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The cytoskeletal protein tau is implicated in the pathogenesis of Alzheimer’s

disease which is characterized by intra-neuronal neurofibrillary tangles

containing abnormally phosphorylated insoluble tau. Levels of soluble tau

are elevated in the brain, the CSF, and the plasma of patients with

Alzheimer’s disease. To better understand the causes of these elevated levels

of tau, we propose a three-compartment kinetic model (brain, CSF, and

plasma). The model assumes that the synthesis of tau follows zero-order

kinetics (uncorrelated with compartmental tau levels) and that the release,

absorption, and clearance of tau is governed by first-order kinetics (linearly

related to compartmental tau levels). Tau that is synthesized in the brain

compartment can be released into the interstitial fluid, catabolized, or retained

in neurofibrillary tangles. Tau released into the interstitial fluid can mix with the

CSF and eventually drain to the plasma compartment. However, losses of tau in

the drainage pathwaysmay be significant. The kinetic model estimates half-life

of tau in each compartment (552 h in the brain, 9.9 h in the CSF, and 10 h in

the plasma). The kinetic model predicts that an increase in the neuronal tau

synthesis rate or a decrease in tau catabolism rate best accounts for observed

increases in tau levels in the brain, CSF, and plasma found in Alzheimer’s

disease. Furthermore, the model predicts that increases in brain half-life of

tau in Alzheimer’s disease should be attributed to decreased tau catabolism

and not to increased tau synthesis. Most clearance of tau in the neuron occurs

through catabolism rather than release to the CSF compartment. Additional

experimental data would make ascertainment of the model parameters more

precise.
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Introduction

The pathological hallmarks of Alzheimer’s disease are extracellular

amyloid plaques and intraneuronal neurofibrillary tangles. Abnormally

phosphorylated tau is a component of neurofibrillary tangles. Tau is a highly

soluble cytosolic protein that binds to microtubules and is largely confined
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to the neuron (Mandelkow and Mandelkow, 2012). In

Alzheimer’s disease, tau may undergo hyper-phosphorylation,

truncation, and aggregation into oligomers. This can lead to

insoluble fibrils (Orr et al., 2017). Tau is measurable in the

brain, cerebrospinal fluid (CSF), brain interstitial fluid (ISF), and

plasma by sensitive assaymethods, including the single molecule

array (Rissin et al., 2010; Han et al., 2017; Hier et al., 2021). Tau

levels are elevated in the plasma, CSF, and brain of patients with

Alzheimer’s disease (Mattsson et al., 2016; Olsson et al., 2016;

Koss et al., 2018; Fossati et al., 2019). Tau is measurable in the

plasma and CSF of healthy subjects (Table 2) which suggests

that tau is released from neurons into the ISF in health and

in disease. Tau that is released by neurons into the ISF can

exchange with the CSF and drain to the plasma (Hier et al.,

2021). CSF levels of tau are generally 100 times higher than

plasma levels. Correlations between plasma levels and CSF levels

of tau may be weak (Fossati et al., 2019). Soluble cytosolic

tau (as opposed to insoluble tau in neurofibrillary tangles)

correlates with disease stage and cognitive deficits (Koss et al.,

2018). While levels of tau are elevated in the plasma, CSF, and

brain of patients with Alzheimer’s disease, no consensus exists

that tau is causative of Alzheimer’s disease (Mandelkow and

Mandelkow, 1998; Gendreau and Hall, 2013; Tarasoff-Conway

et al., 2015; Josephs, 2017; Orr et al., 2017; Xin et al., 2018;

Naseri et al., 2019; Harrison et al., 2020; Ishida et al., 2022).

Furthermore, consensus is lacking on the cause of elevated

tau levels in Alzheimer’s disease. Rising levels of tau could be

due to increased neuronal synthesis, increased neuronal release,

decreased neuronal clearance, or impaired CSF clearance of tau

(de Vrij et al., 2004; Yamada et al., 2011, 2014, 2015; Chai et al.,

2012; Gendreau and Hall, 2013; Tarasoff-Conway et al., 2015;

Orr et al., 2017; Merezhko et al., 2018; Vaz-Silva et al., 2018;

Xin et al., 2018; Kitaguchi et al., 2019; Patel et al., 2019; Pernègre

et al., 2019; Ruan and Ikezu, 2019; Strang et al., 2019; Brunello

et al., 2020; Harrison et al., 2020; Nimmo et al., 2020; Liu et al.,

2021; Ishida et al., 2022).

Kinetic equations can model levels of tau in brain, CSF,

and plasma compartments. These equations can characterize the

movement of tau from compartment to compartment and the

rates at which tau is synthesized, cleared, released, and absorbed.

Tau is successively cleared from three compartments: the brain

(neuron), the CSF, and the plasma. Although prior work

has examined the kinetics of neurological protein biomarkers

(Reiber, 2001; Brophy et al., 2011; Dadas et al., 2016; Ercole

et al., 2016; Moody et al., 2017; Thelin et al., 2017; Welch

et al., 2017; Dadas and Janigro, 2018; Sato et al., 2018; Lehmann

et al., 2019; Azizi et al., 2021), detailed kinetic models that relate

the CSF and plasma levels of tau are not available. Isotopic

methods have examined tau turnover in humans and animals

(Yamada et al., 2014, 2015; Sato et al., 2018). We have previously

used pharmacokinetic equations to model the rise and fall of

protein biomarkers in the plasma after mild traumatic brain

injury (Azizi et al., 2021). We propose that kinetic equations

(Rosenbaum, 2016) can model tau levels in the brain, CSF, and

plasma compartments after changes in the rates at which tau is

synthesized, released, and cleared.

Methods

The model has three connected
compartments

The proposed model has three connected compartments:

brain, CSF, and plasma (Figure 1). The total tau in each

compartment is denoted by upper case B (Bbrain, Bcsf , and

Bplasma). Compartmental tau levels are denoted by upper case

C (Cbrain, Ccsf , and Cplasma). Compartmental volumes are

denoted by upper case V (Vbrain, Vcsf , and Vplasma). Rates are

shown with an upper case K. Available tau in each compartment

depends on the tau level and the volume of distribution in the

compartment.

tau content in compartment = tau level ∗ volume of distribution

B = C ∗ V.

Model assumptions

The volumes of distribution for tau in the CSF and ISF are

not known. As a model simplification we combined the ISF

volume of 150 ml and the CSF volume of 150 ml into a single

combined CSF compartment with an estimated volume of 300

ml (Lei et al., 2017; Fleischman and Berdahl, 2019; Shetty and

Zanirati, 2020). It is assumed that tau release from neurons

reflects normal biological processes, neurological disease, or

response to injury (Pooler et al., 2013; Sorci et al., 2013; Yamada

et al., 2014). After release by neurons, tau enters the ISF. Some

released tau could enter drainage pathways without mixing

with the CSF. Other released tau enters the cerebrospinal fluid

(CSF) through multiple mechanisms (Hladky and Barrand,

2014; Bakker et al., 2016; Lei et al., 2017). Mixing of the ISF

and CSF is incomplete so tau levels are higher in the ISF than in

the CSF (Herukka et al., 2015). Tau plasma levels in the plasma

are assumed to be homogeneous without gradients. Regional

differences in tau levels in the brain are known (Han et al., 2017).

However, as a model simplification tau levels are stipulated to

be homogeneous within the brain. As a model simplification, we

approximated the volume of the brain compartment as wet brain

weight. Although brain weight varies by age and sex, we used

an average value of 1,300 g (Molina and DiMaio, 2012, 2015).

Given that 10% of wet brain weight is protein (Banay-Schwartz

et al., 1992), we estimated total brain protein as 1.3 ∗ 1014 pg or

130 g. As the brain is mostly solid, brain size is expressed in g.

The volume of distribution of tau in the plasma is unknown. If
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FIGURE 1

Rates of the flow of tau between model compartments. For

each compartment, B is the total tau in pg, C is the tau

concentration in pg/ml, and V is the compartment volume in ml.

Rates are shown with a capital K and are nominally expressed in

units of pg/hr. Ksynthesize is the synthesis rate of tau, Kcatabolize is

the internal rate of tau catabolism (destruction) within neurons.

Krelease is the rate of tau release from neurons into the interstitial

fluid. Some cytosolic tau is converted to neurofibrillary tangles

(NFT) in the neuron at an unknown rate of Knft. Clearance of tau

from the brain compartment is the sum of rates of catabolism,

release, and conversion to neurofibrillary tangles. Kdrain is the

rate that tau enters the drainage system. The tau drainage

system from the CSF likely encompasses a variety of

mechanisms, including the arachnoid granulations of the CSF,

the glymphatic system, connections between the CSF and

olfactory and meningeal lymphatics, and the periarterial

drainage system. Clearance of tau from the CSF reflects the

contributions of all of these drainage systems to removing tau

from the CSF. Klosses is the rate of loss of tau in the drainage

system. Kabsorb is the tau absorption rate into the plasma

compartment. Keliminate is the rate that tau is eliminated from the

plasma compartment. Elimination from the plasma occurs

through various mechanisms, including renal excretion, hepatic

metabolism, and intravascular proteolysis. Clearance from the

plasma reflects all of these elimination mechanisms.

tau was confined intravascularly until elimination, the volume

of distribution (Vplasma) would equal the plasma volume of

3,500 ml (Tarazi et al., 1969; Tobias and Ballard, 2022). We did

not correct for known differences in plasma volume related to

sex, height, and weight. Furthermore, as a model simplification,

we did not consider the possibility of tau redistributing into

the body interstitial fluid (Lönsmann Poulsen, 1974; Rutili and

Arfors, 1977). Model variables Ccsf and Cplasma are the tau levels

in the CSF and plasma, respectively. Most studies have measured

tau in the blood based on plasma. Evidence suggests that

plasma and serum levels of protein biomarkers are equivalent

although differences have been reported (O’Connell et al., 2019;

Huebschmann et al., 2020). Tau levels can be measured in the

ISF (usually by microdialysis), the ventricular CSF (usually by

ventricular drain), or the lumbar CSF (usually after lumbar

puncture). The model assumes that Ccsf is based on lumbar

CSF which is the most common site for sampling. Tau levels

in the ISF are higher than the CSF (Herukka et al., 2015). As a

simplification, we have assumed that lumbar CSF tau levels are

representative of the entire CSF compartment.

It is assumed that plasma and CSF levels of tau are at a

steady state in the short run. Several studies have shown that this

assumption is valid and that diurnal variations in levels are not

significant (Blennow et al., 2007; Slats et al., 2012; Le Bastard

et al., 2013; Cicognola et al., 2016). In order to maintain

steady-state levels of tau in the brain compartment, the rate of

synthesis of tau (Ksynthesize) is matched to the rate of destruction

(Kcatabolize) plus the rate of release into the CSF compartment

(Krelease) plus the rate that tau is converted into an insoluble

form in neurofibrillary tangles (1). An imbalance in these rates

would result in rising tau levels. The release of tau from the brain

compartment (Krelease) into the CSF compartment equals the

rate of tau draining from the CSF (Kdrain), otherwise tau levels

would change in the CSF compartment (2). At a steady state, the

amount of tau entering the plasma compartment (Kabsorb must

equal the outflow of tau from the CSF compartment (Kdrain)

minus losses of tau in the drainage pathways (Klosses) (3). Finally,

at a steady state, the rate of tau absorption into the plasma

compartment (Kabsorb) equals the rate of tau elimination from

the plasma compartment (Keliminate) (4).

Ksynthesize = Kcatabolize + Krelease + Knft . (1)

Krelease = Kdrain. (2)

Kabsorb = Kdrain − Klosses. (3)

Kabsorb = Keliminate. (4)

Not all tau that leaves the CSF compartment and enters the

drainage pathways (Figure 1) reaches the plasma compartment.

Some may be diverted to other compartments, some may

undergo proteolysis en route, and some may be lost in transit.

Nimmo et al. (2020) have shown that in animal models some

tau injected into the brain substance is retained in perivascular

macrophages which interferes with its entrance into the drainage

pathways. The proportion of tau that reaches the plasma

from the CSF compartment is denoted by F (the fractional

absorption ratio) which is dimensionless and varies from 0

to 1 (Price and Patel, 2020). A value of 1 for F indicates

that 100% of the tau that drained from the CSF compartment

reached the plasma compartment and a value of 0 indicates

that 0% of the drained tau reaches the plasma compartment.

In analogy to drug pharmacokinetics (Rosenbaum, 2016), F

reflects the bioavailability of tau in the CSF compartment

to the plasma compartment. The higher the value of F, the

greater the proportion of tau in the CSF compartment that is

bioavailable to the plasma compartment. Since the source of

tau absorbed into the plasma compartment is tau drained from
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the CSF compartment, the rate of absorption into the plasma

compartment is reduced by the fractional absorption ratio (5).

Kabsorb = F ∗ Kdrain. (5)

The model assumes that absorption rates and elimination

rates follow first-order kinetics (Rosenbaum, 2016). This means

that the rate at which tau is absorbed into a compartment or the

rate at which tau is eliminated from a compartment is linearly

related to the amount of tau available in the compartment times

a rate constant (6).

K = k ∗ B. (6)

Where K is the rate (nominally in pg/hr), k is the first-order rate

constant (nominally in hr−1). and B is the compartmental tau

content (nominally in pg). Our previous study of the rise and fall

of blood biomarkers after mild traumatic brain injury suggests

that the assumption of first-order kinetics is reasonable for

absorption into the plasma compartment and elimination from

the plasma compartment for several neurological biomarkers

(Azizi et al., 2021). We have also assumed that synthesis of tau

is a zero-order process (independent of tau levels in the neuron)

and that tau release and tau catabolism are first-order processes

(linearly related to tau levels in the neuron) (Rosenbaum, 2016;

Ross et al., 2021).

Kcatabolize = kc ∗ Bbrain. (7)

Krelease = kr ∗ Bbrain. (8)

The rate of tau drainage from the CSF compartment and

the rate of tau absorption into the plasma compartment can be

expressed with first-order rate constants.

Kdrain = kd ∗ Vcsf ∗ Ccsf . (9)

Kabsorb = ka ∗ Vcsf ∗ Ccsf ∗ F. (10)

Kabsorb is the rate of absorption into the plasma compartment,

Ccsf is the concentration of tau in the CSF compartment, Vcsf

is the volume of distribution of tau in the CSF compartment,

ka is the first-order plasma absorption rate constant, and F is

the fractional absorption rate ratio. The rate of elimination of

tau from the plasma compartment can also be expressed with a

first-order elimination constant.

Keliminate = ke ∗ Vplasma ∗ Cplasma. (11)

Since at a steady state in the plasma compartment, Kabsorb

= Keliminate, Equation (10) can be set equal to (11) which allows

for a calculation of F.

F =
ke ∗ Vplasma ∗ Cplasma

ka ∗ Vcsf ∗ Ccsf
. (12)

Tau leaving the CSF compartment is the source of tau

entering the plasma compartment. After substituting (9) and

(10) into (5), the model predicts that the first-order elimination

rate constant for tau from the CSF compartment is equal

to the first-order absorption rate constant for the plasma

compartment.

kd = ka. (13)

At steady state, Krelease = Kdrain which allows the calculation

of kr .

kr =
kd ∗ Vcsf ∗ Ccsf

Bbrain
. (14)

Model parameters

The first-order plasma elimination constant ke was

calculated based on literature estimates of tau plasma half-life

(Azizi et al., 2021) and the standard kinetic equation relating

half-life to the first-order elimination constant (Rosenbaum,

2016).

ke =
0.693

t 1
2

. (15)

The value of ke was combined with literature derived values

for Tmax (Azizi et al., 2021) to calculate the plasma first-order

absorption constant (Rosenbaum, 2016). Equation (16) was

solved in Excel for ka by approximate methods.

Tmax =

ln( ka
ke
)

ka − ke
. (16)

Values for plasma half-life of tau and plasma Tmax of tau

after traumatic brain injury were from the published literature as

previously described (Azizi et al., 2021). Tau cellular half-life in

the brain was determined by isotopic methods in humans (Sato

et al., 2018). Similar tau cellular half-life estimates are available

from mouse studies (Fornasiero et al., 2018).

The values of F for healthy controls, minimal cognitive

impairment subjects (MCI), and Alzheimer’s disease subjects

(AD) were calculated from (12). Values of Ccsf and Cplasma are

from Table 2. Values of ke and ka are from Table 1.

Han et al. (2017) estimated tau as 592.6 ng/mg of brain

protein in the temporal lobe of control subjects or 0.059%. The

value of kr was estimated from (14) and values from Tables 1, 2.

Results

We investigated changes in the brain, plasma, and CSF levels

of tau under five scenarios including increased tau neuronal

synthesis, impaired tau clearance from the neuron, increased
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TABLE 1 Model variables and parameters.

Entity Description Value∗ Units

Ksynthesize Rate that tau is synthesized in neuron 9.70 ∗ 107 pg/hr/brain

Kcatabolize Rate that tau is catabolized in neuron 9.70 ∗ 107 pg/hr/brain

Krelease Rate that tau is released from neuron 7.08 ∗ 103 pg/hr/brain

Knft Rate that soluble tau is converted to NFT unknown pg/hr/brain

Klosses Rate that tau is lost in drainage pathways 6.43 ∗ 103 pg/hr/brain

Kdrain Rate that tau is drained from CSF 7.08 ∗ 103 pg/hr/brain

Kabsorb Rate tau is absorbed into plasma 6.51 ∗ 102 pg/hr/brain

Keliminate Rate tau is eliminated from plasma 6.51 ∗ 102 pg/hr/brain

kd CSF first-order elimination rate constant 7.0 ∗ 10−2 hr−1

kr Brain first-order release rate constant 9.2 ∗ 10−8 hr−1

ka Plasma first-order absorption rate constant 7.0 ∗ 10−2 hr−1

ke Plasma first-order elimination rate constant 6.9 ∗ 10−2 hr−1

kc Brain first-order catabolism rate constant 1.26 ∗ 10−3 hr−1

Vcsf Volume of CSF compartment 300 ml

Vbrain
‡ Volume of brain compartment 1,300 g

Vplasma Volume of plasma compartment 3,500 ml

CSF half-life Tau half-life in CSF compartment 9.9 h

Brain half-life† Tau half-life in brain compartment 552 h

Plasma half-life Tau half-life in plasma compartment 10 h

Plasma Tmax Time to maximum tau plasma level after TBI 8 h

*centered Values based on normal values from Table 2. Rates are calculated on a whole brain basis assuming a typical 1,300 g brain with combined 300 ml in CSF-ISF compartment

and 3,500 ml in plasma compartment. The kinetic model allows re-calculation of Cbrain , Ccsf , and Cplasma in Alzheimer’s disease based on alterations in either rates or rate constants

(Figures 2A–6B).
†Neuronal half-life based on human isotopic studies (Sato et al., 2018).
‡ By convention, brain size is quantified in g rather than ml.

TABLE 2 Model parameters that vary by disease state.

Diagnosis Cbrain† Ccsf ‡ Cplasma† Bbrain Bcsf Bplasma F∗

Units pg/g pg/ml pg/ml pg pg pg

Control 5.92 ∗ 107 337 2.58 7.70 ∗ 1010 1.01 ∗ 105 9.03 ∗ 103 0.092

MCI 8.71 ∗ 107 339 2.71 1.13 ∗ 1011 1.02 ∗ 105 9.49 ∗ 103 0.094

AD 8.74 ∗ 107 403 3.12 1.14 ∗ 1011 1.21 ∗ 105 1.09 ∗ 104 0.088

† Level of tau in the brain was expressed as pg of tau per g of brain tissue.

‡ These values should be considered representative as opposed to authoritative.

Brain and CSF levels from Han et al. (2017). Plasma levels based on ADNI cohort (Mattsson et al., 2016). More recent studies show higher values for both CSF and plasma tau (Barthélemy

et al., 2020).

∗ F was calculated using (12).

neuronal tau release into the CSF compartment, impaired

tau clearance from the CSF compartment, and impaired tau

clearance from the plasma compartment. Model results were

generated using values from Tables 1, 2 and Equations (7)–(21).

Tau levels and tau content varies by
compartment and disease state

Tau levels are about 120–130 times higher in the CSF than

in the plasma (Table 2). Average levels of tau in the brain are

175,000–220,000 times higher than levels of tau in the CSF. Total

CSF tau is about ten times higher than total plasma tau. Total

brain tau is 10 million times greater than total plasma tau and 1

million times greater than total CSF tau. Tau levels and total tau

in the brain, CSF, and plasma of Alzheimer’s disease subjects are

higher than in control subjects.

Increased tau neuronal synthesis

Brain tau was estimated as 7.70 ∗ 1010 pg in control

subjects (Table 2). A tau half-life in the brain of 552

h (Sato et al., 2018) gives a whole-brain tau synthesis
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FIGURE 2

(A) Increased neuronal synthesis of tau causes a rise in both CSF and plasma levels of tau. (B) Increased neuronal synthesis of tau cause a rise in

brain levels of tau.

FIGURE 3

(A) Increased neuronal release of tau causes a rise in both CSF and plasma levels of tau. (B) Increased neuronal release of tau does not change

brain levels of tau.

FIGURE 4

(A) Decreased tau neuronal catabolism is reflected as a rise in tau half-life and causes a rise in CSF and plasma levels of tau. (B) Decreased

neuronal catabolism of tau causes a rise in brain levels of tau.

rate of Ksynthesize = 9.7 ∗ 107 pg/hr/brain. We modeled

a fixed increase of 5 ∗ 106 pg/hr/brain in the rate of

synthesis of tau over ten time intervals (Figures 2A,B).

Brain levels of tau at steady state were calculated by (17)

where Ksynthesize is the rate of synthesis of tau and kc

is the first-order rate constant for catabolism of tau in
the brain compartment. Ccsf and Cplasma were calculated

with (18) and (19).
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FIGURE 5

(A) Decreased CSF tau clearance as reflected by an increase in tau CSF half-life causes a rise in both CSF and plasma levels of tau. (B) Decreased

clearance of tau from CSF does not influence brain tau levels.

FIGURE 6

(A) Decreased plasma clearance of tau causes a rise in tau plasma levels. (B) Decreased plasma clearance of tau does not influence brain tau

levels.

Cbrain =
Ksynthesize

Vbrain ∗ kc
. (17)

Cplasma =
Cbrain ∗ Vbrain ∗ kr ∗ F

ke ∗ Vplasma
. (18)

Ccsf =
Cbrain ∗ Vbrain ∗ kr

kd ∗ Vcsf
. (19)

Increased tau neuronal release

An increase in the tau release from neurons was modeled as

increased tau release of 1,000 pg/hr/brain over 10 time intervals

(Figures 3A,B). Although the increased release of tau might be

predicted to decrease neuronal levels of tau, due to the small size

of the first-order rate constant for release of tau (kr) compared to

the first-order rate constant for catabolism of tau (kc) (Table 1),

an increase in kr has a negligible effect on levels of brain tau.

Cplasma was calculated with (18). Ccsf was calculated with (19).

Decreased tau neuronal clearance

Decreased tau clearance in the neuron was modeled by an

increase in tau neuronal half-life. An increase in tau neuronal

half-life corresponds to decreased catabolism (destruction) of

tau in the neuron. The neuronal half-life of tau was increased in

increments of 25 h over ten time intervals (Figures 4A,B). Cbrain
was calculated based on (20). Cplasma and Ccsf were calculated

with (18) and (19).

Cbrain =
Ksynthesis ∗ 0.693

neuronal half-life ∗ Vbrain
. (20)

Decreased tau CSF clearance

Decreased clearance of tau from the CSF compartment

was modeled as an increase in tau CSF half-life. Altered CSF

clearance of tau is not predicted to change brain tau levels.

CSF half-life was increased by increments of 1 h over 10 time
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intervals (Figures 5A,B). Ccsf can be calculated from (19) and

(21). Cplasma can be calculated from (12) using the calculated

value of Ccsf .

kd =
0.693

CSF half-life
. (21)

Decreased tau plasma clearance

Decreased tau plasma clearance was modeled as an increase

in plasma half-life of tau. Tau plasma half-life was increased in 1

hr increments over 10 time intervals (Figures 6A,B). Since the

plasma compartment is downstream from the CSF and brain

compartment, tau levels in the brain and CSF are not predicted

to change. The effect of decreased plasma tau clearance can be

calculated using (15) and (18).

Discussion

Tau is successively cleared from the
brain, CSF, and plasma compartments
with di�erent half-lives

Tau has a different elimination half-life in the brain, the CSF,

and the plasma (Table 1). The tau literature uses various terms

for compartmental elimination including fractional turnover

rate, first-order elimination rate constant, elimination clearance,

and elimination half-life. If first-order kinetics are assumed,

these terms are algebraically related, where FTR is the fractional

turnover rate and ke is the first-order elimination constant.

ke = FTR =
0.693

elimination half-life
=

clearance

volume of distribution
.

Neuronal half-life is the time it takes for neurons to

synthesize and replace 50% of their pool of tau. We interpreted

the human isotopic labeling study of Sato et al. (2018) as

estimating the neuronal half-life of tau as about 23 days. In

a mouse model, Fornasiero et al. (2018) found a comparable

neuronal half-life of 16 days. In a different mouse model,

neuronal tau half-life was ∼11 days (Yamada et al., 2011, 2014,

2015). Another mouse model suggests a neuronal half-life of tau

of 19.3 days (Kluever et al., 2022).

The plasma half-life of tau reflects the time needed to

eliminate 50% of the tau from the plasma (Table 1) and is based

on our kinetic model of biomarker levels in mild traumatic brain

injury (Azizi et al., 2021). Most elimination of tau from the

plasma is likely renal, although elimination by proteolysis and

hepatic elimination is possible. Plasma tau levels are elevated in

renal failure, consistent with renal elimination of tau (Kitaguchi

et al., 2019). We estimated plasma half-life of tau as 10 h but

more precise estimates are needed.

The model predicted that at steady state the elimination

rate constant for CSF kd would be equal to the first-order rate

constant for absorption of tau into the blood ka (13). The

predicted elimination half-life of tau from the CSF was 9.9 h

(Table 1). After minor brain injury, tau and amyloid are rapidly

cleared from the CSF with short half-lives (Herukka et al.,

2015). Both Lehmann et al. (2019) and Chen et al. (2010) have

suggested that protein turnover in the CSF is closely linked to

the turnover of the CSF itself. Chen et al. (2010) found a CSF

turnover of 10.5 h in sheep. Lehmann et al. (2019) studied the

CSF turnover of 197 proteins and estimated a median CSF half-

life of 7.4 h based on an isotopic labeling method. When labeled

tau is introduced into either the ISF or CSF in mice by injection,

it is rapidly cleared from those compartments in <24 h (Ishida

et al., 2022). Our estimate of 9.9 h for tau CSF half-life is at

variance with the estimate of 10.9 days of Yamada et al. (2014,

2015) based on a mouse model. In summary, tau is successively

cleared from the brain, CSF, and plasma compartments with

half-lives of 552, 9.9, and 10 h. These values are subject to

revision with more precise measurements.

Tau is cleared from the neuron primarily
by catabolism

An estimated tau neuronal half-life of 552 h gives a whole

brain clearance of 1.63 g/h based on a typical 1,300 g brain. With

typical brain levels of tau of 5.92∗107 pg/g (Han et al., 2017), the

tau synthesis rate and the tau clearance rate is at a steady state

at 7.44 ∗ 108 pg/h on a whole brain basis. Tau can be cleared

from the cytosol of the neuron by three mechanisms: release

to the ISF, internal destruction, or deposition in the neuron as

insoluble tau (neurofibrillary tangles). The rate at which tau is

converted to neurofibrillary tangles is unknown, but likely to be

low compared to the rate of synthesis. Given the low levels of

tau in the CSF, we have estimated a first-order tau release rate

constant of 9.2∗ 10−8 hr−1 or a tau release rate of 7,080 pg/h on

a whole brain basis. Since the tau clearance rate in the neuron

exceeds the tau release rate in the neuron by a factor of 104

(Table 1), most tau is cleared by destruction (catabolism) rather

than release. Catabolism of tau has been linked to the lysosomal

and the proteasomal degradation systems (de Vrij et al., 2004;

Chesser et al., 2013; Tarasoff-Conway et al., 2015; Vaz-Silva et al.,

2018; Xin et al., 2018; Liu et al., 2021).

In a similar calculation, Han et al. (2017) examined the

ratio between soluble tau in the extracellular fluid (CSF) and

soluble cytosolic tau. Although they did not do a kinetic analysis,

they found that cytosolic brain tau was 345,000 times higher

than CSF tau. Han et al. (2017) “hypothesized that the tau

secretory process from brain parenchyma to CSF is a passive

drainage. This indicates that the secretion factor is most likely

proportional to the whole brain parenchymal tau and fits in a

typical metabolic first-order kinetic model”. Our model and the

data of Han et al. (2017) are consistent with the hypothesis that
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most cytosolic tau is catabolized and not released into the CSF.

This is not surprising given the high energy costs of bringing

protein precursors into neurons. It makes energetic sense to

recycle misfolded proteins rather than release them into the

CSF compartment where they are lost to the blood. Fornasiero

et al. (2018) estimated that 50% of new brain protein synthesis

involving the essential amino acid lysine utilizes lysine from

catabolized brain protein as distinguished from dietary amino

acids. This relationship between higher rates of tau catabolism

as compared to tau release may not hold under circumstances of

neuronal injuries such as traumatic brain injury or stroke.

Untangling the relative contributions of
increased synthesis, decreased
catabolism, increased release, and
decreased CSF clearance to altered tau
levels

Tau levels in the CSF, plasma, and neuronal cytosol are

elevated in Alzheimer’s disease (Mattsson et al., 2016; Olsson

et al., 2016; Han et al., 2017; Koss et al., 2018; Fossati et al., 2019).

These higher levels of tau could be due to increased tau synthesis,

increased tau release, decreased tau catabolism, decreased CSF

clearance of tau, or even decreased plasma clearance.

If we accept that tau levels are increased in all three

compartments (brain, plasma, and CSF) in Alzheimer’s disease,

then decreased plasma clearance is an unlikely explanation

for these elevations since decreased plasma clearance of tau is

predicted to only increase plasma levels (Figures 6A,B).

Similarly, increased tau release or decreased CSF clearance

of tau can explain increased tau levels in the CSF and plasma

but cannot explain increased levels of cytosolic tau in the neuron

(Figures 3A,B, 5A,B).

Either increased neuronal synthesis of tau (Figures 2A,B)

or decreased neuronal catabolism of tau (Figures 4A,B) could

account for elevated levels of tau in the brain, CSF, and plasma.

Synthesis of tau is likely to be a zero-order kinetic process

(independent of cytosolic tau levels) and catabolism of tau

is likely to be a first-order kinetic process (linearly related

to cytosolic tau levels) (Rosenbaum, 2016). Although there is

evidence of increased cytosolic tau in Alzheimer’s disease (Han

et al., 2017; Koss et al., 2018), evidence of increased synthesis of

tau in Alzheimer’s disease is lacking. There is growing interest in

how tau is catabolized in the Alzheimer’s disease (de Vrij et al.,

2004; Chesser et al., 2013; Tarasoff-Conway et al., 2015; Vaz-

Silva et al., 2018; Xin et al., 2018; Liu et al., 2021). A decline in

tau catabolism could explain elevated levels of tau in the brain,

CSF, and plasma compartments. A decrease in tau catabolism

would be predicted to lengthen tau half-life. In a mouse model,

Kleindienst et al. (2010) found 20% longer protein half-lives

in aged brains than young brains. An increase in tau synthesis

rate would not alter tau half-life, a decrease in tau catabolism

would lengthen tau half-life. When Sato et al. (2018) compared

tau half-life in 12 Alzheimer subjects to 12 controls, tau half-

life was longer in the Alzheimer subjects (31.5 ± 4.0 days) than

the control subjects (29.4± 6.0 days), consistent with slowed tau

catabolism in Alzheimer’s disease. However, the difference was

not statistically significant.

Based on the findings of this kinetic model and known

increases in cytosolic tau, CSF tau, and plasma tau, the most

likely underlying mechanisms appear to be decreased neuronal

catabolism or increased neuronal synthesis. Animal studies

and some human studies are beginning to examine whether

decreasing the rate of synthesis of tau in the neuron or enhancing

its clearance from the neuron (Bennett et al., 2019; Hoskin

et al., 2019; Ossenkoppele et al., 2022) can improve the clinical

course of Alzheimer’s disease. Kinetic models may prove useful

in interpreting animal models that seek to decrease the tau

synthesis rate or increase the tau catabolism rate. In animal

models, unlike in human studies, it is often possible to measure

tau levels simultaneously in the brain, CSF, and blood. For

example in an mouse model, when antisense oligonucleotides

were used to selectively inhibit tau synthesis in the brain (DeVos

et al., 2013), tau levels in the brain and CSF fell in tandem as

predicted by our kinetic model.

Model limitations

The proposed model has several limitations. The model

suggest that tau moves from a brain compartment to a CSF

compartment to a plasma compartment (Figure 1), a path taken

by only minute amounts of cytosolic tau. Precise values for the

volumes of distribution in each compartment were not available.

We did not correct the plasma volume for sex, weight, or height

(Nadler et al., 1962). We combined the ISF and CSF into a single

CSF compartment, although tau levels are known to be higher in

the ISF than the CSF (Herukka et al., 2015). Our estimate of the

volume of distribution of tau in the CSF compartment (Vcsf ) was

approximate and was further complicated by tau level gradients

within this compartment (Pyykkö et al., 2014).

In addition, we lacked accurate estimates of the tau levels

throughout the brain compartment (Han et al., 2017). We

have assumed that tau is released, catabolized, absorbed, and

eliminated by first-order kinetics and that synthesis follows zero

order kinetics (Holford, 2016; Rosenbaum, 2016; Ross et al.,

2021). We did not explore physiology-based-pharmacokinetic

models or multi-compartment models. The assumption of first

order kinetics and linked one-compartment models needs to be

supported by additional data.

Our estimates of the first-order plasma elimination constant

(ke) and the absorption constants (ka) are subject to error and

based on kinetic studies of biomarker levels after mild traumatic

brain injury (Azizi et al., 2021). Themodel could be improved by

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1055170
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Hier et al. 10.3389/fnagi.2022.1055170

better estimates of these absorption and elimination constants.

We have assumed steady state conditions exist for the blood and

CSF tau levels (Rosenbaum, 2016). Although this assumption is

reasonable in the short run (Blennow et al., 2007; Slats et al.,

2012; Le Bastard et al., 2013), the blood and CSF levels of tau rise

with aging (Blomberg et al., 2001; Chiu et al., 2017), and with

Alzheimer’s disease progression (Palmqvist et al., 2019). There

may be diurnal changes in the levels of tau in the CSF (Holth

et al., 2019). Another limitations of this study is that we did not

account for peripheral (non-brain) sources of tau (Dugger et al.,

2016; Barthélemy et al., 2020; Toombs and Zetterberg, 2020).

Barthélemy et al. (2020) have suggested that the lack of

correlation between total tau in the CSF and plasma is due to a

high contribution of peripheral sources of tau to total tau in the

plasma. We did not take into account peripheral sources of tau.

Another limitation of this study is that we only looked at total

tau (t-tau) and did not consider the kinetics of phosphorylated

tau or truncated forms of tau (Barthélemy et al., 2019, 2020).

Our estimate of F, the fractional absorption ratio or

bioavailability of tau, is approximate. We estimated a value of

9.2% for F (Table 1) meaning only 9.2% of tau in the CSF

compartment makes it to the plasma compartment. Although,

Nimmo et al. (2020) have suggested that some tau draining

from the CSF and ISF gets stuck in macrophages along the

drainage pathways, this high loss rate is not fully explained.

We did not take into account that some tau may leak from the

plasma compartment for redistribution to the body interstitial

fluid. Correcting for tau redistribution could generate a higher

estimate for F.

The kinetics of the aggregation of tau monomers into

oligomers and their eventual deposition into neurofibrillary

tangles is of great interest (Kuret et al., 2005; Meraz-

Ríos et al., 2010; Meisl et al., 2021), but was outside the

capabilities of our model (see also Knft in Figure 1). Meisl

et al. (2021) have described the kinetics governing tau seeds

that lead to neurofibrillary tangles in terms of seed growth,

seed multiplication, and seed spread. Seed multiplication in

Alzheimer’s disease appears to be a slow kinetic process

with a doubling time as long as 5 years (Meisl et al.,

2021). Furthermore, we did not consider alternative models

of Alzheimer’s disease that model the topographic spread
of insoluble tau (neurofibrillary tangles) through the brain

(Weickenmeier et al., 2018; Fornari et al., 2019; Cornblath et al.,

2021).

Despite these limitations, kinetic equations provide a model
of tau content and levels in the brain, CSF, and plasma. Multiple

anti-tau clinical trials are in progress for Alzheimer’s disease

(Ossenkoppele et al., 2022).Most tau is catabolized in the neuron

and re-used to make new proteins. A minute amount of tau

is released from neurons and successively enters the CSF and

plasma compartments. A better characterization of the rates at

which tau is synthesized, catabolized, and released from neurons

is needed as well as the rates at which tau is cleared from the

CSF and plasma. Observed elevations in tau levels in the brain,

CSF, and plasma in Alzheimer’s disease are most consistent

with decreased tau catabolism or increased tau synthesis at the

neuronal level.
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