connectivity in AD, mostly involving the 
precuneus (PCu) and the posterior cingulate cortex (PCC). 
These areas are implicated in episodic memory and attentional 
processing and are typically affected in AD (Jacobs et  al., 
2013). In MCI, the results are less consistent. Some studies 
have found an increase in FC in the mentioned regions, while 
others have found the opposite. Additionally, increased limbic 
connectivity has been seen in MCI (Badhwar et al., 2017), and 
increased connectivity of the salience network (SAL) has been 
observed in both MCI and AD (Wang et al., 2013; Thomas 
et al., 2014). Such inconsistent findings in FC may reflect the 
heterogeneity of MCI subtypes, which might be differentiated, 
for example, by symptoms and the extent of illness progression 
(Badhwar et al., 2017).

Additionally, seminal researchers have been discussing 
that an increase in functional connectivity between brain 
regions in MCI and early stages of AD has been seen to take 
place when communication between specific brain regions is 
impaired. This has been interpreted as reflecting the 
recruitment of alternative paths within the system (Hillary 
and Grafman, 2017; Marek and Dosenbach, 2018; Oldham 
and Fornito, 2019). The DMN, SAL, and frontoparietal 
network (FPN) are networks that have been reported to 
become hyperconnected at some stage during disease 
progression. These multimodal networks connect several 
regions and integrate information processing, providing high 
value at a high cost (Hillary and Grafman, 2017; Marek and 
Dosenbach, 2018). An increase in FC between alternative 
paths is efficient and adaptive in short term. However, rich 
hubs are a perfect place for beta-amyloid deposition, which 
can lead to secondary damage caused by metabolic stress and 
the eventual breakdown of the system (Hillary and Grafman, 
2017). Thus, hyperconnectivity that takes place at the 
beginning of many neurodegenerative diseases may 
be  followed by hypoconnectivity between these recruited 
paths and cognitive decline as the illness progresses (Marek 
and Dosenbach, 2018).

A further source of inconsistent FC findings in MCI and AD 
may be the use of different methods and parameters. For instance, 
the preprocessing steps, parcellation methods, window size used, 
p-values, number of samples, or inclusion and exclusion criteria 
(Tam et al., 2015; Badhwar et al., 2017). With regards to samples, 
studies that used exploration methods (e.g., correlation, clustering 
algorithms, or matrix decomposition) and other statistical 
methods (e.g., t-test, ANOVA, and Bayesian inference) typically 
do not compare across the finer stages of illness (e.g., HC, EMCI, 
LMCI, and AD), although some machine learning studies have 
done so. There have, however, been comparisons of HC, MCI, and 
AD (Zhang et al., 2020); HC, EMCI, and LMCI (Cai et al., 2015; 
Lee et al., 2016); HC with AD (Zheng et al., 2017); HC with EMCI 
(Zamani et al., 2021); HC with amnestic MCI (Wang et al., 2013; 
Jie et  al., 2016); and HC with amnestic vs. non-amnestic 
MCI. Nevertheless, the precise trajectory for FC from HC to AD 
remains unclear.
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One of the limitations of traditional FC approaches is the high 
demand for computational processing and sensitivity to residual 
noise. As the BOLD signal usually presents the same stereotypical 
pattern, larger amplitude BOLD signal peaks likely provide the 
most critical information, i.e., neural events (Aguirre et al., 1998; 
Cifre et  al., 2020). Several studies suggest that patients with 
neurological and psychiatric diseases present greater variability in 
the BOLD signal over the scan session (Keilholz et  al., 2017). 
Hence, these peaks might be highly useful in these cases as they 
might reveal key intrinsic brain connectivity that can only 
be detected when assessing the amplitude of the signals (Keilholz 
et  al., 2017). In fact, a higher recognition accuracy between 
healthy participants and patients with autism has already been 
detected in our previous work (Cifre et al., 2021) using the point 
process analysis (PPA), a method that captures these relevant 
events. Other researchers obtained similar results, thereby 
successfully differentiating across groups when applying the PPA 
to patients with diabetes (Li et al., 2014).

Using the PPA method, local peaks of the BOLD time series 
are selected to generate a co-activation matrix that defines the 
co-occurrence of points. Apart from reducing noise, the bursts 
of correlated activity between regions are not required when 
using the PPA. This phenomenon occurs because the 
assumption behind this method is that those events with a 
higher amplitude, i.e., peaks, contain avalanches of neural 
information that are the consequence of the intrinsic activity 
between communities of neurons (Cifre et al., 2021). Previous 
work exploring the BOLD activation showed similar results 
when using a seed-based approach and a PPA, i.e., activation 
maps when using a seed-based approach, selecting all the time 
points (between 140 and 240), in comparison to using only a 
PPA, selecting just those time points that surpass 1 SD of the 
BOLD signal (between 4 and 8 points). Additionally, when 
exploring the changes in brain integration or connectivity, the 
PPA is more sensitive to capturing changes across groups 
(Tagliazucchi et al., 2011, 2012; Hutchison et al., 2013; Cifre 
et al., 2020, 2021). To the best of our knowledge, PPA has never 
been applied to rsfMRI datasets of patients with AD and 
MCI. This method might offer an efficient way to manage big 
data sets and to better understand the changes in the FC 
dynamics across the different stages of the disease.

The main goal of this present study was to explore FC and dFC 
across groups. A PPA was applied to a dataset of patients with AD, 
LMCI, EMCI, and age- and sex-matched healthy individuals 
(HC). Additionally, to compare findings with other classical 
methods, pairwise correlations of the whole BOLD signal, graph 
theory measures, and an SWA were applied. In line with previous 
literature, it was expected to find (1) differences across the four 
groups in FC and variability within and between the DMN, SAL, 
visual networks (VS), and CEN; (2) an increased FC in EMCI and 
LMCI and a slightly decreased FC in AD in several networks in 
contrast to the other groups; and (3) more subtle differences 
across groups when using the PPA in comparison to the 
other methods.

Materials and methods

Participants

All rsfMRI, T1 MRI, and demographic data from participants 
were downloaded from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI; http://adni.loni.usc.edu/; Franzmeier et  al., 
2017). A total of 36 HC age- and sex-matched, 29 with EMCI, 30 
with LMCI, and 34 with AD were included in this study. All the 
images correspond to the screening visit, which is coded in ADNI2 
as Screening MRI-New Pt (V02). Between groups, there were no 
differences in age, sex, and years of education. Patients with AD 
presented significantly lower scores in the screening assessment 
cognitive test Mini-Mental State Examination (MMSE) in 
comparison with the three other groups. Expectedly, there were no 
differences between groups in episodic memory measured by the 
Scale Logical Memory II (delayed paragraph A recall) and the 
Wechsler Memory Scale cognitive tests (refer to Table  1). A 
participant from the HC group was eliminated before the analysis 
because some time series were missing. Further inclusion and 
exclusion criteria are exposed in detail in the “ADNI 2 Procedures 
manual” (pages 27–30); access is available through this link: http://
adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-
manual.pdf. Data access was approved by contacting the ADNI 
Ethics Committee1 and sending a request with a proposed analysis 
and the name of the principal investigators.

Data acquisition

T1 and fMRI images were acquired using Philips Medical 
Systems Scanners and they underwent control at the Mayo Clinic. 
The fMRI images were obtained with a field strength of 3.0 Tesla, 
a repetition time of 3 s, an echo time of 30 ms, a flip angle of 80°, 
matrix 64 × 64, 140 volumes, 48 slices per volume, and a slice 
thickness of 3.3 mm. The voxel size was 3.3 × 3.3 × 3.3 mm3. For 
further details on MRI acquisitions, refer to the “MRI scanner 
protocol” at http://adni.loni.usc.edu/wp-content/uploads/2010/05/
ADNI2_MRI_Training_Manual_FINAL.pdf.

Data preprocessing

The MATLAB toolbox “Data Processing Assistant for Resting-
State fMRI” (DPARSF; Yan and Zang, 2010) was used to 
preprocess the data. First, slice timing and head motion correction 
were applied. No subjects with a mean movement on translation 
or rotation over 2 mm were found. Then, registration was 
performed for the corrected fMRI image. Finally, normalization 
using the Montreal Neurological Institute (MNI) space, spatial 
smoothing (with an 8 mm full-width half-maximum Gaussian 

1 http://adni.loni.usc.edu/data-samples/access-data/
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TABLE 1 Information of the participants included in this study.

Group Between-group differences

HC EMCI LMCI AD f Value of p

Number 35 29 30 34 – –

Sex (M/F) (15/21) (13/16) (18/12) (16/18) – Chi2 = 2.21 p = 0.52

Age x  (SD) 73.60 (5.75) 71.36 (5.46) 70.63 (8.23) 72.44 (7.09) 1.08 p = 0.36

Years of ed. x  (SD) 16.37 (2.36) 15.96 (2.41) 16.85 (2.60) 15.5 (2.75) 1.72 p = 0.167

MMSE x  (SD) 28.53 (1.92) 27.76 (1.94) 27.60 (1.47) 22.69 (2.53) 54.5 p < 0.0001a,b,c

LDELT x  (SD) 13.50 (3.48) 8.65 (1.80) 4.46 (2.92) 1.31 (1.97) 122.28 p < 0.0001a,b,c,d,e,f

MOCA x  (SD) 25.49 (1.91) 24.11 (2.50) 21.61 (3.69) 16.5 (5.24) 38.45 p < 0.0001a,b,c,d,f

The table displays means, standard deviations and differences in age, years of education (Years of ed.), scores in the Mini Mental State Examination (MMSE), in the Scale Logical Memory 
II (delayed paragraph A recall) (LDELT) and in the Montreal cognitive assessment (MOCA). Statistical analysis of variance (ANOVA) was used to assess differences. Differences in 
gender were assessed using a Chi Squared test. HC, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease. 
aAD < EMCI.
bAD < LMCI.
cAD < HC.
dEMCI < LMCI.
eEMCI < HC.
fLMCI < HC.

Kernel), and bandpass filtering (0.001–0.1 Hz) to remove 
low-frequency scanner drift and physiological noise of the fMRI 
images were applied.

The automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) was used to extract 116 Regions-Of-Interest 
(ROIs) of the preprocessed rsfMRI dataset. This parcellation 
method has been shown to be  optimal to understand the FC 
between brain regions (Arslan et al., 2018). The voxels within each 
ROI were averaged to obtain a time series per ROI. Each time 
series contains 140 timepoints (3 s TR, i.e., 420 s in total).

All the analyses described in the following subsections (refer 
to Figure 1) were performed using MATLAB ver. R2018a.

Static FC analysis with Pearson’s 
correlation

The Pearson’s correlation coefficient (PCC) between the entire 
time series was computed to extract the FC in a pairwise manner 
(ROI to ROI correlation) per participant. Hence, correlation 
matrices of 116 × 116 (ROI * ROI) were obtained per each subject. 
Then, a one-way analysis of variance (ANOVA) and post-hoc 
comparisons were conducted to explore differences between the 
groups. Those regions that presented differences in FC across 
groups were checked for outliers; more specifically, whether the 
FC was three-scaled median absolute deviations (MAD) away 
from the median for each participant in each group was explored. 
Then the FC was computed again after removing these participants.

Graph theory measures

To explore some characteristics of the brain networks, 
such as integration and segregation, several graph theory 

measures were computed (Rubinov and Sporns, 2010). More 
specifically, we computed the clustering coefficient to measure 
local connectivity and segregation, the global path length to 
measure the average shortest path between two nodes and to 
reveal how efficient communication between regions or how 
integrated the brain is, and finally, the mean degree to quantify 
the mean number of edges connected to a node, i.e., mean of 
all node degrees. These measures were computed by 
converting the FC matrices into binary graph matrices that 
represent nodes and edges.

The brain is a highly centralized network, often called a 
scale-free or a power-law network (Sporns et  al., 2004; 
Haimovici et  al., 2013). This type of structure shows an 
exponential or power relationship between the degree of 
connectivity of a node and its frequency of occurrence; more 
specifically, the brain contains a few rich hubs or nodes that 
connect to several regions, and many nodes are connected to 
just a few regions, i.e., the majority of nodes present a low 
degree. Taking this fact into consideration, to satisfy small 
worldness or scale freeness of features, different thresholds were 
used to binarize the static FC matrices before performing graph 
theory measures, i.e., raw FC values (PCC), from 0.1 to 0.5 at 
intervals of 0.01. A threshold of 0.3 was selected. Hence, those 
ROI-to-ROI connections that exceeded a threshold of 0.3 (PCC 
value) were set to 1, while those below 0.3 were set to 0 (note 
that the possible FC values range was −1 to 1, absolute values 
were not used). This threshold, apart from ensuring scale 
freeness, enables one to better differentiate among groups (refer 
to Supplementary material). Other researchers using rsfMRI 
datasets concluded that a threshold between 0.21 and 0.4 is 
optimal to enable the differentiation of groups (Aurich et al., 
2015; Ye et al., 2015; Ahmadi et al., 2021; Ng et al., 2021). Graph 
theory measures were performed using the brain connectivity 
toolbox: https://sites.google.com/site/bctnet/.
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After extracting the brain network features, a one-way analysis 
of variance (ANOVA) and post-hoc comparisons were conducted 
to explore differences between pairs of groups.

Temporal variability of FC by means of 
sliding window correlation and standard 
deviation

An SWA was used to explore the dFC of our samples, more 
specifically the temporal variability of FC. In order to use a 
window length that captured fast changes in the signal while 
also keeping an optimal level of robustness, a window size 
assessment was performed prior to the analysis (Leonardi and 
Van De Ville, 2015). This trade-off between sensitivity and 
specificity was examined by computing the mean correlation of 
the mean of all ROI-to-ROI correlations and exploring how the 
mean FC value varied as a function of window size (refer to 
Figure 2). The same procedure was used to explore the mean of 
the standard deviation (SD) of each window matrix as a 
function of window size. The length window assessment was 

performed for overlapping windows from 5 to 140 time points 
(i.e., from 15 to 420 s), with an increment of one time point 
(Mokhtari et al., 2019).

Once the optimal window size was selected, SWA was 
performed. First, the FC between each pair of regions was 
computed for each window, obtaining as many connectivity 
matrices as windows. Then, the variability (i.e., the standard 
deviation of FC across windows for each ROI-to-ROI) was 
computed, obtaining one covariance matrix per group.

A one-way analysis of variance (ANOVA) and post-hoc 
comparisons were conducted to explore differences between pairs 
of groups.

Point process analysis

The main difference between static functional connectivity 
and PPA is that the former keeps all the time points for the 
analysis while the latter just includes those points that surpass a 
threshold of 1σ (Tagliazucchi et al., 2012; Cifre et al., 2020, 2021). 
The steps conducted in the PPA consisted of first thresholding the 

FIGURE 1

displays the methods used in the study. First, the fMRI and T1 image acquisitions were downloaded from the Alzheimer’s disease neuroimaging 
initiative (ADNI) database. Then the images were preprocessed using the DPARSF pipelines. Timeseries from 116 regions of interest (ROIs) were 
extracted using the automated anatomical labeling (AAL) atlas. These 116 time series were used to perform three main analyses displayed on the 
right side of the figure namely, functional connectivity (FC), sliding window analysis (SWA), and point process analysis (PPA). The top right side of 
the figure shows the FC where the Pearson’s correlation coefficient of each pair of regions was computed using the mean whole signal of each 
time series; the middle right side of the figure shows the SWA, that consisted of dividing the time series into non-overlapping windows, computing 
the FC for each window and determining the variability in FC across windows; the third plot on the right side of the image shows the PPA, this is a 
single frame analysis where points that surpass the threshold of 1 SD of each time series were selected, coincident points between pair of regions 
where summed and displayed in a matrix of addition. The fourth plot on the right side of the image displays the graph measures conducted in the 
study. To test the statistical significance of each analysis, a one-way-ANOVA with multiple comparison tests was conducted, corrected with 
Bonferroni at p < 0.05.
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time series of each ROI considering the amplitude of the BOLD 
signal. Only those events or peaks that surpass 1σ were selected 
(refer to Tagliazucchi et al., 2012). Empirically, for the threshold 
of 1σ in a BOLD signal, we  find on average 8.5 ± 2.8 upward 
crossings per 4 min of fMRI scan. This number of points has been 
proven to be sufficient by other authors (Tagliazucchi et al., 2012). 
This is because the BOLD signals that are situated upward are 
non-linear events that contain the most relevant information and 
follow a power law. Second, all those points of the time series that 
surpassed 1 SD of the BOLD signal were selected as relevant. 
Co-activation binary matrices for each timepoint were generated, 
e.g., in timepoint 1 FC between ROI 1 and ROI 2, the signal is 
relevant (both surpass 1 SD), in timepoint 1 ROI 1 and ROI 3 in 
time 1, the signal is not relevant (<1 SD…). This is conducted for 
all 140 time points for each of the 116 pairs or ROIs. Finally, a 
matrix of addition was computed for each pair of ROIs per 
participant, e.g., connectivity between ROI 1 and ROI 2 in PPA 

was acquired by adding all the time points that were relevant 
throughout the time series. This is similar to the correlation 
matrix obtained in the classic FC, but in the PPA, instead of 
computing the correlation between pairs of regions, the 
summation of the number of relevant points is obtained (refer to 
Supplementary material).

A one-way analysis of variance (ANOVA) and post-hoc 
comparisons were conducted to explore differences between pairs 
of groups.

Statistical analysis

A one-way analysis of variance (one-way-ANOVA) and 
multiple comparison tests corrected with Bonferroni correction at 
p < 0.05 were used to compare results across groups in all the 
analyses conducted, i.e., FC, graph theory measures, SWA, and 

A B

C D

FIGURE 2

The figure represents the window size analysis before conducting the sliding window correlation analysis. (A) Global FC as a function of window 
size. The Y-axis represents the mean FC or correlation of all the ROI to ROI correlations windows of a participant with AD. The X-axis shows 140 
time points of the whole time series. Each time point represents 3 s (TR = 3 s). The mean correlation varies as a function of window size. Shorter 
windows present a lower mean correlation while windows from 30 or above present a higher correlation. (B) The Y-axis represents the mean 
standard deviation (SD) of the SD of all the ROI to ROI correlations across windows of a participant with AD. The X-axis shows that this mean SD 
varies as a function of window size. Shorter windows present a higher variability while windows of 30 time points or above present a lower SD. 
(C) The plot shows the difference between the mean correlation of all ROI to ROIs using a certain window size and the global static (D) The 
difference in the variability among windows using window sizes higher than 30 fluctuates around 0, meaning that results in SWA are almost the 
same, no matter the window length chosen.
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PPA. This method for multiple comparisons is one of the most 
commonly used for rsfMRI analysis (Lindquist and Mejia, 2015).

Results

Static functional connectivity

The results showed an increase in FC between several ROIs in 
LMCI and AD in comparison to HC and EMCI (refer to Table 2). 
More specifically, the AD presented an increased FC between the 
angular gyrus (left) and cerebellum crus II (left) in contrast to the 
EMCI and between the superior occipital gyrus (right) and 
calcarine fissure (left). Relative to HC, AD also presented an 
increase in FC between the thalamus and the inferior frontal gyrus 
(left), between the middle temporal gyrus (left) and the caudate 
nucleus (left), between the vermis 9 and the occipital superior 
(left), and between the caudate (right) and the frontal inferior 
gyrus (left). The only regions that presented a decreased FC in AD 
in comparison to HC were the middle temporal gyrus (right) and 
the superior occipital gyrus (left).

To explore whether this pattern of connectivity was also 
present globally, the mean FC of all ROI-to-ROI correlations of 
each group was conducted. The results did not show a significant 
difference across groups (refer to Figure 3).

Graph theory measures

Additionally, the clustering coefficient, degree, and global 
characteristic path length network measures were computed.

Patients with EMCI presented a significantly longer 
characteristic path length and a shorter mean degree in 
comparison to LMCI, AD, and HC. Results in the mean clustering 
coefficient did not show significant differences among groups 
(refer to Table 3).

Sliding window correlation analysis

As expected, the variability when computing SD across 
windows using short windows, i.e., from 1 to 20 time points 
(3–60 s), was substantially higher, and the correlation was 
lower than when computing it for longer windows, i.e., 
120–139 time points. Window lengths from 30 to 120 TR 
showed increased stability. Hence, the time series were divided 
into overlapping windows of 30 time points, i.e., 90 s to have 
as many windows as possible to ensure a good trade-off 
between sensitivity and robustness. Our windows are short 
enough not to miss FC fluctuations in our BOLD data and 
long enough to be robust and only real fluctuations. Previous 
studies also indicated enough variability and robustness in 

TABLE 2 Pairs of brain regions showing significant differences in FC between groups when performing a one-way ANOVA.

Network ROI Network ROI P value Post hoc FC x  (SD)

Cerebellum Cerebellum: Crus II 

(left)

DMN Parietal lobe 0.0007 AD > EMCI 0.38 

(0.2) > 0.13(0.32)

Cerebellum 2nd Non-

motor: VIIB (right)

Sensory motor Central region: 

Postcentral gyrus (left)

0.0021 AD > EMCI 0.47 (0.24) > 0.25 

(0.23)

Vermis 9 Visual II Occipital superior 

(Left)

0.0022 AD > NC 0.34 (020) > 0.13 

(0.25)

Visual I Occipital lobe: medial 

surface, calcarine fissure 

(left)

Visual II Occipital lobe (lateral): 

Superior occipital gyrus 

(right)

0.0007 AD > EMCI 0.67 (0.17) > 0.50 

(0.20)

Occipital lobe: inferior 

surface, Lingual gyrus 

(right)

Visual II Occipital inferior gyrus 

(right)

0.0015 LMCI > EMCI; NC > EMCI 

0.62 (0.12) > 0.49 (0.21); 0.62 

(0.16)

Auditory Temporal lobe: middle 

temporal gyrus (right)

Visual II Occipital lobe (lateral): 

Superior occipital gyrus 

(left)

0.0025 AD < NC 0.11 (0.29) < 0.34 

(0.20)

Basal ganglia Caudate (right) Dorsal left Frontal lobe: Inferior 

frontal gyrus

0.0022 AD > NC 0.45 (0.19) > 0.25 

(0.25)

Subcortical gray nuclei: 

Caudate nucleus (left)

Dorsal left Temporal lobe: middle 

temporal gyrus (left)

0.0022 AD > NC 0.39 (0.21) > 0.22 

(0.23)

Thalamus Sub cortical gray nuclei 

(right)

Ventrolateral prefrontal 

cortex

Frontal lobe: Inferior 

frontal gyrus triangular 

part (Left)

0.0008 AD > NC 0.50 (0.14) > 0.30 

(0.20)

The table displays the ROI to ROI Functional connectivity (FC) results and the differences between groups. HC, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild 
cognitive impairment AD, Alzheimer’s disease; DMN, default mode network.
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windows between 30 and 60 time points in rsfMRI studies 
(considering the frequency of the BOLD signal being 
0.1–0.001 Hz; Esposito et al., 2019).

Greater differences in variability across groups were detected 
between several areas of the DMN and the attentional networks 
(executive and dorsal) between the left auditory cortex and the 
right dorsolateral frontal cortex, as well as between the right 
cerebellum right and the left sensory-motor cortex and between 
areas within the right cerebellum (refer to Table 4). Expectedly, the 
group that showed more variability in FC among windows is the 
EMCI group that showed a decrease in the static FC (analysis 
explained in the subsection above). Moreover, the AD showed a 
decrease in variability and presented an increase in sFC.

Point process analysis

Some overlap in the results of the static FC and the PPA was 
detected (refer to Table  5). The LMCI and AD presented an 
increased FC between several brain regions in comparison to the 
HC and the EMCI. Specifically, the AD group, when compared 
with the LMCI, presented a higher FC between the cerebellum 
crus I (left) and the angular gyrus (left); an increased FC when 
compared with the EMCI, between the caudate (left) and the 
frontal gyrus (triangularis part); and also increased FC in 

comparison with HC between the insula (left) and the middle 
frontal gyrus (left), between the parahippocampus (right) and the 
insula (left), between the insula (left) and the inferior frontal 
triangular part (right), and between the thalamus (right) and the 
frontal inferior triangular part (left). The AD only presented a 
decrease in FC in contrast to LMCI between the cerebellum 
(right) and the amygdala (right).

The LMCI presented a higher FC in comparison with EMCI 
between the cerebellum (right) and the basal ganglia and between 
the superior frontal gyrus medial (left) and the inferior frontal 
triangular part (right). The LMCI also presented a higher FC 
compared to HC between the parietal superior gyrus (right) and 
the orbital medial gyrus (right). The LMCI only presented a 
decrease in FC between the precuneus (right) and the middle 
occipital gyrus (right) in comparison to HC.

To summarize, Figure 4 displays a general view of the results 
obtained using FC, PPA, and SWA. As shown in the images, both 
the static FC and the PPA results showed an increase in 
connectivity between specific regions in the AD and the LMCI 
and a decrease in connectivity in EMCI. Additionally, the SWA 
results showed that variability in FC between brain regions across 
time is higher in the EMCI, which is statistically coherent with the 
fact that correlation or FC between regions is reduced in this 
group. The PPA was more sensitive in detecting changes 
across groups.

TABLE 3 Graph theory measures.

Measure HC x  (SD) EMCI x  (SD) LMCI x  (SD) AD x  (SD) Value of p Group differences

Path length 1.568 (0.61) 1.606 (0.61) 1.501 (0.577) 1.516 (0.585) 0.05 EMCI > LMCI; EMCI > 

AD

Cluster coeff. 0.783 (0.11) 0.776 (0.11) 0.793 (0.04) 0.796 (0.11) 0.52 –

Degree 67.5 (23.98) 51.689 (23.71) 60.534 (24.11) 59.431(24.14) 0.02 EMCI<LMCI; EMCI<AD

It displays results in graph measures: the mean, standard deviation, and the significant differences between groups in path length, cluster coeff. (Clustering coefficient) and degree. The 
EMCI, early mild cognitive impairment group, presented a higher path length and a lower degree in comparison with the other groups.

FIGURE 3

shows no significant differences between groups that were found globally in FC (subplot on the left), SWA (subplot in the middle), and PPA 
(subplot on the right).
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Discussion

This study aimed to explore FC across stages of AD using the 
PPA and other classical methods. It was hypothesized that the 
connectivity in and between the DMN, SN, CEN, and VN would 
be altered in MCI and AD. Our results showed several differences 
across groups within and between the mentioned networks and 
other additional networks. Moreover, it was expected that there 
would be an increase in FC for EMCI but a decrease in AD for the 
mentioned networks. Unexpectedly, an increase in connectivity in 
LMCI and AD and a slight decrease in EMCI in contrast to the 
other groups were found. Finally, as expected, the PPA was the 
most sensitive method when capturing differences in FC across 
groups. A discussion of the results obtained using the different 
methods is provided below.

Static FC and PPA: An increased FC in 
LMCI and AD

A reduction in mean functional connectivity between several 
brain regions, mostly in posterior and medial areas, as well as an 
increase in the FC variability across windows of time was expected 
in AD in comparison to EMCI and LMCI. However, our results 
showed a higher FC in LMCI and AD, but a decrease in EMCI in 
comparison to the other groups between several brain regions. 
This suggests a non-linear connectivity pattern that begins with 
optimal connectivity in HC, followed by a slight decrease in 

EMCI, and then by an enhancement of FC between several regions 
in LMCI and mild AD.

Some researchers used rsEEG (Bonanni et  al., 2021) and 
rsfMRI and reported an increase in FC between multiple brain 
regions in prodromic AD and a decrease in AD. This mechanism 
is hypothesized by the authors to be caused due to GABAergic–
glutamatergic dysregulation. Additionally, a postmortem study 
(Snowden et  al., 2019) that analyzed brain tissue found that 
patients with AD presented a GABAergic increase and a glutamate 
decrease in AD in the inferior temporal gyrus, the most vulnerable 
region, to accumulate TAU tangles. Consequently, an inhibitory 
environment and a decrease in action potentials take place. Taken 
together, we would expect to observe an increase in connectivity 
in prodromic AD and MCI followed by a decreased FC in AD. In 
our study, however, a decreased FC was only observed in EMCI 
followed by an increased FC in LMCI and AD. The exception to 
this was for a pair of posterior regions that presented a decrease in 
connectivity in AD, i.e., the right middle temporal gyrus and right 
superior occipital gyrus. This increased FC in LMCI and AD was 
only seen in the current study by differentiating EMCI and LMCI, 
not often done in previous works. Moreover, in a postmortem 
study, patients with AD were older and presented moderate or 
severe AD, where decreased connectivity is more expected due to 
an increase in cellular death and atrophy. Furthermore, it is well-
established that a high release of glutamate is neurotoxic and 
might be one of the causes of neuronal death (Maragos et al., 
1987). Here, it can be hypothesized that the increased FC observed 
in LMCI and AD groups could be enhanced by a low GABAergic 

TABLE 4 Between group differences in mean ROI to ROI dispersion across windows using a one-way ANOVA.

Network ROI Network ROI P value Post hoc x  (SD)

Cerebellum Cerebellum 7b (right) Sensory motor Postcentral gyrus (left) 0.0007 AD < EMCI 0.15 

(0.07) < 0.21 (0.07)

Cerebellum 8 (right) Cerebellum Cerebellum 7b (right) 0.0008 AD < EMCI; AD < LMCI 

0.07 (0.07) < 0.12 (0.06); 

0.07 (0.07) < 0.12 (0.07)

Basal ganglia Caudate (right) Dorsal right Middle frontal gyrus orbital 

(right)

0.0016 HC < EMCI 0.17 

(0.063) < 0.22 (0.045)

DMN Superior frontal gyrus, 

medial orbital (left)

DMN Angular gyrus (left) 0.0016 AD < EMCI 0.15 

(0.05) < 0.17 (0.052)

Superior frontal gyrus, 

medial orbital (left)

Dorsal left Middle frontal gyrus, 

orbital (left)

0.0011 AD < EMCI 0.15 

(0.06) < 0.17 (0.05)

Auditory Temporal pole: superior 

temporal gyrus (left)

Dorsal right Frontal lobe: Middle frontal 

gyrus (right)

0.0004 AD < EMCI 0.14 

(0.052) < 0.19 (0.062)

Rolandic operculum 

(left)

Sensory motor Supplementary motor area 

(left)

0.0011 LMCI < EMCI; AD < EMCI 

0.15 (0.04) < 0.21 (0.07); 

0.16 (0.04) < 0.21 (0.07)

Executive function Superior frontal gyrus 

orbital (left)

Dorsal left Supramarginal gyrus (left) 0.0018 HC < EMCI 0.16 

(0.05) < 0.22 (0.07)

Overlapping SWA, Sliding Window Analysis, results with a window size of 30 time points (TR = 3 s) and an increment of 1 time point for each slide. One-way ANOVA Significant 
differences between groups at a p < 0.05. HC, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment AD, Alzheimer’s disease.
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or inhibitory activity along with a high or excitatory activity in 
areas where TAU is not yet installed (e.g., thalamus, caudate, and/
or cerebellum). On the other hand, early pathologic damage might 
explain the decreased FC in AD between the right middle 
temporal gyrus and the right superior occipital gyrus.

An increased FC has also been associated with mal(adaptive) 
rewiring of the brain after pathologic damage occurs. This idea is 
not mutually exclusive to the neurotransmitter dysregulation 
hypothesis, and the two mechanisms might co-occur in an 
additive fashion. Some authors have distinguished two types of 
hyperconnectivity rewiring after brain damage: local 
hyperconnectivity and global hyperconnectivity (Snowden et al., 
2019). The former states that local alternative paths close to 
damaged brain areas are used to ensure that communication 

between networks is possible to preserve function. The latter 
refers to the brain using multimodal or rich nodes, independently 
of the localization of the brain damage, in order to ensure the 
maintenance of cognitive function. Following the popular stages 
of AD degradation as proposed by Braak and Braak’s (1995) 
research, the first areas damaged in AD (stages I and II) due to 
TAU deposition are the posterior ones, more specifically, the 
brain stem followed by the entorhinal. These areas are then 
followed by the limbic and whole neocortex in more advanced 
stages (III–IV), and then the hippocampus and anterodorsal 
thalamic nucleus. As the participants of our study present mild 
AD, this sign of increased FC in some posterior areas might 
indicate that certain regions of the posterior cortex could 
be affected but other areas are still preserved and can be recruited. 

TABLE 5 Differences in FC using the point process analysis.

Network ROI Network ROI Value of p Post hoc

Cerebellum Cerebellum 10 (right) Basal ganglia Amygdala (right) 0.0001 EMCI < LMCI; AD < LMCI 

3.03 (2.14) < 6.3 (3.23); 

3.61 (2.82) < 6.3 (3.23)

Cerebellum Crus1 (left) DMN Angular gyrus (left) 0.0003 LMCI < AD 4.3 

(2.71) < 7.05 (0.62)

Cerebellum crus I (left) Dorsal left Middle temporal 

gyrus (left)

0.0015 EMCI < AD 7.68 

(3.21) < 9.97 (3.52)

Visual III Middle occipital gyrus (right) DMN Precuneus (right) 0.0012 LMCI < HC 7.8 

(3.74) < 11.22 (3.53)

Basal ganglia Caudate (right) Dorsal left Frontal lobe: Inferior 

frontal gyrus 

triangular part (left)

0.0006 EMCI < AD 5.34 

(2.37) < 7.9 (2.93)

Parahippocampal (right) Auditory Insula (left) 0.0014 HC < AD 3.71 (2.12) < 5.85 

(2.74)

Caudate nucleus (left) Dorsal left Inferior frontal gyrus, 

triangular part (left)

0.0018 HC < AD; EMCI < AD 5.51 

(2.48) < 7.76 (3.40); 5.41 

(2.47) < 7.76 (3.40)

Thalamus Sub cortical gray nuclei: 

Thalamus (right)

Dorsal left Inferior frontal gyrus 

triangular part (left)

0.0020 AD > HC 8.97 (3.08) > 6.31 

(2.44)

DMN Superior frontal gyrus, 

medial orbital (right)

Dorsal right Parietal superior gyrus 

(right)

0.0012 HC < LMCI 7.14 

(3.82) < 7.36 (3.69)

Superior frontal gyrus medial 

orbital (right)

Dorsal right Angular gyrus (right) 0.0016 EMCI < LMCI; 

HC < LMCI 6.51 

(3.36) < 8.1 (3.35); 7.25 

(3.70) < 8.1 (3.35)

Auditory Insula (left) Dorsal left Inferior frontal gyrus 

triangular part (left)

0.0009 HC < AD 6.8 (2.72) < 9.58 

(3.66)

Insula (left) Dorsal (right) Inferior frontal gyrus 

triangular part (right)

0.0015 HC < AD 5.4 (2.88) < 7.14 

(3.87)

Executive function Superior frontal gyrus medial 

(left)

Dorsal (right) Inferior frontal gyrus 

triangular part (right)

0.0014 EMCI < LMCI 6.96 

(3.25) < 8.33 (3.21)

It displays the differences between groups in dynamic functional connectivity (dFC) between pairs of regions (ROIs) measured by points that surpass a threshold of BOLD signal 
activation of 1 standard deviation (SD). HC, healthy controls; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment AD, Alzheimer’s disease; DMN, default 
mode network.
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A study showed increased correlations between occipital regions. 
Some investigators presented the same results regarding 
hyperactivity in AD in the middle occipital gyrus, lingual gyrus, 
and visual cortex and explained the findings as an adaptation of 
the brain networks in response to the disease (Wang et al., 2019).

Although several researchers have justified an increased FC 
in neurodegenerative diseases as an adaptive mechanism of 
neuroplasticity to protect behavior and cognition against brain 
damage, the mechanisms behind FC and its relationship with 
cognition and behavior are not well understood yet. Multiple 
factors play a role in FC, and at the time of writing, there is a lack 
of understanding of what is really causing a specific pattern of FC, 
i.e., what factors can explain an increased or decreased 
FC. Currently, interpretations of results in FC have been 
speculative. For instance, can an increase in FC in several areas 
be  explained simply by structural disconnection and not by 
compensatory mechanisms? A study conducted by Patel et al. 
(2018) revealed that structural disconnection in patients with 
multiple sclerosis could explain an increase in rsfMRI (Wang 
et  al., 2019). Whether this increase in FC is due to neural 
compensatory mechanisms or not needs to be further investigated 
using multimodal neuroimaging techniques.

Additional measures performed: Graph 
theory measures

Patients with EMCI showed a longer characteristic path length 
in contrast to the patients with LMCI and AD, probably reflecting 
a need for EMCI to connect inter-regionally due to local damage. 
In comparison, in LMCI and AD, there might be more widespread 
pathology and more areas connected in a more disorganized way 
and presenting shorter paths. A shorter characteristic path length 
in HC is probably a sign of efficiency in connectivity between long 
distant areas, while in AD, shorter paths might mean disrupted 
connectivity, and the whole brain is more connected but in a 
disorganized manner, i.e., a decrease in metastability. A study 
reported disrupted global metastability in AD (Córdova-Palomera 
et al., 2017). Other studies reported longer mean characteristic 
path lengths in MCI (Wang et al., 2013).

It can be speculated that in LMCI and at the beginning of AD, 
the brain might be rewiring in a widespread manner, finding local 
and global alternative paths to maintain cognitive functioning. 
This adaptive and short-term solution might incur, however, a 
high cost for the network, as usually, any alternative paths that 
involve rich hubs generate a proper environment to facilitate the 

FIGURE 4

shows between-group significant differences between specific brain networks in static functional connectivity (sFC), point process analysis (PPA), 
and variability in functional correlation across windows applying sliding window correlation analysis (SWA). Dorsal, dorsal network; DMN, Default 
Mode Network; SM, Somatosensory network; VLPC, Ventrolateral prefrontal cortex; BG, Basal Ganglia; Thala, thalamus; VI, Visual network I; VII, 
Visual network II; Cereb, Cerebellum; CEN, Central Executive Network; AN, Auditory Network.
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formation and accumulation of TAU protein tangles (Bonanni 
et al., 2021).

Sliding windows correlation analysis 
(variability among windows)

It has been reported that patients with pathology might 
present more variability in the BOLD signal over time. The SD of 
the correlation metrics across windows allowed us to see the 
variability in FC between pairs of regions. Usually, regions with 
greater variability imply a lower correlation (Rolls et al., 2021).

Significant differences in variability across windows were 
found between groups. Results showed that the EMCI presented 
a greater variability over time in most connections. This finding is 
aligned with the static FC results that showed a decreased 
correlation between several brain regions. Most of the ROIs 
detected are similar for static FC and PPA analysis.

Specific brain regions affected in AD and 
LMCI with decreased FC (static FC 
analysis, SWA, and PPA)

Besides this decrease–increase in FC patterns, the specific 
brain regions that presented a sharp abnormal connectivity show 
consistency with other studies. For instance, several studies have 
reported a decrease in FC in EMCI between the thalamus (left/
right) and frontal gyrus and between the temporal and occipital 
gyrus (Cai et al., 2015). Additionally, a study showed that AD 
participants presented a larger caudate nucleus volume in AD, 
probably reflecting a compensation mechanism of damage in the 
closest areas such as the hippocampus. Pathology in the 
hippocampus could explain an increased stimulation of the 
caudate nucleus, causing an increase in volume and FC between 
it and the cortical brain regions (Persson et al., 2018).

On the other hand, the cerebellum was classically thought to 
be unaffected in MCI and AD (Chételat et al., 2008). However, 
gray matter atrophy in the cerebellum and pathological changes, 
such as beta-amyloid deposits and neurofibrillary tangles, have 
been observed (Ciavardelli et al., 2010; Córdova-Palomera et al., 
2017). The current results showed abnormal connectivity in the 
cerebellum and between the cerebellum and other regions 
(cerebellum crus II and DMN, sensory-motor and cerebellum VII, 
and cerebellum 8 and cerebellum 7b). Other studies also found 
aberrant FC within the cerebellum (Cai et al., 2015) and between 
the Crus II and the DMN (Toussaint et al., 2014).

The precuneus, a specific region of the DMN, is a relevant hub 
that enhances connectivity between several brain regions. A 
decreased FC between this and other regions has been associated 
with changes in the brain’s vulnerability in early Alzheimer’s 
disease. Our PPA results showed a decreased FC in LMCI in 
contrast with HC (Nelson et  al., 2009; Yokoi et  al., 2018). A 

decreased FC of the precuneus might be the cause of increased FC 
in regions next to this region (local hyperconnectivity hypothesis) 
and far from this region (global hyperconnectivity hypothesis).

The added value of SWA and the PPA to 
the static FC

Although our results showed some overlap or complementarity 
across methods, for instance, areas or networks, there were also 
differences across methods. It is worth noting that the PPA was 
able to detect more changes across groups.

Some areas that showed aberrant FC detected by means of 
the SWA and the PPA were not detected in the static FC. For 
instance, the AD presented less variability and more 
synchronicity between the auditory and middle frontal gyrus 
in comparison to the HC and the EMCI. In addition, the AD 
group, in contrast to the HC and the EMCI, presented increased 
FC and decreased variability between regions of the auditory 
network, e.g., insula, superior temporal, and the dorsal (right), 
such as the inferior frontal triangular part and middle frontal 
gyrus. Finally, the EMCI presented a decreased connectivity in 
contrast to the LMCI between the executive function network 
and the dorsal.

When comparing the SWA and the PPA, a higher variability 
from the SWA was obtained in the EMCI in comparison to the HC 
between a region in the executive function network and the 
dorsal, and in the PPA, a higher correlation in the LMCI than in 
the EMCI. These couple of findings made us hypothesize that 
there is stronger synchronicity between these areas in LMCI and 
HC but less in EMCI. Without performing the PPA, we could not 
have seen the difference in FC between these regions.

Finally, the PPA was the method that allowed us to have a 
more comprehensive or complete view of the aberrant connectivity 
across the different stages of the disease. Besides, we could gauge 
the subtle changes across groups like an increase in LMCI in 
comparison to EMCI between the dorsal network and the CEN, 
as well as an increase and decrease in FC between some ROIS of 
the cerebellum and the basal ganglia in LMCI and AD.

This study presents some limitations. First, the 
optimization of window parameters to conduct the SWA as 
well as the threshold to binarize the FC matrix and extract 
graph measures were carefully selected after a literature 
revision and a variability and correlation assessment for each 
window size; nonetheless, the optimization of parameters in 
FC research is an issue that should be further investigated with 
novel analysis. Second, the structural parcellation method 
used in the present study, the AAL, is commonly used for task 
and rsfMRI studies. Although some studies have used 
connectivity-driven parcellations and have shown more 
consistency with the subjacent resting state connectivity, 
anatomical parcellations yield the same or even better 
delimitation of cortical areas, which is relevant for network 
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analysis. Given these claims, the selection of a specific 
parcellation over others will not impact many of the results. 
As suggested by Arslan et  al. (2018) in their systematic 
comparison of parcellation methods, researchers performing 
network analysis should use any parcellation method available. 
Third, participants with eMCI, lMCI, or AD presented a 
clinical diagnosis and their memory was objectively affected. 
However, a biological characterization of the participants was 
not conducted and would enable the generalization of findings.

Comparing results across methods was a difficult task because 
some results were similar across methods, but several differences 
could also be found. This happened because the methods used 
measured different FC constructs: static FC, variability in FC, and 
dFC. Hence, expecting similar global results in terms of differences 
between some networks or patterns of increased or decreased 
connectivity in several brain regions at a specific stage of the 
disease was logical; however, expecting similar findings across 
methods, at a finer scale, i.e., small regions was not achievable.

Conclusion

Our results showed that the EMCI presented a similar but 
slightly decreased FC to HC in several brain areas, while the 
LMCI and mild AD presented an increased FC in several 
regions. These results suggest that the pathology is less dispersed 
in EMCI and the brain configuration is similar to the HC. When 
the pathology advances in LMCI and AD, the brain might react 
by compensating, using the available resources such as the 
recruitment of alternative paths. This might enhance high 
glutamate and low gabaergic activity next to regions where 
pathologic proteins are installed and in rich hubs such as the 
thalamus. The analysis performed provided some overlap in the 
results. For instance, they showed an increased FC in LMCI and 
AD involving a specific frontal region, i.e., the frontal inferior 
triangular (left) and posterior regions mostly within the visual 
network, the DMN, the auditory, cerebellum, basal ganglia, and 
thalamus. However, as expected, the results also show 
differences in the areas affected when applying different 
methods. This was expected as the literature review shows this 
heterogeneity because what we are measuring across methods 
fits under the same “FC” umbrella, but it is not the same, i.e., 
static FC, variability in FC, and dFC are different measures. 
Finally, SWA and PPA added new results, and this last method 
is the most efficient when dealing with datasets and sensitive 
differentiating changes across the stages of the disease.

Future studies should include a larger sample and diverse 
AD groups that reflect all the stages of the disease, i.e., amnestic 
EMCI, amnestic LMCI, mild AD, moderate AD, and severe 
AD. Additionally, longitudinal studies that track the 
connectivity across years, as well as postmortem studies to 
explore the brain tissue of different patients that died at different 
stages of the disease would be highly useful to understand the 

relationship between neurotransmitters, pathological proteins, 
and FC at the different stages of AD. Finally, novel machine-
learning approaches could be used to compare and integrate 
the findings.
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