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Discovery and validation of
Ferroptosis-related molecular
patterns and immune
characteristics in Alzheimer’s
disease

Yi-Jie Het, Lin Congt, Song-Lan Liang, Xu Ma, Jia-Nan Tian,
Hui Li and Yun Wu*

Department of Neurology, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China

Background: To date, the pathogenesis of Alzheimer's disease is still not
fully elucidated. Much evidence suggests that Ferroptosis plays a crucial
role in the pathogenesis of AD, but little is known about its molecular
immunological mechanisms. Therefore, this study aims to comprehensively
analyse and explore the molecular mechanisms and immunological features
of Ferroptosis-related genes in the pathogenesis of AD.

Materials and methods: We obtained the brain tissue dataset for AD from
the GEO database and downloaded the Ferroptosis-related gene set from
FerrDb for analysis. The most relevant Hub genes for AD were obtained using
two machine learning algorithms (Least absolute shrinkage and selection
operator (LASSO) and multiple support vector machine recursive feature
elimination (MSVM-RFE)). The study of the Hub gene was divided into two
parts. In the first part, AD patients were genotyped by unsupervised cluster
analysis, and the different clusters’ immune characteristics were analysed.
A PCA approach was used to quantify the FRGscore. In the second part:
we elucidate the biological functions involved in the Hub genes and their
role in the immune microenvironment by integrating algorithms (GSEA, GSVA
and CIBERSORT). Analysis of Hub gene-based drug regulatory networks and
MRNA-miRNA-IncRNA regulatory networks using Cytoscape. Hub genes were
further analysed using logistic regression models.

Results: Based on two machine learning algorithms, we obtained a total of
10 Hub genes. Unsupervised clustering successfully identified two different
clusters, and immune infiltration analysis showed a significantly higher degree
of immune infiltration in type A than in type B, indicating that type A may be at
the peak of AD neuroinflammation. Secondly, a Hub gene-based Gene-Drug
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regulatory network and a ceRNA regulatory network were successfully
constructed. Finally, a logistic regression algorithm-based AD diagnosis model
and Nomogram diagram were developed.

Conclusion: Our study provides new insights into the role of Ferroptosis-
related molecular patterns and immune mechanisms in AD, as well as

providing a theoretical basis for the addition of diagnostic markers for AD.

Alzheimer's disease,
machine learning, diagnostic model, Nomogram

Introduction

Dementia is an acquired, progressive cognitive impairment
that primarily affects the ability to perform everyday tasks and
is a significant cause of dependency, disability and death in
older people (Lane et al,, 2018). Epidemiological surveys show
that the global prevalence of dementia was around 50 million
people in 2018, which is expected to triple by 2050 (Scheltens
et al, 2021). Alzheimers disease (AD) is a multifactorial
neurodegenerative disorder. It is the most common form
of dementia, manifesting primarily as cognitive, emotional,
language and memory impairments in the elderly, first identified
and reported by Alzheimer (1907), Alzheimer et al. (1995), and
Sabayan and Sorond (2017). Perennial deposits of amyloid B
(APB) and neuronal fibrillary tangles (NFTs) are thought to be
prominent features in the pathogenesis of AD (Schneider and
Sari, 2014). However, the cellular and molecular mechanisms
that contribute to the pathogenesis of AD have not been fully
elucidated.

Ferroptosis is an iron-dependent form of cell death that
differs from other cell death in that its mechanisms include
apoptosis and necrosis. Specifically, the process involves the
three main metabolisms of thiols, lipids and iron, leading
to the production of iron-dependent lipid peroxidation and,
ultimately, cell death (Yan et al, 2021). In contrast to other
tissues and organs, human brain tissue is rich in iron, which
plays a vital role in various physiological processes, including
DNA synthesis, neurotransmitter synthesis, and metabolism
(Ward et al.,, 2014). Moreover, brain tissue is rich in PUFA
(polyunsaturated fatty acids) and iron compared to other
tissues and organs in the body. As a result, it consumes more
oxygen, is more susceptible to lipid peroxidation and has a
high susceptibility to iron death (Ma et al, 2022). Evidence
from the previous studies (Smith et al,, 2010; Liu et al., 2011)
suggests that iron may also bind to and cause aggregation of
AP and Tau proteins, which also predicts the possibility of the
Ferroptosis mechanism as potential pathogenesis of AD. As
research continues, Ferroptosis is increasingly being recognised
as a distinct mechanism of cell death in the pathogenesis of
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immune characteristics, Ferroptosis, biomarkers, cluster,

AD (Chen et al., 2021; Jakaria et al.,, 2021; Ma et al., 2022).
Furthermore, Ferroptosis is regulated by a set of genes, and
detecting these genes as evidence of iron death is essential for
further studies exploring the pathogenesis of AD.

On the other hand, there has been experimental evidence
that neuroinflammation and immune responses play a critical
role in the pathogenesis of AD (Morales et al,, 2014). Among
other things, it has been shown that AP deposition can
drive the migration of inflammatory factors and microglia
to affected sites, exacerbating the inflammatory response
and promoting plaque formation through the induction of
cell death (Simard et al, 2006; Baik et al, 2016). Further
experimental evidence suggests that the continued activation
of the immune response indicates the accumulation of more
microglia, making the AP deposition-immune response a
positive feedback loop that further exacerbates the pathological
changes of neuroinflammation and AD (Hickman et al,
2008). And recent studies (Long et al, 2022) point to a
complex regulatory relationship between microglia, iron, and
immune inflammation, which play a role in AD development.
Fernandez-Mendivil et al. (2020) found that under conditions
of neuroinflammation, microglia can lead to the toxic
accumulation of iron by upregulating the gene HO-1, which
increases the production of reactive oxygen species (ROS),
ultimately leading to the development of memory impairment
in AD mice. Another study in GPX4-deficient mice (Hambright
et al, 2017) showed that Ferroptosis-related markers could
induce learning and memory deficits in mice by regulating
increased lipid peroxidation and neuroinflammatory responses.
All of the above findings suggest a potential role for Ferroptosis
mechanisms and immune responses in the pathogenesis of
AD. However, there are relatively few bioinformatics studies
on the mechanisms of Ferroptosis in the field of AD, and a
comprehensive analysis is still lacking.

This study aimed to comprehensively analyse and explore
the molecular mechanisms of Ferroptosis-related genes in the
pathogenesis of AD as well as the immunological features

(Figure 1).
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FIGURE 1

Technology route. AD, Alzheimer's disease; Control, healthy control.

Materials and methods

Identification of Ferroptosis-related
genes

Download and processing of expression
spectrum data

In this study, we downloaded the gene expression profile
datasets GSE33000, GSE44770 and GSE150696 of AD from
the GEO database (Table 1). The dataset GSE33000 was
published publicly in 2014 by Narayanan et al. (2014). The

study demonstrated that a shared dysregulated network in
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the human prefrontal cortex underlies two neurodegenerative
diseases. The data sample used in the study was obtained
from the HBTRC (Harvard Brain Tissue Resource Center)
and included 157 healthy controls and 310 AD patients. The
postmortem interval (PMI) of samples in the entire cohort was
17.8 £+ 8.3 h, the sample PH was 6.4 £ 0.3, and the RNA
integrity (RIN) was 6.8 = 0.8. The above samples were analysed
by Agilent 44K arrays containing 40,638 DNA probes targeting
39,909 mRNA transcripts for 19,198 known genes and 20,711
predicted genes. The dataset GSE44770 was publicly available in
2013. Zhang et al. (2013) developed and applied an integrated
network-based approach to identify gene targets associated with
neurodegenerative diseases by analysing their data. The tissue
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TABLE 1 Dataset information from the GEO database.

Location Accession Platform  Type Number

Brain GSE33000 GPL4372  Microarray 157 control vs. 310 AD
Brain GSE44770 GPL4372  Microarray 102 control vs. 130 AD
Brain GSE150696  GPL17585  Microarray 10 control vs. 10 AD

sources for this dataset included the dorsolateral prefrontal
cortex (PFC), visual cortex (VC), and cerebellum (CB). Samples
of PFC origin were selected for further analysis, involving 130
AD patients and 102 healthy controls. Tissue samples were
analysed by Rosetta/Merck Human 44k 1.1 microarrays for
39,579 transcripts, including 25,242 known genes and 14,337
predicted genes. The cohort's PMI, PH and RIN samples were
17.8 £ 83h, 64 £ 0.3 and 6.8 £ 0.8, respectively. The
dataset GSE150696 was made publicly available in a 2013
study by Low et al. (2021), which suggested that FynT may be
involved in the pathological alterations of AD through its effects
on tauopathy and neuroinflammation. The prefrontal cortex
sample used in this dataset was provided by Brains for Dementia
Research (BDR). Samples were analysed by Affymetrix Human
Transcriptome Array 2.0. Age, gender and PMI were matched as
much as possible during the analysis. In addition, we integrated
the clinical information of the patients selected in the dataset,
including age, gender, and disease status (Supplementary Data
Sheet 10).

The next step is to pre-process the downloaded dataset.
Specifically, two components are included: ID conversion of
the probe data and normalisation of the expression spectrum
matrix. The ID conversion of probe data is performed by
a Perl language script,! which first obtains the gene’s name
corresponding to each probe from the downloaded platform
annotation file. It converts the probe name to the corresponding
gene ID to complete the annotation. We observed multiple
probes corresponding to the same gene ID during annotation.
At this point, we averaged the data of all probes corresponding
to the gene, and the processed data were used as the expression
profile data of the gene. The normalizeBetweenArrays function
does the normalisation of the expression spectrum data.

Extraction of Ferroptosis-related genes

The set of Ferroptosis-related Genes used in this study
was extracted from the FerrDb database (Zhou and Bao,
2020), the first database to provide Ferroptosis-related markers,
modulators, and all Genes in this data were experimentally
validated. Therefore, we downloaded the Ferroptosis-related
gene set from FerrDb and extracted the expression of these genes
in the dataset GSE33000 to construct the Ferroptosis-related
Genes expression profile matrix for subsequent analysis.

1 https://www.perl.org/
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Differential expression analysis

We performed differential expression analysis of the
Ferroptosis-related Genes expression profile matrix for
identifying Ferroptosis-related differentially expressed genes
(FRDEGS) between the AD and Con groups. The significance
criterion for FRDEGs was set at P < 0.05. Based on this, the
expression of FRDEGs was visualised and analysed, the heatmap
of FRDEGs was constructed using the pheatmap package, and
the ggplot2 package implemented the volcano map. Finally,
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed on FRDEGs, where
GO enrichment analysis included three parts (BP, CC, MF) to
observe the function or pathway of FRDEGs enrichment.

Construction of LASSO model and mSVM-RFE
feature selection process

Two machine learning algorithms, least absolute shrinkage
and selection operator (LASSO) logistic regression and multiple
support vector machine recursive feature elimination (mSVM-
RFE) algorithm, were used to identify the genes most associated
with AD. The LASSO logistic regression analysis was performed
using the “glmnet” package with the following parameters:
response type set to binomial, alpha set to 1, and 10-fold
cross-validation to adjust the optimal value of the parameter
. In addition, SVM-RFE serves as a practical feature selection
technique to find the best variables by removing the SVM-
generated feature vectors. Still, the drawback is that the pure
SVM-RFE algorithm is an algorithm based on the binary case,
which can reduce the performance of gene selection. The
mSVM-REFE algorithm used in this study is similar to the SVM-
RFE step, which is still constructed by the “e1071” package,
except that the mSVM-RFE algorithm calculates the ranking
score of a gene at each stage, which is calculated statistically
from the weight vector coefficient. The specific parameters are
set as follows: halfve. above = 50 and k = 10, using 10-fold cross-
validation to make the algorithm more accurate. The common
genes identified by the two machine learning methods were the
Hub genes for the subsequent study. Correlation analysis of the
Hub genes identified by the two machine learning algorithms
was performed and visualised using the “corrplot” package. The
“RCircos” package was also used to plot circles to show the
distribution of Hubs on chromosomes. Finally, the expression
levels of Hub genes in various human tissues were analysed
using the GETx database.

Part one

Gene cluster based on Ferroptosis-related
gene expression

The analysis of the AD dataset was implemented in R
using the “ConsensusClusterPlus” software package (Wilkerson
and Hayes, 2010), which identifies possible groups of shared
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biometric traits based on Hub genes, defined as “FRG
Cluster.” A resampling-based approach is used to assess the
plausibility and stability of consensus clustering. Clusters sort
the Consensus Matrix graph to find the “cleanest” clusters
distribution, showing high consensus (dark blue) for items
with high cohesion and low consensus for items with low
cohesion. The empirical cumulative distribution function (CDF)
represents what value of K is taken when the cluster analysis
results are most reliable, and the CDF value is approximately
the maximum value. The Delta plot represents the area under
the CDF curve, which corresponds to the relative change in k
and k-1. Specifically, the optimal number of clusters is chosen
based on the heat map of the Consensus Matrix, the empirical
cumulative distribution function (CDF), and the delta map.

Principal component analysis (PCA) was performed on the
Hub genes identified by the machine learning algorithm to
visualise the typing results further.

Correlations between two distinct clusters of
Ferroptosis-related genes and immune
characteristics

To determine the correlation between the two molecular
typologies and the immune microenvironment, we applied the
ssGSEA method (Xiao et al,, 2020) to analyse the proportion of
28 different immune cell distributions and infiltration scores for
each sample in both typologies. Using this approach, the extent
of immune cell infiltration in each sample was determined,
and the correlation between Ferroptosis-related gene expression
and the amount of immune cell infiltration was determined.
Heatmaps and box line plots were created to visualise the
analysis results using the “Pheatmap” and “Voplot” packages.

Identification of differential expression genes
between two distinct clusters

We performed intergroup differential expression analysis
of Two Distinct Clusters of Ferroptosis-related Genes obtained
from the above steps to get the differentially expressed genes
(CDEGs) between the two Clusters. Based on the CDEGs, we
applied the “ConsensusClusterPlus” package to create a new
genotype, defined as a “gene Cluster.”

Secondly, the obtained CDEGs were enriched and analysed
to observe their possible involvement in biological functions
or pathways. The enrichment analysis consists of the Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG). Finally, the same ssGSEA algorithm was
used for each sample to obtain an infiltration score of 28
immune cells to analyse their degree of infiltration. Further
correlation analysis was used to determine the association of
CDEGs gene expression with immune cell infiltration.

Correlation of FRGscore with clinical and
immune characteristics

Using the PCA method, FRG scores were generated based
on the expression profiles of 10 Ferroptosis-related Genes (Hub
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genes) in AD samples. Specifically, PC1 and PC2 were extracted
to form signature scores, and FRGscore was constructed by
applying a method similar to the Gene Expression Index (GGI)
(Sotiriou et al., 2006; Li S. et al., 2022):

FRGscore = »_ (PCli + PC2i) (1)

Where i denotes the expression of the Hub gene. The
FRGscore was compared between two different molecular
typing (FRG cluster and gene Cluster). We further analysed
the relationship between the FRG cluster, gene Cluster, Age
and FRGscore shown as Sanky plots. Correlations between
FRGscore and immune cells and responses were determined
using Pearson’s correlation analysis to visualise the results using
a correlation heatmap.

Part two

Correlation analysis between Hub genes and
immune characteristics

CIBERSORT is currently the most cited tool for immune
cell infiltration analysis. It is based on linear support vector
regression to calculate the gene expression signature set of
22 immune cell subtypes: LM22. In this study, we calculated
the infiltration scores of 22 immune cells for each sample in
the dataset GSE33000 using the CIBERSORT algorithm. We
analysed the correlation between Hub genes and immune cells
to visualise the analysis results graphically.

Enrichment analysis of Hub genes

Gene set variance analysis (GSVA) is a non-parametric,
unsupervised analysis based on a list of applicable terms or
gene sets, where pathway enrichment is evaluated for each
sample. We applied the “GSVA” package to complete the above
process analysis in this study. Gene set enrichment analysis
(GSEA) is a computational method of the functional class
scoring approach to identify whether pre-selected gene sets are
differentially expressed between groups. The available pathways
of Hub genes were predicted and analysed using two methods of
enrichment analysis.

Construction of gene-drug regulatory
networks

The Drug-Gene Interaction Database? is an online
database of drug-gene interaction data mined from DrugBank,
PharmGKB, Chembl, Drug Target Commons, TTD, and other
databases. The list of Hub genes was imported into the website
to get the interaction score, nature of interaction and interaction
information of different drugs for the gene. Finally, the above
information is used to construct a gene-drug regulatory network
to find potential drug targets.

2 https://dgidb.genome.wustl.edu

frontiersin.org


https://doi.org/10.3389/fnagi.2022.1056312
https://dgidb.genome.wustl.edu/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

He et al.

Construction of the competitive endogenous
RNA regulatory network

RNAs can regulate each other by competing for binding a
common miRNA, a mode of regulation known as competitive
endogenous RNA (ceRNA). The ceRNAs identified include
protein-coding mRNAs and non-coding RNAs, the latter
including IncRNAs and cicrRNAs. In the present study, we
constructed a ceRNA regulatory network between mRNA-
miRNA-IncRNA. Specifically, three databases, miRanda, miRDB
and TargetScan, were used to simultaneously predict the target
miRNAs of Hub genes and take the intersection. Obtain
mRNA-miRNA files. The second step uses the result file
from the previous step to predict the IncRNAs it targets
through the spongeScan database. Finally, the ceRNA network
is constructed, and the feature files are jointly built based on
the IncRNA-miRNA-mRNA files, the classification of genes and
the regulation relationship obtained above. Visualise ceRNA
regulatory networks using Cytoscape.

Development and validation of a diagnostic
model for Ferroptosis-related genes

Based on 10 Hub genes, a logistic regression algorithm
was used to build a diagnostic model for AD classification.
The area under the ROC curve (AUC) was used to assess
the accuracy of the Hub gene and logistic regression models.
Therefore, we calculated the AUC values of the 10 Hub genes
and logistic regression models separately to assess the accuracy
of the diagnostic model. In addition, we calculated the AUC
values of the Hub gene and logistic regression models in
dataset GSE44770 (containing 130 AD patients and 102 normal
controls) and dataset GSE150696 (having 10 AD patients and
10 normal controls), respectively, as a way to validate the
classification performance of the diagnostic models. Finally, the
visual analysis of the above process is completed using ggplot2.

Modeling and validation of a diagnostic
Nomogram

Using 10 Hub genes, a column line graph was constructed
based on the “rms” R package. The accuracy of the column
line graphs was estimated using calibration curves, and the
clinical significance of the column line graphs was evaluated
using decision curve analysis.

Results

Identification of Ferroptosis-related
genes

Identification of differential expression of
Ferroptosis-related genes

We downloaded the Ferroptosis-related gene set from
FerrDb, with 728 genes. The expression of these genes was
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extracted to build a Ferroptosis-related gene expression matrix.
A total of 138 FRDEGs (Supplementary Data Sheet 1) were
identified by differential expression profiling of 310 brain
tissue samples from AD patients and 157 normal human
brain tissue samples, which included 67 up-regulated and 71
down-regulated genes (Figures 2A,B). We further explored
the possible signalling pathways involved in FRDEGs by
GO with KEGG enrichment analysis (Supplementary Data
Sheet 2). The GO results indicated that the above genes are
involved in the cellular response to oxidative stress, cellular
response to chemical stress, and response to oxidative stress
BP pathways (Figure 2C). For the CC pathway (Figure 2D),
FRDEGs function primarily in the intercellular bridge and
transcription regulator complex. The functional enrichment of
MF (Figure 2E) showed that FRDEGs are mainly involved in
molecular functions such as DNA-binding transcription factor
binding and DNA-binding transcription factor binding. The
KEGG (Figure 2F) analysis favoured Ferroptosis and Human
cytomegalovirus infection pathways.

Identification of Hub genes

To explore biomarkers of AD, we screened genes using two
different machine learning algorithms. The results of the LASSO
regression showed (Figure 3A) that 43 genes were considered
the most associated with AD (Best A for LASSO: 0.009376).
On the other hand, the mSVM-RFE algorithm (Figure 3B)
yielded 13 genes. Both machine algorithms were subjected to 10-
fold cross-validation to ensure the accuracy of the results. The
common gene identified by the two machine learning methods
(Figure 3C) was the hub gene for the subsequent study. We
further analysed the correlation between Hub genes (Figure 3D)
and showed the distribution of Hub genes on the chromosomes
(Figure 3E). Finally, the expression levels of Hub genes in
various human tissues were analysed using the GETx database
(Supplementary Figures 1 and 2).

Part one

Results based on two distinct clusters of
Ferroptosis-related gene expression

Based on the 10 Hub genes, we performed a Consensus
Cluster analysis. Specifically, the number of clusters is
determined based on the results of the Consensus Matrix
heatmap, the empirical cumulative distribution function (CDF)
map, and the delta map. The results showed that the fractal
was most stable at k = 2 (Figure 4A). Instead, there was a
significant difference in the relative change in the area under
the CDF curve when k = 2-9 (Figure 4B). In addition, the
CDF graph (Figure 4C) curve shows a minor fluctuation when
the consistency index is between 0.2 and 0.6. Based on the
Consensus Cluster approach, we finally identified two FRG
Clusters among 310 AD samples, of which 178 AD samples
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-log10 (adjust p-value). Green triangles represent downregulated genes, red triangles represent upregulated genes, and black dots represent
genes with no evident differential expression. (B) Heatmap of FRDEGs. Each column in the graph represents a sample, each row represents a
gene, and the expression status of the gene is indicated from high to low in orange to blue, respectively, and at the top of the heat map,
blue/red represents the AD group/control group, respectively. (C) Shows the top 5 significantly enriched BP (biological process). (D) Shows the
top 5 enriched CC (cellular component) considerably. (E) The top 5 enriched MF much (molecular function) are shown. (F) The top 5
significantly enhanced KEGG pathways. In the bubble plots for GO and KEGG enrichment analysis, blue dots represent genes, red dots
represent pathways, and bubble size represents the number of genes enriched in that pathway. AD, Alzheimer's disease; Control, healthy
control; FRDEGs, Ferroptosis-related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

AD vs Control
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were identified as FRG Cluster A, and 132 AD samples were
identified as FRG Cluster B. Principal component analysis
showed (Figure 4D). There was a clear distinction between FRG
Cluster A and B. We also calculated the scores of Hub genes
(FRGscore) in each AD sample (Supplementary Data Sheet 3).

Results of immune cell infiltration analysis
based on two FRG clusters
The results of ssGSEA analysis showed (Figure 5A)

(Supplementary Data Sheet 4): Activated. Dendritic.cell,
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CD56bright.natural.killer.cell, Eosinophil, Gamma.delta.T.cell,
MDSC, Macrophage, Neutrophil,
infiltrated  significantly

proportions in FRG Cluster type A than type B, but
the opposite was CD56dim.natural killer.cell
and Monocyte. We the

10 Hub genes and immune cells, presented

Immature.B.cell, and

T.follicular.helper.cell higher

true for

further analysed correlation

between

in the form of a heatmap (Figure 5B). In addition,

we analysed the difference in the degree of immune

cell infiltration when each gene was highly and
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FIGURE 3

The identification of 10 Hub genes. (A) The LASSO logistic regression algorithm identified 43 AD-related features with a 10-fold cross-validation
set for selecting the penalty parameter to determine the optimal lambda value. (B) A total of 13 feature genes were filtered out using the
mSVM-RFE algorithm. (C) Venn diagram of genes extracted from LASSO and mSVM-RFE methods. (D) Heatmap of correlations for Hub genes.
Positive correlations are marked in red and negative correlations are marked in blue. The numbers in the middle represent correlation
coefficients. (E) Map of the location of the Hub gene on the chromosome. LASSO, least absolute shrinkage and selection operator; SVM,
support vector machine; RFE, recursive feature elimination.
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The results of 2 clusters of patients with AD. (A) Heatmap of consensus clustering for k = 2—9. Colour gradients indicate from 0 to 1 (white: O,
blue: 1). (B) Delta represents the relative change course in the area under the CDF curve when k = 2-9. (C) Cumulative distribution function
(CDF); (D) PCA results of the expression profiles of the two FRGcluster patterns, showing the marked differences in the transcriptomes between
the different FRGclusters. The red dots in the scatter plot represent FRGcluster A, and the blue dots represent FRGcluster B. CDF, cumulative
distribution function; FRGcluster, Ferroptosis-related gene cluster.

lowly expressed (Figure 5C). The results confirm an Results of differential expression genes
inextricable relationship between the high and low between two distinct clusters
expression levels of genes and the infiltration of immune By comparing the two molecular typings of FRG Cluster

cells. A and B, we identified 3313 differentially expressed genes
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FIGURE 5

Analysis of immune cell infiltration in the two clusters of patients with AD. (A) Comparison of the percentage of immune cell infiltration between
FRGcluster A and B. Blue represents FRGcluster A; yellow represents FRGcluster B. (B) Heatmap of the correlation between Hub genes and 28
immune cells with a colour gradient change from red (positive correlation) to blue (negative correlation). (C) Comparison of the differences in
immune cell abundance between the high and low expression groups for each Hub gene. *P < 0.05; **P < 0.01; ****P < 0.001. FRGcluster,
Ferroptosis-related gene cluster.

(CDEGs). And the GO and KEGG enrichment analysis (Figure 6A) mainly included the positive regulation of
was performed on the above-obtained CDEGs. The the metabolic process, macromolecule metabolic process,
results showed (Table 1) that the GO enrichment analysis cellular metabolic function and other biological pathways.
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The KEGG pathway shows (Figure 6B) that CDEGs
exert their bodily functions mainly through the Olfactory
transduction pathway. In addition, based on Consensus
Cluster analysis, we established a new molecular typing based
on CDEGs, defined as a “gene Cluster.” AD patients were
classified into two subtypes, gene Cluster A and B, by cluster
heatmap (Figure 6C), CDF plot (Figure 6D) and Delta plot
(Figure 6E) selection. In addition, we also used the ssGSEA
algorithm, and we derived the difference in the degree of
infiltration of 28 immune cells in the two gene Clusters
(Figure 6F).

Association of FRGscore with clinical and
immunological characteristics of different
subtypes

First, we compared the expression levels of Hub genes
between the two “FRG Clusters” and the two “gene Clusters.”
Four genes (DUOX2, ALOX15B, IFNA17 and PPARD) were
significantly differentially expressed between type A and type
B in the FRG Cluster (Figure 7A). Also, the results showed
that eight genes (NOX5, DUOX2, BAP1, HMGBI, IFNA17,
BRD4, P4HB and PPARD) significantly differentially expressed
between type A and type B in the gene Cluster (Figure 7B).
We further analysed the differences in scores between different
subtypes based on the FRGscore results derived from PCA. It
was found that the FRGscore of type A was higher than that
of type B in the FRG Cluster (Figure 7C), and the same result
was obtained in the geneCluster (Figure 7D). We observed that
the FRG Cluster B group was associated with lower age (with
80 years as the cut-off) (Figure 7E) and lower FRGscore values
(Figure 7F). Also, the chi-square test confirmed that a higher
percentage of patients in the low FRG score group were of
lower age (Figure 7G). In addition, we analysed the relationship
between FRG Cluster, gene Cluster, age and FRGscore and
showed it as a Sanky plot (Figure 7H). Further correlation
analysis between FRG score and immune cells showed that FRG
score had a significant negative correlation with Eosinophil,
CD56dim.natural.killer.cells,
Monocyte (Figure 7I), which implies that dysregulation of

Immature.dendritic.cells and
the immune microenvironment plays a crucial role in AD

development.

Part two

Correlation analysis between Hub genes and
immune characteristics

We used an alternative immune infiltration algorithm to
explore the differences in immune infiltration between AD
patients and normal samples (Supplementary Data Sheet 5). As
shown in Figure 8A, the proportion of Plasma cells, T cells CDS8,
T cells CD4 memory resting, T cells CD4 memory activated,
T cells follicular helper, NK cells activated, and NK cells
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activated was decreased in AD samples compared to normal
samples. The percentage of infiltrated Eosinophils decreased
compared with normal samples, while the opposite was true
for Macrophages M1, Macrophages M2, and Neutrophils.
Further analysis of the correlation of Hub genes with 22
immune cell infiltrations showed (Figure 8B) a significant
positive correlation of Macrophages M2 with gene P4HB and
a negative correlation with IFNA17, HMGB1 and DUOX2.
Mast cells activated had a significant positive correlation with
BAP1 and a negative correlation with CDKN2A; T cells
follicular helper had a strong negative correlation with genes
PPARD and BAPI and a significant positive correlation with
DUOX2. This evidence suggests that changes in the immune
microenvironment of AD patients may be related to these 10
Hub genes.

Hub genes were closely linked to a variety of
AD-related pathways

To explore the function of Hub genes in AD development,
we performed a single-gene GSEA pathway analysis (including
GO & KEGG). The results (Figures 9A-J) demonstrate
the top 6 pathways for each gene enrichment. Where
almost all genes are involved in the Ribosome pathway.
HMGBI1, BAP1, DUOX2, NOX5, P4HB and PPARD are
co-enriched in the Olfactory transduction pathway. It is
important to note that CDKN2A and IFNA17 were enriched
in Alzheimer’s disease. Also, the results of the enrichment
analysis showed that Hub genes are also involved in the
JAK-STAT pathway, Spliceosome and Wnt signalling pathway
pathways. In addition, the functions of some of the genes
point to the B-cell Receptor Pathway and Chemokine signalling
pathway, further confirming the role of Hub in the immune
microenvironment.

We further performed GSVA enrichment analysis of Hub
genes (Figures 10A-H). Differences in the pathways activated
between the gene’s high and low expression groups were
predicted and observed. Results showed that the upregulation of
genes NOX5 and PPARD and the downregulation of ALOX15B
and IFNA17 could jointly activate the Alpha-Linolenic acid
metabolism pathway. Activation of the Glycosaminoglycan
biosynthesis heparan sulfate pathway is associated with the
down-regulation of gene NOX5 and BRD4 expression and
up-regulation of ALOX15B and P4HB expression. Increased
expression levels of DUOX2 and HMGBI and decreased
expression levels of ALOX15B and P4HB affect the activation
of the Taurine and hypotaurine metabolism pathways. On
the other hand, the activation of Glycosylphosphatidylinositol
(GPI) anchor biosynthesis depended on the upregulation
of NOX5 and PPARD expression and the downregulation
of IFNA17 expression levels. In addition, activation of
Ascorbate and Aldarate Metabolism, Porphyrin and chlorophyll
metabolism pathways were all associated with high expression
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FIGURE 6

Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CDF, cumulative distribution function.

(A,B) The GO enrichment and KEGG pathway analysis results of CDEGs are shown as circle plots. For enrichment analysis of the circle plot, the
GO id (or pathway id) label of the first circle corresponds to the “id” of the result data (Supplementary Table 1), and The “class” of the result data
corresponds to the colour of the grouping. The length of the bar in the second circle corresponds to the "bg_num” of the resulting data, i.e., the
number of background genes, and the shade of the colour corresponds to the P-value (or Q value). The third circle corresponds to the
“fg_num” of the resulting data, i.e., the number of foreground genes. The fourth circle (polar bar) shows the Rich factor, obtained by dividing
fg_num and bg_num and corresponds to the data in the ratio column of “Supplementary Table 1". (C) Cluster-heatmap. (D) Cumulative
distribution function (CDF). (E) Delta area plot. (F) Comparison of the percentage of immune cell infiltration between geneCluster A and B; Blue
represents FRGcluster A; yellow represents FRGcluster B. *P < 0.05; **P < 0.01; ****P < 0.001. CDEGs, cluster differential expressed genes; GO,
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(A) Differential expression of Hub genes between FRGcluster A and B. (B) Differential expression of Hub genes between geneCluster A and B.
(C) The corresponding FRGscore was obtained based on the PCA algorithm to compare the similarities and differences between the FRGcluster
A and B subtypes FRGscore values. (D) The corresponding FRGscore was obtained using the PCA algorithm to compare the similarities and
differences between the geneCluster A and B subtypes FRGscore values. (E) Percentage of senior and junior populations in both FRGcluster A
and B subtypes. (F) Percentage of high and low age groups in both FRGcluster A and B subtypes. (G) Age distribution of the population in the
high FRGscore and low FRGscore groups. (H) Sanky plots indicate clinical and molecular correlations. (I) Correlations between FRGscore and 28
immune cells. In this figure, the red line represents P < 0.01, the grey line represents P = 0.01-0.05, and the green line represents P > 0.05; the
colour of the squares represents the correlation coefficient, with blue being a negative correlation and red a positive correlation. *P < 0.05;

**P < 0.01; ****P < 0.001. FRGcluster, Ferroptosis-related gene cluster; FRGscore, Ferroptosis-related gene score; PCA, Principal component

analysis.
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FIGURE 8

Immune infiltration landscape between AD and Control obtained by CIBERSORT analysis. (A) Violin plot showing the difference in immune cell
infiltration between AD (red) and Control (purple), P < 0.05, was considered statistically significant. (B) Shows the correlation between Hub
genes and immune cells. The colors from red to purple represent the change from positive to negative correlations, respectively. More asterisks
and darker colors of the modules represent stronger correlations. *P < 0.05; **P < 0.01; ****P < 0.001

of genes DUOX2 and HMGB1 with low expression of
P4HB.

Prediction of Hub gene targeted drugs and
establishment of regulatory networks

We used the Drug-Gene Interaction Database (see text
footnote 2) to predict drugs that may act on the Hub gene
(Supplementary Data Sheet 6) and analysed the interactions
between genes and drugs (Supplementary Data Sheet 7).
Finally, the results were visualised by Cytoscape, as shown in
Figure 11. We retrieved a total of 117 drugs acting on the Hub
gene. Of these, 30 drugs targeted ALOX15B and PPARD; 21
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drugs targeted CDKN2A; 12 drugs targeted BRD4; 11 drugs
acted on HMGB1; 9 drugs acted on P4HB; and 6 drugs targeted
BAPI, respectively. Unfortunately, we did not predict drug
targets for NOX5, DUOX2 and IFNA17.

Construction of ceRNA networks for Hub
genes

Many studies have confirmed that ceRNA regulatory
networks play a role in the biology and pathophysiology of
various diseases. To explore whether Hub genes have similar
regulatory relationships in AD, we established a Hub gene-
based ceRNA network. The network included 388 nodes (10
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FIGURE 9

P4HB (1), PPARD (J).

(A-J) Single-gene GSEA-KEGG pathway analysis in ALOX15B (A), BAP1 (B), BRD4 (C), CDKN2A (D), DUOX2 (E), HMGBL (F), IFNA17 (G), NOX5 (H),
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Prediction of marker gene-targeted drugs. A total of 117 drugs were retrieved that acted on the Hub gene. Of these, 30 drugs targeted ALOX15B
and PPARD; 21 drugs targeted CDKN2A; 12 drugs targeted BRD4; 11 drugs acted on HMGB1; 9 drugs acted on P4HB; and 6 drugs targeted BAP1,
respectively. Where red orbs represent up-regulated mRNA, green orbs represent down-regulated mRNA, and purple orbs represent drugs.

mRNAs, 169 miRNAs, 209 IncRNAs) with 503 edges (Figure 12)
(Supplementary Data Sheet 8). Notably, the analysis of
hsa-miR-149-3p, hsa-miR-1972, hsa-miR-186-5p, hsa-miR-129-
5p, hsa-miR-1207-5p, hsa-miR-541-3p, hsa-miR-185-5p, hsa-
miR-939-5p and hsa-miR-449¢-5p based on Degree values
(Supplementary Data Sheet 9) may play a key role in the ceRNA
network, regulating the expression of Hub genes. IncRNAs such
as (C10orf91, HP09025, SNHG14, RP4-539M6.22, LINC00265,
and MUC2) are thought to play a crucial node role in the ceRNA
network.

Development and validation of a diagnostic
model for Ferroptosis-related genes

Based on 10 Hub genes, a logistic regression algorithm
was used to build a diagnostic model for AD classification.
The results showed that the categorical diagnostic model
built from 10 Hub genes could distinguish AD patients from
normal samples. We calculated AUC values for Hub genes and
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models, respectively (Figure 13A): NOX5 (AUC = 0.625),
DUOX2 (AUC 0.701), ALOXI5B (AUC 0.725),
CDKN2A (AUC = 0.725), BAP1 (AUC = 0.716), HMGBI
(AUC = 0.747), IENA17 (AUC = 0.783), BRD4 (AUC = 0.586),
P4HB (AUC = 0.664), PPARD (AUC = 0.633) and Model
(AUC = 0.944). Furthermore, by combining these 10 Hub

genes, we established Nomogram plots as a predictive tool

for AD progression. In the Nomogram plot (Figure 14A),
each gene corresponds to a scoring criterion, and the risk of
AD progression is finally predicted by the sum of the scoring
of all genes. The calibration curve of the Nomogram plot
(Figure 14B) confirmed that our Nomogram plot constructed
using 10 genes had a good predictive performance. In addition,
the decision curve (Figure 14C) analysis demonstrated a
higher clinical benefit for patients from Nomogram through
the combined scoring of the 10 Ferroptosis-related Genes.
A Dbetter net clinical benefit represents a better clinical
application.
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FIGURE 12
A ceRNA networks based on Hub genes. The network includes 388 nodes (10 mRNAs, 169 miRNAs, 209 IncRNAs), 503 edges. Red orbs
represent Hub genes, green triangles represent miRNAs, and purple orbs represent IncRNAs.

Finally, we use two independent datasets (GSE44770 and and Model (AUC = 1.000). In summary, the developed model
GSE150696) to validate the model’s accuracy. AUC values for distinguishes AD patients from normal samples.
genes and models were calculated using the same method. In
the GSE44770 dataset (Figure 13B): NOX5 (AUC = 0.598),
DUOX2 (AUC = 0.617), ALOX15B (AUC = 0.808),
CDKN2A (AUC = 0.779), BAP1 (AUC = 0.636), HMGBI
(AUC = 0.741), IFNA17 (AUC = 0.723), BRD4 (AUC = 0.712),

Discussion

Ferroptosis is an iron-dependent programmed cell

PAHB (AUC = 0.764). PPARD (AUC = 0.719) and Model death that plays a vital role in the pathogenesis of AD.
( = 0.764), ( = 0.719) an ode Several studies (Good et al, 1992; Tao et al, 2014) have

(AUC = 0934). In the GSE150696 dataset (Figure 13C): confirmed the selective accumulation of iron in AP
NOX5 (AUC = 0.531), DUOX2 (AUC = 0.593), ALOX15B aggregates and neuronal fibre tangles in the brains of AD
(AUC = 0.481), CDKN2A (AUC = 0.704), BAP1 (AUC = 0.852), patients. Excessive iron accumulation was significantly
HMGB1 (AUC = 0.642), IFNA17 (AUC = 0.667), BRD4 correlated with rapid cognitive decline in AD patients
(AUC = 0.617), P4HB (AUC = 0.840), PPARD (AUC = 0.815) (Ayton et al, 2020). On the other hand, some convincing
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FIGURE 13

Logistic regression model building and ROC curve validation. (A) ROC curves of the training set GSE33000 dataset, (left) ROC curves of Hub
genes, and (right) ROC curves of the model. (B) The validation set GSE44770 dataset, (left) ROC curve of Hub gene, (right) ROC curve of the
model. (C) The validation set GSE150696, (left) ROC curves of Hub gene, (right) ROC curves of the model. The different coloured lines represent
different genes.
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FIGURE 14

(A) Establishment of a nomogram for predicting the risk of AD based on feature genes in the testing set. (B) The calibration curve evaluates the
prediction efficacy of the nomogram. (C) DCA estimates the clinical benefit of the nomogram.

evidence suggests (Simmons et al, 2007; Rossietal, 2013;
Mietal, 2019; Renetal,2020; Wuetal,2020) that related
molecular (e.g.
ROS) induce microglia activation through the activation
ultimately leading the
This that

Ferroptosis-induced neuroimmune responses are an essential

patterns generated during Ferroptosis

of neuroimmune pathways, to
development of neuroinflammation. suggests
part of the pathogenesis of Alzheimer’s disease. Given the
above evidence, an in-depth analysis of Ferroptosis-related

molecular patterns and their immunological features is
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needed to provide a reliable research direction for future
experimental studies and a theoretical basis for complementary
AD biomarkers to facilitate the diagnosis and treatment
of AD.

In this study, we obtained 728 Ferroptosis-related genes
through the FerrDb database. Two machine learning algorithms
(LASSO and mSVM-RFE) were used to select the above genes.
Machine learning algorithms are widely used in many clinical
areas with good results. The LASSO algorithm and the mSVM-
RFE algorithm have been applied to the AD field for early
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AD prediction (Liu et al,, 2021; Zhang et al,, 2021). Through
the analysis of the joint algorithm, we finally obtained 10
genes most associated with AD as Hub genes (NOX5, DUOX2,
ALOX15B, CDKN2A, BAP1, HMGBI, IFNA17, BRD4, P4HB,
PPARD). DUOX2 (Samadi et al, 2011), CDKN2A (Tedde
et al, 2011; Antonell et al, 2016), HMGB1 (Alabed et al,
2021; Tanaka et al.,, 2021; Gao et al., 2022), BRD4 (Nikkar
et al,, 20225 Zhang et al,, 2022) and PPARD (Holzapfel et al,
2006; Helisalmi et al., 2008) have been experimentally validated
in the pathogenesis of AD, but NOX5, ALOX15, B, BAPI,
IFNA17 and P4HB have never been studied to confirm their
association with AD. The current study demonstrates that
NOXS5 is highly expressed in the CNS and that upregulation
of its expression level can induce inflammation by mediating
COX2 activation or the PG pathway (Marqués et al, 2020).
In this context, it has been demonstrated that activation of
the COX2 path can lead to the accumulation of ROS after
ageing (Chung et al, 2009) and stroke (Duan et al, 2021).
A recent study has shown that endothelial NOX5 expression
alters the integrity of the blood-brain barrier and causes
memory loss in ageing mice (Cortés et al, 2021). These
results suggest that NOX5 may lead to AD development by
mediating the immune response and thus disrupting the blood-
brain barrier. Little research has been done on ALOX15B, and
the current studies are limited to suggesting that ALOX15B
has a role in promoting the progression of atherosclerosis
(Gertow et al,, 2011; Magnusson et al, 2012). Some studies
have also shown its involvement in the pathogenesis of multiple
sclerosis by mediating immune defence and inflammatory
responses (Jickle et al, 2020). This all suggests the potential
value of ALOXI15B in neuroimmune. P4HB and BAPI are
proteins involved in protein ubiquitination/deubiquitination.
In the current study, BAP1 was associated with selective
regional vulnerability in Parkinson’s brain (Keo et al, 2020).
Studies also confirm that BAP1 may be a potential drug
target for neurodegeneration (Sharma et al.,, 2020). P4HB (Jin
et al,, 2002), on the other hand, was shown to be expressed
at significantly reduced levels under ischemic and hypoxic
conditions in neuronal cells. We speculate that P4HB may
have a protective effect on hypoxic neuronal cells through the
ubiquitination pathway. IFNA17 is a protein-coding gene, and
polymorphisms in the IFNA17 gene are currently thought to
play a central role in the pathogenesis of multiple sclerosis
(MS) (Miterski et al,, 1999; Nystrom et al, 2007). Still, its
association with AD is poorly understood. More studies are
needed to confirm it. We further analysed the function of
Hub genes by integrating the algorithm analysis. We observed
that almost all genes are involved in the Ribosome pathway,
and ribosomal dysfunction (Ding et al,, 2005; Nyhus et al,
2019) is one of the early manifestations of AD. Notably,
HMGBI, BAP1, DUOX2, NOX5, P4HB and PPARD were co-
enriched in the Olfactory transduction pathway, which may
be related to the mechanism of olfactory impairment in AD
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patients. Through GSEA enrichment analysis, we observed that
CDKN2A, DUOX2, NOX5 and PPARD are involved in the
regulation of Calcium signalling pathways through a complex
mechanism. A previous calcium hypothesis (Popugaeva et al,
2018) for AD suggested that abnormal conduction of calcium
signalling pathways in neuronal cells during the early stages
of the disease is the critical mechanism triggering synaptic
dysfunction and neurodegeneration. This indirectly confirms
our suspicions.

In a further analysis of the Hub gene, we classified
the samples of patients in the AD group into FRG Cluster
A and B types by cluster analysis. By ssGSEA immune
infiltration algorithm analysis, we observed that Activated.
Dendritic.cell, CD56bright.natural killer.cell, Eosinophil,
Gamma.delta.T.cell, MDSC Macrophage,
Neutrophil, and T.follicular.helper.cell infiltrated significantly

Immature.B.cel,

higher proportions in FRG Cluster type A than type B, but
the opposite was true for CD56dim.naturalkiller.cell and
Monocyte. Such results suggest that type A may be the stage
of AD deterioration due to neuroinflammation, while type B is
still in the period of mild inflammatory damage, which helps us
to distinguish the severity of AD patients in clinical practice.
Notably, Hub gene expression levels also differed between types
A and B, suggesting the potential value of Hub gene-based
typing in identifying the degree of disease progression in AD
patients. In addition, we further analysed the differences in
scores between subtypes based on the FRGscore results derived
from PCA. Higher FRGscore were found for type A than
type B in the FRG Cluster, and it was observed that type B
seemed to be associated with lower age and lower FRGscore.
Meanwhile, further correlation analysis between FRG score and
immune cells showed that FRG score had a significant negative
CD56dim.natural.killer.cells,
Immature.dendritic.cells and Monocyte, which implies that

correlation with Eosinophil,

dysregulation of the immune microenvironment plays a
crucial role in AD development. This confirms the complex
regulatory relationship between molecular mechanisms related
to Ferroptosis and immunity and suggests that our genotyping
based on Hub gene construction can effectively identify AD
patients who are still in the early stages of inflammation.
Subsequently, we performed a correlation analysis between
Hub genes and immune cells using the CIBERSORT algorithm.
The results showed that Macrophages M2 was significantly and
positively correlated with gene P4HB and negatively correlated
with IFNA17, HMGB1 and DUOX2; Mast cells activated
was significantly and positively correlated with BAP1 and
negatively correlated with CDKN2A; T cells follicular helper
was strongly and negatively correlated with gene PPARD and
BAP1 and significantly and positively correlated with DUOX2.
This evidence further suggests that Hub genes are involved in
regulating the immune microenvironment in AD patients. In
parallel, we predicted and constructed a Hub gene-based Gene-
Drug regulatory network, which provides a theoretical basis for
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developing targeted immunotherapies for AD. Considering that
miRNAs and IncRNAs may regulate mRNAs, we constructed
a Hub gene-based ceRNA network on this basis to better
understand the molecular regulatory mechanisms.

Finally, based on a logistic regression algorithm, we
constructed a diagnostic model using Hub genes and validated
the model’s accuracy in two independent datasets. Also,
Nomogram plots were established as a predictive tool for
AD progression. Combined with the calibration curves of the
Nomogram plots, we observe a good agreement between the
predicted and actual observed values. In addition, decision curve
analysis demonstrates that patients can derive higher clinical
benefits from Nomogram. A better net clinical benefit represents
a better clinical application.

However, there are some limitations to our study. First,
more clinical information needs to be considered to increase the
clinical predictive value of Nomogram plots. Second, we have
used multiple large sample datasets to determine and validate
the accuracy of the diagnostic model. But a prospective cohort
is necessary to decide on its diagnostic performance further.
This will be the most critical aspect of our future research. We
hope to complete it in further work to understand better the
role of Ferroptosis-related molecular immune mechanisms in
the pathogenesis of AD.

Conclusion

We  comprehensively  analysed  Ferroptosis-related
molecules and their immunological features by integrating
algorithmic analysis. Two different FRG clusters were
successfully identified to help us differentiate the severity
of AD patients in the clinical setting. Secondly, we constructed
the Gene-Drug regulatory network and the ceRNA regulatory
network, allowing us to better understand AD’s molecular
regulatory mechanisms and reveal possible drug targets.
Finally, based on the logistic regression algorithm, we built
the Nomogram graph and the diagnostic model of AD. Our
study provides new insights into the role of Ferroptosis and its
molecular immune mechanisms in AD, as well as a theoretical

basis for adding diagnostic markers for AD.
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