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Traumatic brain injury (TBI) is a serious disease that could increase the risk

of epilepsy. The purpose of this article is to explore the common molecular

mechanism in TBI and epilepsy with the aim of providing a theoretical basis for

the prevention and treatment of post-traumatic epilepsy (PTE). Two datasets

of TBI and epilepsy in the Gene Expression Omnibus (GEO) database were

downloaded. Functional enrichment analysis, protein–protein interaction

(PPI) network construction, and hub gene identification were performed

based on the cross-talk genes of aforementioned two diseases. Another

dataset was used to validate these hub genes. Moreover, the abundance

of infiltrating immune cells was evaluated through Immune Cell Abundance

Identifier (ImmuCellAI). The common microRNAs (miRNAs) between TBI and

epilepsy were acquired via the Human microRNA Disease Database (HMDD).

The overlapped genes in cross-talk genes and target genes predicted through

the TargetScan were obtained to construct the common miRNAs–mRNAs

network. A total of 106 cross-talk genes were screened out, including 37

upregulated and 69 downregulated genes. Through the enrichment analyses,

we showed that the terms about cytokine and immunity were enriched

many times, particularly interferon gamma signaling pathway. Four critical

hub genes were screened out for co-expression analysis. The miRNA–mRNA

network revealed that three miRNAs may affect the shared interferon-induced

genes, which might have essential roles in PTE. Our study showed the

potential role of interferon gamma signaling pathway in pathogenesis of PTE,

which may provide a promising target for future therapeutic interventions.

KEYWORDS

bioinformatics, epilepsy, post-traumatic epilepsy, traumatic brain injury, interferon
gamma

Abbreviations: TBI, traumatic brain injury; PTE, Post-traumatic epilepsy; GEO, Gene Expression
Omnibus; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; PPI, protein–protein interactions; STRING, search tool for the retrieval
of interacting genes; MCODE, molecular complex detection; MCC, maximal clique centrality;
MNC, maximum neighborhood component; ImmuCellAI, immune cell abundance identifier; miRNA,
microRNA; HMDD, human microRNA disease database; miEAA, miRNA enrichment analysis and
annotation tool.
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Introduction

Traumatic brain injury (TBI) is a serious and challenging
public health problem. In Europe more than 80,000 people
die from TBI each year (Huijben et al., 2020), and the death
toll is 53,000 in the United States (Samuels et al., 2019). TBI
greatly increases the risk of epilepsy, and is a major cause of
acquired epilepsy (Lutkenhoff et al., 2020). The prevalence of
post-traumatic epilepsy (PTE) is unclear, with incidence ranging
widely from 1.3 to 53.3% in prior studies (Xu et al., 2017; Wang
et al., 2020). PTE not only affects patients’ quality of life, but
also places a substantial economic burden for both families and
society in general.

As the survival rate of TBI patients continues to increase,
more patients are exposed to the risk of PTE. In the initial period
of treatment, accurate identification of patients with high risk of
epilepsy could be useful in epilepsy control, and may improve
the quality of life for survivors (Wang et al., 2021).

So far, the precise molecular mechanisms that link TBI
with epilepsy remain elusive. Current researches of TBI and
epilepsy are concentrated mainly in retrospective observational
studies and rodent models (Wang et al., 2020; Di Sapia
et al., 2021). Previous studies have revealed that a sequence
of molecular and cellular events may result in epilepsy after
TBI, and pointed out the need for more valuable predictive
and therapeutic biomarkers (Golub and Reddy, 2022). For
high-risk patients, preventive or therapeutic measures in the
latency between TBI and epilepsy onset may have an important
impact on long-term outcomes (Di Sapia et al., 2021). Limited
progress in understanding of neural networks and molecular
pathologies has hampered personalized treatment, and new
drug development (Dean et al., 2020). New methods are
needed to obtain the comprehensive understanding of the
disease pathophysiology at the molecular level to improve the
precision and effectiveness of clinical interventions (Srinivasan
and Brafman, 2021).

The rapid development of sequencing technologies informs
new approaches for exploration of pathophysiological processes
in TBI and epilepsy. This study explored the related genes
and pathways in the pathogenesis of the two neurological
diseases. To our knowledge, this is the first study to investigate
the shared genes and key pathways in TBI and epilepsy via
bioinformatic methodology. These findings may inspire new
ideas for prediction and treatment of PTE.

Materials and methods

Datasets and study design

We used the key word “traumatic brain injury” and
“epilepsy” to search TBI and epilepsy gene expression data

from the Gene Expression Omnibus (GEO)1 and published
researches. Two microarray datasets GSE104687 (Miller et al.,
2017; Ma et al., 2021) and GSE143272 (Rawat et al., 2020) were
downloaded, and were regarded as the discovery cohort. The
GSE104687 dataset contains 93 TBI samples and 103 samples
without TBI, and GSE143272 consists of 34 samples with
epilepsy and 50 healthy samples as the control group. A diagram
of the analytical workflow was described in Figure 1.

Identification of potential cross-talk
genes

NetworkAnalyst2 is an online R-based analysis tool (Zhou
et al., 2019). We used NetworkAnalyst to compare gene
expression profiles between different groups in GSE143272.
Genes with a p-value < 0.05 were deemed as epileptic
differentially expressed genes (DEGs). Meanwhile, the DEGs
about TBI were obtained. The Venn diagram was used to
identify the common DEGs from both datasets by using an
online analysis platform.3 Subsequently, the DEGs with the
same expression trend in GSE104687 and GSE143272 were
regarded as cross-talk genes. These genes linking TBI and
epilepsy were analyzed further.

Functional enrichment analysis

To explore the biological significance of the cross-talk genes,
we performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis.
KOBAS4 is a widely-used online server for gene functional
enrichment (Bu et al., 2021). The enrichment analyses of KEGG
and GO were performed in the KOBAS-i database. In this
study, unless otherwise noted, the p-value < 0.05 was considered
significant.

Protein–protein interaction network
construction, module analysis and
selection of hub genes

Protein–protein interaction (PPI) network was investigated
online by Search Tool for the Retrieval of Interacting Genes
(STRING5). We used all STRING interaction sources with a
minimum interaction score of 0.15. Then, Cytoscape (version

1 http://www.ncbi.nlm.nih.gov/geo/

2 https://www.networkanalyst.ca/

3 https://www.bioinformatics.com.cn

4 http://kobas.cbi.pku.edu.cn

5 http://string-db.org
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FIGURE 1

The workflow of present bioinformatics analysis. TBI, traumatic brain injury; DEGs, differentially expressed genes; GO, gene ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interactions; MCODE, molecular complex detection; PTE, post-traumatic
epilepsy.

3.6.1)6 was used to visualize the network (Otasek et al., 2019).
The plug-in Molecular Complex Detection (MCODE) was used
to screen key gene modules in the PPI network. MCODE was
run with default settings. Subsequently, the GO and KEGG
enrichment analyses of modular genes were performed with
KOBAS-i. We used the Cytoscape plug-in CytoHubba to screen
hub genes from cross-talk genes. The overlapped genes were
considered as hub genes according to the score calculated by
three common algorithms, namely Maximal Clique Centrality
(MCC), Maximum Neighborhood Component (MNC), and
EcCentricity.

Validated cohort: Analyses of hub
genes expression

To further clarify the expression of these hub genes
in PTE, we found another public dataset (GSE40490). The
dataset provided gene expression profiles in the traumatic
epilepsy model of male Wistar rats. Four induced epilepsy
samples (confirmed by epileptiform discharge monitoring on
day five) and four control samples were included in this dataset.
Comparisons between two groups were performed with the
t-test. Moreover, a co-expression network of critical hub genes
was constructed through GeneMANIA,7 which is an open
source web platform to analysis gene lists.

6 https://cytoscape.org/

7 http://genemania.org

Immune infiltration analysis

The Immune Cell Abundance Identifier (ImmuCellAI) is an
analytical tool to estimate the abundance of 24 immune cells
including 18 T-cell subtypes and 6 other immune cells (Miao
et al., 2020). We used ImmuCellAI to quantify the infiltration
levels of immune cell types in the aforementioned two different
groups in GSE40490.

Identified the common microRNAs in
traumatic brain injury and epilepsy

MicroRNAs (miRNAs), non-coding RNA molecules, have
been reported to play key roles in regulation of target gene
expression (Leitão and Enguita, 2022). To clarify whether
some miRNAs could regulate cross-talk genes in TBI and
epilepsy pathologies, we further researched the potential
miRNAs. The Human microRNA Disease Database (HMDD)8,
a reliable database, could provide experiment-based evidences
for human miRNA and disease associations. TBI-related and
epilepsy-related miRNAs were screened via HMDD. The
overlapped miRNAs were obtained. In order to investigate
the interactions and functions of miRNAs, we used the
miRNA Enrichment Analysis and Annotation Tool (miEAA9)
to conduct KEGG pathway analysis.

8 http://www.cuilab.cn/hmdd

9 https://ccb-compute2.cs.uni-saarland.de/mieaa2/
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The miRNAs–mRNAs network
construction

We uesd TargetScan10 to predicte target genes of
aforementioned miRNAs. The overlapped of target genes of
common miRNAs and cross-talk genes in TBI and epilepsy were
obtained, and they were used to construct the miRNAs–mRNAs
regulated network. The output was visualized using Cytoscape.

Results

Identification of cross-talk genes

According to the aforementioned screening criteria, 1,329
DEGs were obtained in GSE104687 (TBI), and 2,576 DEGs
were obtained in GSE143272 (epilepsy). These DEGs were
subjected to Venn diagram analysis, and 183 common DEGs
were identified (Figure 2A). The common DEGs with opposite
expression trends were excluded, and we obtained 106 cross-talk
genes including 37 upregulated and 69 downregulated genes in
GSE104687 and GSE143272 (Figures 2B–C and Supplementary
Table 1).

10 https://www.targetscan.org

Functional enrichment of cross-talk
genes

In terms of GO analysis, cross-talk genes were mainly
enriched in protein binding (P = 2.18878E-19), nucleoplasm
(P = 2.62157E-10) and interferon-gamma-mediated
signaling pathway (P = 2.04642E-06) (Figure 2D). The
significant enriched KEGG terms contained metabolic
pathways (P = 0.000140913), Jak-STAT signaling pathway
(P = 0.001085932) and chemokine signaling pathway
(P = 0.001922808) (Figure 2E). These results indicated
that chemokines and cytokines may play important roles in the
pathological processes of these two neurological diseases.

Protein–protein interaction network
construction, module analysis and
selection of hub genes

The PPI network of the cross-talk genes was constructed
using STRING and Cytoscape, which contains 105 nodes
and 390 edges (Supplementary Figure 1). Top two highly
interconnected clusters of gene modules were identified by
the MCODE with default cutoffs. A total of 25 nodes and
80 edges were included in these modules (Figures 3A,B).

FIGURE 2

Identification and functional enrichment of cross-talk genes. (A) 183 common DEGs. (B) 37 upregulated genes. (C) 69 downregulated genes.
(D) GO terms of cross-talk genes (top 10 terms were listed). (E) KEGG terms of cross-talk genes (top 10 terms were listed). DEGs, differentially
expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 3

Significant gene module and enrichment analysis of the modular genes. (A,B) Top two significant gene clustering modules. Red indicates
upregulated genes and green indicates downregulated genes. (C,D) GO and KEGG enrichment analysis of the modular genes (top 10 terms of
each category were listed).

GO analysis showed that these genes were still involved in
interferon-gamma-mediated signaling pathway (P = 1.43398E-
05) (Figure 3C). Similarly, chemokine signaling pathway
remains in the top 10 most significant terms in the KEGG
pathway analysis (P = 0.000248226) (Figure 3D). Top 20
hub genes identified by aforementioned three methods in
cytoHubba. Then, the venn diagram showed the intersecting
genes in different algorithms, including CLEC7A, JAK2,
PRKCD, STAT1, FPR1, HLA-E, NCF2 and GRB2 (Figure 4A).
The detailed description of the top 20 genes ranked in
cytoHubba was provided in Table 1.

Validated cohort: The differential
genes analysis in post-traumatic
epilepsy

In order to investigate the stability of these hub gene
expression levels, we analyzed the expression of these genes in
GSE40490. We transformed related rats genes into homologous
human genes based on NCBI’s HomoloGene database.11 The
expressions of the seven genes (the expression value of CLEA7A

11 https://www.ncbi.nlm.nih.gov/homologene

missing in GSE40490) in different groups were shown in
Figures 4B–H. Combining with the histogram results, four
critical hub genes further were screened out. These results
indicated that GRB2, JAK2, HLA-E and NCF2 may be
closely related to the occurrence and development of PTE.
Detailed information about critical hub genes were listed in
Table 2.

To further explore the critical hub genes, we performed
the functional interaction networks using the GeneMANIA
database. These genes showed a complex PPI network with
physical interactions of 77.64%, co-expression of 8.01%,
prediction of 5.37%, co-localization of 3.63%, genetic
interactions of 2.87%, pathway of 1.88% and shared protein
domains 0.60%. Functional analysis revealed that these
genes were involved in cellular response to interferon-gamma,
neurotrophin receptor binding and regulation of T cell mediated
immunity (Figure 5). The comparison of enrichment terms in
the discovery cohort and the validation cohort increased the
reliability of our findings in the discovery cohort.

Immune cell infiltration

ImmuCellAI was performed to further determine the
abundance of 24 immune cell types in different groups.
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FIGURE 4

Identification and expression level of hub gene. (A) The Venn diagram of three algorithms. (B–H) The expression level of hub gene in GSE40490.
The comparison between the two sets of data uses the mean t-test. *p < 0.05; **p < 0.01.

A heatmap with hierarchical clustering was generated to reveal
the differences between the cell types and individual samples
(Figure 6). We found that the abundance of CD8 T cells

and CD8 naive T cells (both p = 0.03) were significantly
lower in the PTE group (Table 3 and Supplementary
Figure 2).
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TABLE 1 The top 20 genes ranked in cytoHubba.

MNC EcCentricity MCC

HSPA5 CLEC7A NCF2

JAK2 NR2C2 PECAM1

STAT1 HSDL2 CLEC7A

PECAM1 PDK4 JAK2

DNMT1 TRIB2 STAT1

PRKCD TSC22D3 RGS18

NCF2 FPR1 FPR1

INPP5D STOM INPP5D

RGS18 SVIL HCLS1

GRB2 HADHB ADORA3

CLEC7A PPRC1 CSF2RA

NR2C2 GRB2 PRKCD

NCOR2 JAK2 RNASE2

HCLS1 NCOR2 GRB2

PDK4 STAT1 HSPA5

FPR1 PRKCD IGSF6

CSF2RA HLA-B TNFAIP8L2

ETS1 ACSF2 TBXAS1

ADORA3 HLA-E HLA-E

HLA-E NCF2 DNMT1

Bold gene symbols were the overlap hub genes in top 20 by three ranked methods,
respectively in cytoHubba. MNC: maximum neighborhood component; MCC: maximal
clique centrality.

Identified and analysis of common
miRNAs in traumatic brain injury and
epilepsy

Based on the HMDD database,32 miRNAs were obtained
to be associated with TBI and 25 miRNAs were associated
with epilepsy (Supplementary Table 2). There were five
common miRNAs (hsa-miR-155-5p, hsa-miR-194-5p, hsa-miR-
21-5p, hsa-miR-223-3p, hsa-miR-23a-5p) in TBI and epilepsy.
Subsequently, we obtained 78 significantly enriched pathways
via KEGG analysis. Notably, many of the enriched terms were
associated with immune response, and the interferon gamma
signaling pathway was still enriched with a relative low P value
(P = 0.0213079). It indicated the common miRNAs involved in
the pathogenesis of TBI and epilepsy were also closely related
to the interferon gamma signaling pathway (Figure 7 and
Supplementary Table 3). That was consistent with our previous
enrichment analysis once again.

miRNAs–mRNAs regulation network

A total of 1,968 target genes of common miRNAs were
predicted via TargetScan. After intersecting these genes with
the cross-talk genes in discovery cohort, 15 shared genes
were obtained. Finally, the miRNAs–mRNAs network was

constructed, including 20 nodes (five miRNAs, 15 mRNAs)
and 18 edges (Figure 8). The genes about interferon gamma
signaling pathway were regulated by three miRNAs, namely
hsa-miR-155-5p, hsa-miR-194-5p, and hsa-miR-21-5p. We
hypothesized that the effects of miRNAs on PTE may be partly
attributable to interferon gamma.

Discussion

In this study, we explored the shared genes and key
pathways in TBI and epilepsy, which might provide new insights
into the pathophysiological mechanism of PTE. Moreover,
to some extent, our findings may offer novel targets for
identification of high-risk individuals, early prevention of
secondary complications and drug discovery.

Previous studies have shown that JAK2 is involved in
the pathological process of PTE (Klein et al., 2018; Hixson
et al., 2019), and hsa-miR-155-5p plays an important role in
epileptic progression (Li-Gang Huang, 2018; Yu et al., 2021).
Those data are consistent with our findings. However, those
researches have targeted a specific single gene or pathway, which
limits deeper understanding of the underlying mechanisms.
This study performed a comprehensive exploration of cross-
talk mechanisms between the TBI and epilepsy. The results of
four functional enrichment analyses were basically consistent,
including three different gene sets and one miRNA set. That may
suggest the stability of our findings. Through the enrichment
analyses, we showed that the terms about cytokine and
immunity were enriched many times, particularly interferon-
gamma-mediated signaling pathway. Interferon gamma is likely
to play a pivotal role in the pathological process of PTE.

Interferon gamma is mainly involved in immune regulation,
and its expression level is associated with neurological diseases
(Zhang et al., 2020; Döhne et al., 2022; Wen et al., 2022). TBI
could induce a serial of cytokines, including interferon gamma
and activate various types of immune cells (Siwicka-Gieroba
and Dabrowski, 2021; Salem et al., 2022). A published study
on status epileptics suggests that intraventricular injection of
recombinant interferon gamma may reduce neuron damage on
rat hippocampus (Ryu et al., 2010). A clinical study including
254 patients with TBI analyzed interferon gamma levels in
blood. The levels of interferon gamma in PTE gruop were higher
than non-seizure group (Choudhary et al., 2021). Thus, we
conjecture that interferon gamma may act as a bridge from TBI
to epilepsy.

Although most of the researches on immune cell infiltration
focuses on the field of tumors, some scholars have explored the
influences of immune system in neurological diseases, including
PTE. Several recent studies have shown that the strong immune
response after TBI triggers a cascade of inflammatory cells and
cytokines, which may be responsible for epilepsy (Sharma et al.,
2019). Activation of immune signaling pathways may result in
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TABLE 2 The details of the validated hub genes.

No. Gene symbol Description Function

1 GRB2 Growth factor receptor bound
protein 2

The protein encoded by this gene binds the epidermal growth factor receptor and contains one
SH2 domain and two SH3 domains. Among its related pathways contain Cytokine Signaling in
Immune system

2 JAK2 Janus kinase 2 This gene encodes a non-receptor tyrosine kinase that plays a central role in cytokine and growth
factor signaling. This gene is a downstream target of the pleiotropic cytokine IL6 that is produced
by B cells, T cells, dendritic cells and macrophages to produce an immune response or
inflammation

3 HLA-E Major histocompatibility
complex, class I, E

HLA-E belongs to the HLA class I heavy chain paralogues. HLA-E binds a restricted subset of
peptides derived from the leader peptides of other class I molecules

4 NCF2 Neutrophil cytosolic factor 2 NCF2 is a Protein Coding gene. Among its related pathways are Class I MHC mediated antigen
processing and presentation and G-protein signaling RAC1 in cellular process

FIGURE 5

Co-expression network of critical hub genes.

the loss of GABaergic neurons in the hippocampus, leading to
reduction in synaptic inhibition and a lower seizure threshold
(Webster et al., 2017). There is also evidence that the number
of CD8 T cells in the hippocampus is related to the degree
of neuronal loss (Lu et al., 2017; Langenbruch et al., 2020).
Moreover, CD8 T cells could produce interferon gamma (De
Benedetti et al., 2021). We hypothesize CD8 T cell may play a
key role in the progression of PTE via interferon gamma, the
important regulator of immune responses.

In our study, we analyzed the histogram results generated by
the PTE dataset and further screened out four critical hub genes.
These genes are all involved in the immune response. Several
studies on other diseases have revealed the associations of hub
genes expression with interferon gamma release (Johnson et al.,
2020; Meng et al., 2021). Yet, in-depth mechanism studies on
PTE about these hub genes and interferon gamma are needed.

Among the seven histogram results, four critical hub genes
further were screened out. We believe that the expression values
of some genes do not meet the criteria of statistical significance
may be related to the following factors: the limited sample
size (four PTE samples) and short detection time (5 days after
induction).

MicroRNAs (miRNAs), a group of small non-coding RNAs,
are involved in pathological mechanisms of a variety of
neurological diseases, and influence their prognoses (Xie et al.,
2022; Ünalp et al., 2022). Five miRNAs were screened out in
this study, and miRNA-gene network constructed may help
to understand the common mechanisms of PTE. A recent
study indicated that miRNAs have the potential to enhance
functional recovery after TBI by promoting neurogenesis and
axonal growth (Yang et al., 2022). MiRNAs could affect protein
expression by changing mRNA folding or reducing mRNA
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FIGURE 6

Immune profile of GSE40490 through ImmuCellAI. (A) Abundance of 24 immune cell types in GSE40490. (B) Differences between the cell types
and individual samples.

TABLE 3 Comparisons between immune cells in two groups.

Immune cell Composition (PTE) Composition (Control) P-value

DC 0.1135 0.0705 0.89

Bcell 0.097 0.0885 0.69

Monocyte 0.1435 0.1545 1

Macrophage 0.0425 0.041 0.89

NK 0.0565 0.1095 0.89

Neutrophil 0.15 0.1035 0.34

CD4_T 0.1305 0.0685 0.34

CD8_T 0.042 0.173 0.03
NKT 0.0895 0.0885 1

Gamma_delta 0.0255 0.112 0.2

CD4_naive 0.0055 5.00E-04 0.64

Tr1 0.0035 0.0025 0.64

nTreg 0.0075 0.0025 0.3

iTreg 0.001 0.003 1

Th1 0 0.0025 0.16

Th2 0.0065 0.0015 0.31

Th17 0.018 0.006 0.2

Tfh 0.002 0.0015 0.88

CD8_naive 5.00E-04 0.0115 0.03
Cytotoxic 5.00E-04 0.005 0.3

Exhausted 0 0.001 0.07

MAIT 5.00E-04 0.004 0.18

Central_memory 0.0065 0.008 1

Effector_memory 0 0.0015 0.4

Bold immune cells are significantly lower in the PTE group.
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FIGURE 7

KEGG terms of five common miRNAs. The arrow indicates interferon gamma signaling pathway. The detailed description of each term is in
Supplementary Table 3.

FIGURE 8

miRNAs-shared genes regulatory network. The ovals represent miRNAs and squares represent shared genes. The red ovals represent miRNAs
associated with interferon gamma signaling pathway.

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1047908
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1047908 November 5, 2022 Time: 15:24 # 11

Zhao et al. 10.3389/fnagi.2022.1047908

stability. This pathological alteration may play an important role
in the pathogenesis of drug-resistant epilepsy (Srivastava et al.,
2016).

Despite the promising results we showed, there are also
limitations in our study. Using public database, we revealed
the important role for interferon gamma signaling pathway in
the pathological processes associated with TBI and epilepsy, yet
explanations are mostly speculative. Our findings need to be
further validated in disease models in vitro and in vivo, especially
applying Tbx21 knockout mice. Those mice lack TBX21, a
critical transcription factor for the control of interferon gamma
production. This will be the focus of our future efforts (Raposo
et al., 2014).

Conclusion

Our study showed the potential role of interferon gamma
signaling pathway in pathogenesis of PTE, which may provide a
promising target for future therapeutic interventions.
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