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Background and objective: Blood-based biomarkers represent a promising 

approach to help identify early Alzheimer’s disease (AD). Previous research 

has applied traditional machine learning (ML) to analyze plasma omics data 

and search for potential biomarkers, but the most modern ML methods 

based on deep learning has however been scarcely explored. In the current 

study, we aim to harness the power of state-of-the-art deep learning neural 

networks (NNs) to identify plasma proteins that predict amyloid, tau, and 

neurodegeneration (AT[N]) pathologies in AD.

Methods: We measured 3,635 proteins using SOMAscan in 881 participants from 

the European Medical Information Framework for AD Multimodal Biomarker 

TYPE Original Research
PUBLISHED 29 November 2022
DOI 10.3389/fnagi.2022.1040001

OPEN ACCESS

EDITED BY

Gal Bitan,  
David Geffen School of Medicine (UC), Los 
Angeles, United States

REVIEWED BY

Marcia H. Ratner,  
Boston University School of Medicine, 
United States
Hao Wang,  
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Alejo J. Nevado-Holgado  
alejo.nevado-holgado@psych.ox.ac.uk  
Liu Shi  
shiliuswgch@gmail.com

SPECIALTY SECTION

This article was submitted to  
Cellular and Molecular Mechanisms of 
Brain-aging,  
a section of the journal  
Frontiers in Aging Neuroscience

RECEIVED 08 September 2022
ACCEPTED 04 November 2022
PUBLISHED 29 November 2022

CITATION

Zhang Y, Ghose U, Buckley NJ, 
Engelborghs S, Sleegers K, Frisoni GB, 
Wallin A, Lleó A, Popp J, Martinez-Lage P, 
Legido-Quigley C, Barkhof F, Zetterberg H, 
Visser PJ, Bertram L, Lovestone S, 
Nevado-Holgado AJ and Shi L (2022) 
Predicting AT(N) pathologies in Alzheimer’s 
disease from blood-based proteomic data 
using neural networks.
Front. Aging Neurosci. 14:1040001.
doi: 10.3389/fnagi.2022.1040001

COPYRIGHT

© 2022 Zhang, Ghose, Buckley, 
Engelborghs, Sleegers, Frisoni, Wallin, Lleó, 
Popp, Martinez-Lage, Legido-Quigley, 
Barkhof, Zetterberg, Visser, Bertram, 
Lovestone, Nevado-Holgado and Shi. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.1040001%EF%BB%BF&domain=pdf&date_stamp=2022-11-29
https://www.frontiersin.org/articles/10.3389/fnagi.2022.1040001/full
https://www.frontiersin.org/articles/10.3389/fnagi.2022.1040001/full
https://www.frontiersin.org/articles/10.3389/fnagi.2022.1040001/full
https://www.frontiersin.org/articles/10.3389/fnagi.2022.1040001/full
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.1040001
mailto:alejo.nevado-holgado@psych.ox.ac.uk
mailto:shiliuswgch@gmail.com
https://doi.org/10.3389/fnagi.2022.1040001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Zhang et al. 10.3389/fnagi.2022.1040001

Frontiers in Aging Neuroscience 02 frontiersin.org

Discovery study (EMIF-AD MBD). Participants underwent measurements of 

brain amyloid β (Aβ) burden, phosphorylated tau (p-tau) burden, and total 

tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by 

their association with Aβ, p-tau, t-tau, and AT(N), and fed the top 100 proteins 

along with age and apolipoprotein E (APOE) status into NN classifiers as input 

features to predict these four outcomes relevant to AD. We  compared NN 

performance of using proteins, age, and APOE genotype with performance 

of using age and APOE status alone to identify protein panels that optimally 

improved the prediction over these main risk factors. Proteins that improved 

the prediction for each outcome were aggregated and nominated for pathway 

enrichment and protein–protein interaction enrichment analysis.

Results: Age and APOE alone predicted Aβ, p-tau, t-tau, and AT(N) burden 

with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The 

addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 

0.831, respectively. The identified proteins were enriched in five clusters of 

AD-associated pathways including human immunodeficiency virus 1 infection, 

p53 signaling pathway, and phosphoinositide-3-kinase–protein kinase B/Akt 

signaling pathway.

Conclusion: Combined with age and APOE genotype, the proteins identified 

have the potential to serve as blood-based biomarkers for AD and await 

validation in future studies. While the NNs did not achieve better scores 

than the support vector machine model used in our previous study, their 

performances were likely limited by small sample size.

KEYWORDS

Alzheimer’s disease, plasma proteomics, amyloid β, tau, neurodegeneration, 
machine learning, artificial neural networks

Introduction

Alzheimer’s disease (AD) is a growing public health concern 
with no disease-modifying treatment available (Apostolova, 
2016). The core criteria for clinical diagnosis of AD are based on 
behavioral and cognitive symptoms, but neuropathological 
changes in the central nervous system initiate years before the 
onset of cognitive impairment (Jack et al., 2013). The preclinical 
stage when pathologies develop in the absence of clinical 
symptoms presents an opportunity for early intervention with 
drugs to slow down or even halt disease progression. Currently, 
the well-established biomarkers for AD are cerebrospinal fluid 
(CSF) amyloid-β peptide (Aβ) and amyloid positron emission 
tomography (PET). They both highly correlate with pathologies 
found in brain autopsy (Strozyk et al., 2003; Curtis et al., 2015) 
and can identify early AD with high accuracy (Palmqvist et al., 
2015). However, collecting CSF requires a lumbar puncture, an 
invasive practice that could lead to complications including post-
dural puncture headache (de Almeida et al., 2011). PET imaging 
is expensive and requires specialist equipment that is not easily 
available. Thus, these two approaches have limited clinical utility. 
Blood-based biomarkers offer a desirable strategy to aid early 
diagnosis of AD. As blood-based test is minimally invasive, 

economical, and widely available, they can serve as efficient 
prescreening tools in a multi-stage diagnostic process (O’Bryant 
et al., 2016). Earlier research has provided evidence of alterations 
of proteomic profiles in blood samples associated with AD state 
(Hye et al., 2006; Ray et al., 2007), validating the feasibility of 
blood-based biomarkers.

The development of blood-based biomarkers is facilitated by 
advances in not only targeted approaches (e.g., plasma 
phosphorylated tau measurements; Ashton et  al., 2021; Milà-
Alomà et  al., 2022) but also untargeted large-scale omics 
technologies. Researchers have adopted high-resolution mass 
spectrometry for proteomic profiling of blood and discovery of 
AD protein signatures (Lopez et al., 2005; Dey et al., 2019). Highly 
sensitive multiplexed immunoassay platforms, such as Olink 
(Whelan et al., 2019; Jiang et al., 2022), and aptamer-based assay 
platforms, such as SOMAscan (Kiddle et al., 2014; Sattlecker et al., 
2014), have further allowed researchers to capture the complexity 
of plasma proteome and identify prospective biomarkers by 
measuring thousands of proteins simultaneously in thousands of 
individuals with a single platform. In analyzing the rich omics 
data, machine learning (ML), a subdomain of artificial intelligence, 
has proven an invaluable tool (Li et al., 2021). Previous studies 
have had great success in finding blood analytes that predict 
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AD-related measures using traditional ML algorithms such as 
support vector machines (Voyle et al., 2015; Shi L. et al., 2019; 
Karaglani et al., 2020), decision trees (Pérez-Grijalba et al., 2019; 
Shi Y. et  al., 2019), and random forests (Goudey et  al., 2019; 
Beltrán et al., 2020; Lin et al., 2020; Zhao et al., 2020).

Deep learning neural networks (NNs) are the last iteration of 
ML methods and have significant advantages when compared to 
the older ML methods both in terms of classification accuracy and 
versatility, yet fewer studies have explored their utility in blood-
based AD biomarker discovery. As they are capable of learning 
data representations in multiple hierarchies, they have often 
outperformed conventional models in various applications 
including predicting clinical diagnoses (Durstewitz et al., 2019). 
Thus, in the current study, we implement deep NNs to analyze 
plasma proteomics measured by SOMAscan. Our objective is to 
identify candidate plasma protein panels to detect amyloid, tau, 
and neurodegeneration (AT[N]) pathologies in AD.

Materials and methods

Participants

European Medical Information Framework (EMIF, www.
emif.eu) is funded by the Innovative Medicines Initiative to 
support the reuse of existing healthcare data. As part of this 
project, EMIF-AD set up the Multimodal Biomarker Discovery 
(MBD) study by integrating multi-omics data to facilitate the 
development of AD biomarkers. Participants of the current study 
were from the EMIF 1000 sub-cohort assembled in a previous 
study (Bos et al., 2018). The original sub-cohort included 1,221 
participants from 11 single- or multi-center studies across 
Europe. In the current study, we included only subjects who had 
available plasma samples, resulting in a subset of 881 participants 
from 10 studies. Among them, 311 had normal cognition (CN), 
386 had mild cognitive impairment (MCI), and 184 had a 
diagnosis of AD dementia.

All 881 participants underwent measurement of the 
concentration of the 42 amino acid-long Aβ protein, Aβ42, in 
CSF, sometimes in a ratio with the 40 amino acid-long form, 
Aβ40, or amyloid PET as the primary AD outcome. A previous 
study has classified the amyloid burden of each participant as 
high or low based on z-score cutoffs (Bos et  al., 2018). In 
addition, a subgroup of 787 subjects underwent measurement of 
CSF phosphorylated tau (p-tau), and a subgroup of 791 subjects 
underwent measurement of CSF total tau (t-tau). CSF p-tau and 
t-tau levels were both measured locally, and their statuses were 
classified as high or low with local cutoffs. Mini-mental state 
examination (MMSE) was administered to a majority of 
participants to assess cognitive function. All participants were 
genotyped to determine whether they were apolipoprotein E 
(APOE) risk allele ε4 carriers or non-carriers. Lastly, proteins in 
plasma samples were measured by the SOMAscan assay 
(SomaLogic Inc.) in a previous study (Shi L. et  al., 2019). 

SOMAscan is an aptamer-based platform which transforms 
individual protein signals into corresponding chemically-
modified nucleotide signals that can be quantified by relative 
fluorescence on DNA microarrays (Gold et al., 2010). Plasma 
samples were divided into two groups, and each group was 
processed independently. Forty samples were tested in both 
batches to normalize the measurements across assay runs. A 
total of 3,635 plasma proteins were quantified.

Statistical analysis

All statistical analyses were performed using Python (version 
3.9.7). We compared the demographic and clinical characteristics 
of patients with different diagnoses. Continuous variables were 
compared between groups by the Kruskal-Wallis one-way 
ANOVA test followed by Mann–Whitney U-tests for pairwise 
comparisons. Categorical variables were compared between 
groups by Chi-square test.

Building NNs

NNs were implemented using the Python package PyTorch 
(version 1.10.1). The network (Figure 1) consisted of three fully 
connected hidden layers with sizes 8, 16, and 8. Dimension of 
the input layer varied depending on the number of features: one 
for age, one for APOE status, and one for each protein. The 
output layer had one dimension to encode the binary outcome. 
Dropout was applied to the output of the first hidden layer at a 
rate of 0.5. Each hidden layer was followed by a rectified linear 
unit (ReLU) activation function. The loss function was binary 
cross-entropy with sigmoid. Learning was implemented using 
the Adam stochastic optimization algorithm with a learning rate 
of 0.01.

Training and testing were implemented with 5-fold cross-
validation. The dataset was shuffled across samples before splitting 
between training and testing. On each training/testing split, the 
parameters of the NN (i.e., weights) were reinitialized, and the NN 
was trained for 15 epochs. In each epoch, data was fed into NN in 
minibatches of size 128. The outputs were transformed by a 
sigmoid function to compare with the binary ground-truth values.

Discrimination of AT(N)

The dataset was preprocessed for analysis. Age was power-
transformed and z-scored. All protein levels were power-
transformed and z-scored to have zero mean and unit variance. 
The effects of study and blood freeze–thaw cycles on proteins were 
removed by linear regression, and the resulting residuals replaced 
raw protein levels.

We aim to predict Aβ burden (high vs. low), p-tau burden (high 
vs. low), t-tau burden (high vs. low), and AT(N) profile (high 
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Aβ/p-tau/t-tau vs. low Aβ/p-tau/t-tau) from plasma proteins along 
with age and APOE genotype. For each of these classification 
objectives, we first performed logistic regression analysis to measure 
the linear association between each protein and the target and 
ranked the proteins by ascending p values. We then selected from 1 
to 100 top-ranked proteins along with age and APOE status as input 
features for NN classification and compared their performance with 
that of age and APOE ε4 status alone. For each unique set of features 
and the target, we repeated training–testing 10 times to obtain the 
average receiver operating characteristic (ROC) curve and the area 
under the curve (AUC). AUC ROC scores resulting from different 
features were compared using independent t-tests.

Enrichment analysis

The proteins that achieved the best performance in NN 
classification along with age and APOE status in differentiating 
high and low Aβ, p-tau, t-tau, and AT(N) were aggregated and 
nominated for pathway enrichment and protein–protein 

interaction enrichment analysis. The analysis was performed 
using the Metascape software (Zhou et al., 2019). The complete 
set of proteins was provided as “background.” The inputs were 
searched against KEGG Pathway database for pathway 
enrichment analysis and STRING, BioGrid, OmniPath, and 
InWeb_IM databases for protein–protein interaction analysis.

Results

Demographic and clinical variables

The current study included 881 participants from the EMIF 
1000 sub-cohort. The demographic and clinical variables for each 
diagnostic group are described in Table 1. Patients with AD or MCI 
were older than CN subjects (AD vs. CN: odds ratio [OR] = 1.08, 
p < 0.001; MCI vs. CN: OR = 1.08, p < 0.001). CN subjects had higher 
MMSE scores than MCI subjects (OR = 2.08, p < 0.001), and MCI 
subjects had higher MMSE scores than AD subjects (OR = 1.44, 
p < 0.001). AD patients also had a higher prevalence of APOE ε4 
carriers (AD vs. MCI: OR = 1.67, p < 0.001; AD vs. CN: OR = 2.54, 
p < 0.01). There was no statistical difference in sex distribution 
between diagnostic groups (AD vs. MCI: OR = 1.01, p = 1.00; MCI vs. 
CN: OR = 0.85, p = 0.31; AD vs. CN: OR = 1.01, p = 0.44). For AT(N) 
biomarkers, AD subjects had a higher prevalence of low CSF Aβ42 or 
Aβ42/40 or positive amyloid PET, high CSF p-tau, and high CSF t-tau 
than MCI subjects (Aβ: OR = 5.00; p-tau: OR = 2.03; t-tau: OR = 3.23; 
all p < 0.001) and CN subjects (Aβ: OR = 20.36; p-tau: OR = 9.69; 
t-tau: OR = 17.43; all p < 0.001).

TABLE 1 Demographic and clinical characteristics of the study 
population.

Characteristic Sample 
size

CN MCI AD P-value

N 881 311 386 184

Age, median (IQR) 881 66.0 

(58.9–

70.0)

70.5 

(65.1–

75.5)

71.0 

(63.4–

77.0)

<0.001*

Male sex, N (%) 881 133 

(42.8%)

181 

(46.9%)

86 

(46.7%)

0.509

MMSE, median 

(IQR)

878 29.0 

(28.0–

30.0)

26.5 

(25.0–

28.0)

22.0 

(18.0–

25.0)

<0.001*

APOE ε4+, N (%) 881 118 

(37.9%)

186 

(48.2%)

112 

(60.9%)

<0.001*

Aβ+, N (%) 881 93 

(30.0%)

245 

(63.5%)

165 

(89.7%)

<0.001*

P-tau+, N (%) 787 42 

(19.1%)

203 

(53.0%)

128 

(69.6%)

<0.001*

T-tau+, N (%) 791 45 

(20.1%)

221 

(57.6%)

149 

(81.4%)

<0.001*

CN, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; IQR, 
interquartile range; MMSE, mini-mental state examination; APOE, apolipoprotein E; 
Aβ, amyloid-β; p-tau, phosphorylated-tau; t-tau, total tau. *p < 0.05.

FIGURE 1

Structure of the NN model. The dimension of the input layer was 
determined by the number of features including age, APOE 
status, and/or protein levels. The hidden layers consisted of three 
fully connected layers of size 8, 16, and 8 connected by ReLU 
activation function. Dropout of rate 0.5 was applied to the output 
of the first hidden layer. The final output was transformed by a 
sigmoid function. Four AD-related measures were independently 
tested as outcomes: Aβ, p-tau, t-tau, and AT(N).
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Discrimination of AT(N) markers using 
NNs

We first used regression analysis to find the linear association 
between each protein and Aβ. Binary Aβ burden (high: N = 503; 
low: N = 378) was defined by z-score cutoff of CSF Aβ42/40 at 0.061 
or local cutoffs of CSF Aβ42 and amyloid PET. Out of all proteins, 
1,793 reached statistical significance (uncorrected p < 0.05), and 
1,492 of them reached the false discovery rate after correction for 
multiple comparisons (corrected p < 0.05). We then sought to find 
the optimal set of proteins that differentiate high vs. low Aβ 
burden using NNs. The combination of age and APOE ε4 alone 
achieved an AUC of 0.748 (95% confidence interval [CI] 0.745–
0.750). With protein features alone, a panel of 15 proteins achieved 
the highest AUC of 0.727 (95% CI 0.722–0.732). After the 
combination of age, APOE ε4, and proteins as input features, 
we found a panel of 11 proteins (see Supplementary Table 1) that 

achieved the highest predictive value with an AUC of 0.782 (95% 
CI 0.779–0.785). This was significantly higher than AUCs from 
using only age and APOE ε4 status (p < 0.001; Figure 2A).

Binary p-tau burden (high: N = 373; low: N = 414) was defined 
by local cutoffs of CSF p-tau levels. For p-tau, 690 proteins reached 
statistical significance (uncorrected p < 0.05) while none passed 
the false discovery rate (corrected p < 0.05). In classifying high and 
low p-tau, age and APOE ε4 alone achieved an AUC of 0.662 (95% 
CI 0.658–0.666). With protein features alone, the set of 99 proteins 
achieved the highest AUC of 0.626 (95% CI 0.615–0.636). After 
the combination of age, APOE ε4, and proteins, we found that the 
addition of 2 proteins (see Supplementary Table 1) achieved the 
highest AUC of 0.674 (95% CI 0.669–0.678), which was 
significantly greater than the AUCs from age and APOE alone 
(p < 0.001; Figure 2B).

Binary t-tau burden (high: N = 415; low: N = 376) was 
defined by local cutoffs of CSF t-tau levels. For t-tau, 1,437 out 

A B

C D

FIGURE 2

AUC ROCs of using age and APOE alone, age and APOE with proteins, and proteins alone to differentiate high vs. low (A) Aβ, (B) p-tau, (C) t-tau, 
and (D) combined AT(N) burden. For each target, the panel of proteins with the best performance were selected.

https://doi.org/10.3389/fnagi.2022.1040001
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnagi.2022.1040001

Frontiers in Aging Neuroscience 06 frontiersin.org

of all proteins reached statistical significance (uncorrected 
p < 0.05), and 1,038 of them reached the false discovery rate 
(corrected p < 0.05). Age and APOE ε4 together achieved an 
AUC of 0.710 (95% CI 0.708–0.713). With protein features 
alone, a panel of 33 proteins achieved the highest AUC of 0.668 
(95% CI 0.660–0.675). Combining with age and APOE ε4, a 
panel of 29 proteins (see Supplementary Table 1) achieved the 
highest AUC of 0.734 (95% CI 0.729–0.738), significantly 
exceeding that of age and APOE alone (p < 0.001; Figure 2C).

Discrimination of A + T + N+ from A – T 
– N − using NNs

We further used proteins to differentiate subjects with extreme 
AT(N) profiles using NNs. High and low AT(N) levels (A + T + N+: 
N = 298; A − T − N−: N = 229) were defined using the cutoffs of 
binary Aβ, p-tau, and t-tau burden. In logistic regression analysis, 
1,638 proteins reached statistical significance (uncorrected 
p < 0.05) in association with A + T + N+ and A − T − N−. 1,317 of 
them passed the false discovery rate (corrected p < 0.05). The 
correlations of protein p values between each pair of AD-related 
outcomes are listed in Supplementary Table 2.

In differentiating A + T + N+ and A − T − N−, age and 
APOE ε4 alone achieved an AUC of 0.795 (95% CI 0.793–
0.798). Using the top 100 proteins as input features, we found 
that 86 proteins achieved the highest AUC of 0.770 (95% CI 
0.765–0.774). The combination of age, APOE ε4, and proteins 
showed that a panel of 7 proteins (see Supplementary Table 1) 
reached the highest AUC of 0.831 (95% CI 0.827–0.835), which 
was significantly better than those obtained from age and 
APOE ε4 alone (p < 0.05; Figure  2D). All NN classification 
results are summarized in Table 2. NN performance scores of 
using from 1 to 100 top proteins with or without age and  
APOE status to classify each outcome are shown in 
Supplementary Figure 1.

Enriched terms

Aggregately, 35 proteins were nominated for the pathway 
enrichment analysis. They were matched to 34 unique genes. The 
background list consisted of 3,306 unique proteins in UniProt 
identifiers, which were matched to 3,268 genes. A total of 11 
pathways were identified (Table 3). They were grouped into five 
clusters based on their membership similarities. Each cluster was 
represented by its most significant pathway: human 
immunodeficiency virus 1 infection (uncorrected p < 0.001), p53 
signaling pathway (uncorrected p = 0.001), phosphoinositide-3-
kinase–protein kinase B/Akt (PI3K-Akt) signaling pathway 
(uncorrected p = 0.009), complement and coagulation cascades 
(uncorrected p = 0.018), and mitogen-activated protein kinase 
(MAPK) signaling pathway (uncorrected p = 0.045). The enriched 
pathways were not significant after correction for multiple 
comparisons (corrected p > 0.05). The protein–protein interaction 
analysis revealed three significant terms (Table  4): PI3K-Akt 
signaling pathway (p < 0.001), complement and coagulation 
cascades (p < 0.001), and proteoglycans in cancer (p < 0.005).

Discussion

In this study, we used regression analysis and NNs to obtain 
the optimal sets of protein features that discriminated high and 
low AT(N) burdens in AD. Age and APOE ε4 status alone achieved 
an AUC of 0.748 in predicting Aβ, an AUC of 0.662 in predicting 
p-tau, an AUC of 0.710 in predicting t-tau, and an AUC of 0.795 in 
predicting AT(N) abnormality. The addition of proteins 
significantly improved prediction of Aβ (AUC = 0.782), p-tau 
(AUC = 0.674), t-tau (AUC = 0.734) and AT(N) profiles 
(AUC = 0.831).

We selected the variables age and APOE genotype for 
comparison as advanced age and presence of the APOE ε4 allele 
are two of the strongest risk factors for AD (Riedel et al., 2016). In 
addition, our previous study confirmed that among age, sex, 
education, and APOE genotype, the combination of these two 
characteristics best predicts Aβ pathologies in the current cohort 
(Shi Y. et al., 2019). The previous study also classified amyloid 
burden using plasma proteomics and obtained similar results: the 
combination of age, APOE ε4 status, and proteins achieved the 
highest AUC score of 0.78, outperforming demographic variables 
alone. But as different protein ranking methods were employed, 
our panel of 11 proteins predicting Aβ has little overlap with the 
previously identified 44 proteins and provides novel candidates for 
validation. In the previous study, top proteins were selected 
through Lasso which uses a regularization technique to choose 
features that correlate with the outcome but not with each other, 
thus reducing redundant inputs. While this method can enhance 
prediction accuracy in an independent testing set, it may exclude 
proteins that have linearly redundant association with the outcome 
but nonlinear effects that can be detected by neural networks. As 
logistic regression does not penalize feature collinearity, the 

TABLE 2 Summary of AUC scores (95% CI) of NN classification.

Number 
of 

subjects 
(high/
low)

Age + APOE 
only

Proteins 
only

Proteins + 
age + APOE

Aβ 503/378 0.748 (0.745–

0.750)

0.727 (0.722–

0.732)

0.782 (0.779–

0.785)

P-tau 373/414 0.662 (0.658–

0.666)

0.626 (0.615–

0.636)

0.674 (0.669–

0.678)

T-tau 415/376 0.710 (0.708–

0.713)

0.668 (0.660–

0.675)

0.734 (0.729–

0.738)

AT(N) 298/229 0.795 (0.793–

0.798)

0.770 (0.765–

0.774)

0.831 (0.827–

0.835)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; 
NN, neural networks; APOE, apolipoprotein E; Aβ, amyloid-β; p-tau, phosphorylated-
tau; t-tau, total tau; AT(N), amyloid/tau/neurodegeneration.
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proteins selected using this method may retain meaningful 
information for neural network training. Their performance 
corroborates the utility of plasma proteomics in predicting Aβ 
pathology demonstrated in other recent studies (Ashton et al., 
2019; Park et al., 2019; Westwood et al., 2020). Considering that 
AD is a complex disorder with mixed pathologies, we  further 
evaluated the potential of plasma proteomics in predicting the 
other two components of the AT(N) framework. In accordance 
with previous findings (Shi et al., 2021), our results suggest that 
blood-based protein panels can reflect brain tau burden and 
neurodegeneration in addition to Aβ abnormality. Finally, a panel 
of proteins showed satisfactory performance in predicting 
combined AT(N) profiles, supporting the potential of plasma 
proteomics to act as comprehensive biomarkers for core AD 
pathologies. Interestingly, the statistical significance measures of 
the association between proteins and each AD-related outcomes 
have high correlations, suggesting that these pathological features 
are closely related, which is consistent with our previous finding 
showing that Aβ has a causal relationship with tau pathology (Shi 
L. et al., 2019).

We performed a pathway enrichment analysis on proteins in 
identified panels and found 5 clusters of pathways. One of them is 
the complement and coagulation cascades, which have been 

reported previously in a systematic review of blood-based protein 
biomarkers (Kiddle et al., 2014). Neuroinflammation is implicated 
as having substantial involvement in the pathogenesis of AD 
(Heneka et al., 2015). As part of the innate immune system, the 
complement system is activated by Aβ deposits and in turn 
damages the neurons via self-attack (McGeer and McGeer, 2002). 
Its activation is accompanied by an upregulation of coagulation 
factors (Amara et al., 2010) associated with the neurovascular 
damages observed in AD brain. A previous study supports the 
association between the peripheral activation of this pathway and 
AD-specific pathologies (Pillai et  al., 2019). Notably, the 
complement protein C4 was nominated in multiple panels. A 
previous study has found that C4 could discriminate rapidly and 
slowly progressing AD (Thambisetty et al., 2010), suggesting that 
it might be indicative of AD severity and is a potentially promising 
biomarker for early stages of AD. Another significant pathway 
identified is the MAPK pathway, which has been recognized in the 
AlzPathway, a comprehensive map of pathways related to AD 
(Mizuno et al., 2012). In AD, activation of the serine/threonine 
MAPK in response to extracellular stimuli promotes neuronal 
apoptosis (Munoz and Ammit, 2010). C-Jun N-terminal kinases 
(JNK) and p38, two members of the MAPK family, are involved 
in the hyperphosphorylation of tau (Goedert et al., 1997; Reynolds 
et al., 2000). JNK is also thought to regulate the phosphorylation 
and degradation of amyloid precursor proteins (Muresan and 
Muresan, 2007; Colombo et al., 2009). Our results provide further 
evidence for the dysregulation of the MAPK cascade 
proteins in AD.

This study leveraged the advancement of ML. While 
traditional ML models have been predominant in previous 
investigation of AD biomarkers, deep NNs are expected to play a 
more significant role moving forward. They are capable of 
detecting complex nonlinear patterns in raw data and are highly 
sensitive to the relevance of information received (LeCun et al., 
2015). Recent studies have demonstrated the superior performance 
of deep learning in detecting AD disease stage and predicting 
longitudinal progression of AD using multimodal information 
(Venugopalan et al., 2021; El-Sappagh et al., 2022). In agreement, 
our study indicates the great potential of deep learning approaches 
to capture the complexity of blood-based omics data and facilitate 
the discovery of candidate biomarkers. While the performance of 
NNs in this study did not exceed that of the support vector 
machine used in our previous study (Shi L. et al., 2019), this might 
result from scarcity of data as training of deep learning models 
typically benefits from extremely large sample sizes (Ellis and 
Morgan, 1999). A similar study found that the more conventional 
random forests outperformed deep learning models in 
differentiating AD from CN using plasma metabolomics and 
reached the same conclusion (Stamate et al., 2019). While NN 
behavior has been much less explored in bioinformatic data, 
extensive deep learning research in imaging, video, audio, and 
natural language processing has consistently shown that model 
performance increases with data size, a phenomenon now known 
as the scaling laws (Brown et al., 2020; Wei et al., 2022). In light of 
these observations, it is plausible that a similar effect would 

TABLE 3 Pathway enrichment analysis revealed 11 significantly 
enriched pathways.

Term 
ID

Description P-value 
(uncorrected)

P-value 
(corrected)

hsa05170 Human immunodeficiency 

virus 1 infection

< 0.001 0.203

hsa04218 Cellular senescence 0.009 0.641

hsa05145 Toxoplasmosis 0.015 0.754

hsa05014 Amyotrophic lateral sclerosis 0.036 1.000

hsa04115 p53 signaling pathway 0.001 0.209

hsa04114 Oocyte meiosis 0.005 0.524

hsa04151 PI3K-Akt signaling pathway 0.009 0.641

hsa05202 Transcriptional misregulation in 

cancer

0.013 0.747

hsa04610 Complement and coagulation 

cascades

0.018 0.770

hsa04936 Alcoholic liver disease 0.029 1.000

hsa04010 MAPK signaling pathway 0.045 1.000

They are grouped into five clusters based on membership similarities. PI3K-Akt, 
phosphoinositide-3-kinase–protein kinase B/Akt; MAPK, mitogen-activated protein kinase.

TABLE 4 Protein–protein interaction enrichment analysis revealed 
three significantly enriched terms.

Term ID Description P-value

hsa04151 PI3K-Akt signaling pathway <0.001

hsa04610 Complement and coagulation 

cascades

<0.001

hsa05205 Proteoglycans in cancer <0.005

PI3K-Akt, phosphoinositide-3-kinase–protein kinase B/Akt.
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become apparent in omics as data sizes grow orders of magnitude 
larger than thousands of samples still typically used in present-day 
studies. Model architecture should also be considered in the future 
development of AD biomarkers. More complex NNs can 
be  adopted to take advantage of an increasing quantity of 
heterogeneous clinical and biological data. Recently, TabNet has 
been proposed as a NN architecture specializing in tabular data 
processing by applying sequential attention to select the best 
features at each decision step (Arık and Pfister, 2021). It would 
be interesting to see whether innovative models like TabNet could 
be applied to explore the predictive power of putative biomarkers 
and integrated into the biomarker development pipeline.

One limitation of the current study is that no data was 
withheld for validation of the effect of the nominated proteins. 
However, this helps minimize overfitting and optimize the 
generalizability of those proteins at the discovery stage. To assess 
their applicability in the larger population, future validation using 
independent cohorts is preferred. In addition, it is important to 
note that participants with AD were significantly older than MCI 
or CN participants in this study, so age and age-related changes in 
plasma profiles might contribute to most of the predictive 
accuracy. As development of AD is not always associated with age 
in the larger population, it is important to test the validity of 
candidate biomarkers among patients and controls of similar ages.

In conclusion, the opportunity of the clinical implementation 
of blood-based biomarkers for AD is exciting. The current study 
supports the use of proteomics measured by SOMAscan for the 
discovery blood-based biomarkers. In addition, NNs show great 
utility in predicting disease pathologies from proteomics which 
encourages the adoption of more advanced ML approaches in 
future investigation. Using these state-of-the-art technologies, 
we  identified several proteins that are involved in AD-related 
pathways and can potentially serve as prescreening tools for the 
early detection of AD-specific pathologies when combined with 
demographic information.
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