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Introduction: Neuroimaging-based ‘brain age’ can identify individuals with 

‘advanced’ or ‘resilient’ brain aging. Brain-predicted age difference (brain-PAD) 

is predictive of cognitive and physical health outcomes. However, it is unknown 

how individual health and lifestyle factors may modify the relationship between 

brain-PAD and future cognitive or functional performance. We aimed to identify 

health-related subgroups of older individuals with resilient or advanced brain-

PAD, and determine if membership in these subgroups is differentially associated 

with changes in cognition and frailty over three to five years.

Methods: Brain-PAD was predicted from T1-weighted images acquired 

from 326 community-dwelling older adults (73.8 ± 3.6 years, 42.3% female), 

recruited from the larger ASPREE (ASPirin in Reducing Events in the Elderly) 

trial. Participants were grouped as having resilient (n=159) or advanced (n=167) 

brain-PAD, and latent class analysis (LCA) was performed using a set of cognitive, 

lifestyle, and health measures. We examined associations of class membership 

with longitudinal change in cognitive function and frailty deficit accumulation 

index (FI) using linear mixed models adjusted for age, sex and education.

Results: Subgroups of resilient and advanced brain aging were comparable 

in all characteristics before LCA. Two typically similar latent classes were 

identified for both subgroups of brain agers: class 1 were characterized by 

low prevalence of obesity and better physical health and class 2 by poor 

cardiometabolic, physical and cognitive health. Among resilient brain agers, 

class 1 was associated with a decrease in cognition, and class 2 with an increase 

over 5 years, though was a small effect that was equivalent to a 0.04 standard 
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deviation difference per year. No significant class distinctions were evident 

with FI. For advanced brain agers, there was no evidence of an association 

between class membership and changes in cognition or FI.

Conclusion: These results demonstrate that the relationship between brain 

age and cognitive trajectories may be influenced by other health-related 

factors. In particular, people with age-resilient brains had different trajectories 

of cognitive change depending on their cognitive and physical health status 

at baseline. Future predictive models of aging outcomes will likely be aided 

by considering the mediating or synergistic influence of multiple lifestyle and 

health indices alongside brain age.

KEYWORDS

brain aging, cognitive, brain-predicted age, physical health outcomes, neuroimaging

Introduction

Aging is a complex biological phenomenon, characterized by 
the gradual accumulation of molecular, cellular and tissue damage 
(Lopez-Otin et  al., 2013). The body’s inability to repair itself 
precedes a decline in physiological functions, including sensory, 
motor, and cognitive functions that are important for maintaining 
independence and quality of life (Lopez-Otin et al., 2013; World 
Health Organization, 2015). The brain is susceptible to the effects 
of aging, undergoing many structural and functional changes over 
the lifespan. Most widely recognized is brain atrophy (the loss of 
tissue volume), which has been associated with a decline in 
cognitive function (Cabeza et al., 2018; Grajauskas et al., 2019). 
However, there is considerable diversity in the rate of aging, which 
is influenced by genetic and environmental factors.

Modelling ‘brain age’ has deepened our understanding of the 
interindividual differences in brain aging. This includes ‘brain age’, 
a measure of biological age that is predicted from neuroimaging 
at the individual level relative to a normative model. A person’s 
brain-predicted age difference (brain-PAD) represents the 
deviation of brain age from the normal aging trajectory. An older 
brain age relative to chronological age is considered a sign of 
‘advanced’ brain aging (i.e., greater age-related brain atrophy), and 
has been linked with a lower cognition and a greater risk of 
dementia (Franke et al., 2010; Elliott et al., 2021). Conversely, a 
brain appearing younger than expected relative to one’s 
chronological age reflects ‘resilient’ brain aging, and has been 
predictive of better physical fitness and cognitive function 
(Kolbeinsson et al., 2020; Sanders et al., 2021). A number of brain 
age algorithms have been developed, including a model by Cole 
et al. (2018). This uses voxel-level measures of grey matter (GM), 
white matter (WM) and cerebrospinal fluid (CSF) volume to 
provide a single estimate of brain age measured across the whole 
brain. Using this model, we have found an association between 
advanced brain aging and poor cognitive processing 
(Wrigglesworth et al., 2022a), and identified sex differences in the 
change in brain aging over time (Wrigglesworth et al., 2022b).

As a surrogate measure of brain health, brain-PAD has provided 
useful insights into individual differences in biological aging 
trajectories, and their direct relationship with cognition, brain 
diseases, and other health outcomes (Lowe et al., 2016; Cole et al., 
2020; Vidal-Pineiro et al., 2021). However, evidence suggests there 
may be  additional heterogeneity hidden within populations of 
resilient or advanced brain agers (Eavani et al., 2018). For instance, 
Eavani et  al. (2018) identified five different brain imaging 
phenotypes in cognitively unimpaired older adults with advanced 
brain aging, demonstrating differential neuroanatomical substrates, 
and thus potentially unique pathological pathways, underlying 
trajectories of unhealthy brain aging. Sub-categorizing people with 
a resilient or advanced brain-PAD may therefore be an important 
avenue of inquiry that could provide greater individual specificity 
in predicting distinct profiles of current and future health status. To 
address this hypothesis, this study aimed to examine heterogeneity 
within each category of brain-PAD relative to other health, 
behavioral or cognitive measures. We  examined this question 
independently for each brain age group (advanced and resilient) to 
avoid assumptions regarding unique or overlapping outcomes 
within these qualitatively distinct cohorts. Through the use of data-
driven approaches, we first identify healthy elderly people with 
advanced and resilient brain age from a large community-based 
cohort, then we identify unique clusters within these advanced and 
resilient brain age groups based on other health factors, and finally 
we determine whether these subprofiles are differentially associated 
with longitudinal change in cognitive function and frailty.

Materials and methods

Study participants

This study used neuroimaging data from ASPREE-NEURO 
(NEURO; Ward et  al., 2017), a substudy of the ASPirin in 
Reducing Events in the Elderly (ASPREE) clinical trial (ASPREE 
Investigator Group, 2013). Eligible criteria for ASPREE have been 
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published elsewhere (ASPREE Investigator Group, 2013). NEURO 
recruited 572 ASPREE participants residing in Melbourne and 
nearby regional Victoria, Australia. Of these participants, 557 
healthy volunteers completed a magnetic resonance imaging 
(MRI) scan at baseline from which brain-PAD could 
be determined (a median duration of 14 days after randomization 
into ASPREE), with subsequent scans performed one (n = 516) 
and 3 years later (n = 472). A total of 326 participants were eligible 
for this study as measures of brain aging had met the inclusion 
criteria (refer to section ‘Latent Class Analysis for data clustering’). 
Participants provided written informed consent to both ASPREE 
and NEURO, and study procedures were conducted in accordance 
with institutional guidelines. ASPREE is registered with the 
International Standard Randomized Controlled Trial Number 
Register (ISRCTN83772183) and Clinicaltrials.gov 
(NCT01038583). NEURO is registered with the Australian and 
New Zealand Clinical Trial Registry (ACTRN12613001313729). 
The current study was approved by the Monash University Human 
Research and Ethics Committee (Project ID: 29311).

Neuroimaging data collection and quality 
control

Three-dimensional T1-weighted magnetization-prepared 
rapid gradient echo (MPRAGE) images were acquired using a 3 
Tesla Siemens Skyra MR scanner (Siemens Erlangen, German) 
with a 32-channel head and neck coil, located at Monash 
Biomedical Imaging in Melbourne, Australia (192 sagittal slices; 
1 mm isotropic voxels; FOV = 256 × 240 mm2; TR = 2,300 ms; 
TE = 2.07 ms; TI = 900; flip angle = 9°). Image quality was 
quantitatively assessed using the MRI Quality Control tool 
(MRIQC; Esteban et  al., 2017), with outliers qualitatively 
inspected by three study investigators (JW, PW, IHH), as 
previously described (Wrigglesworth et al., 2022a).

Brain age estimation

Brain age was estimated using the trained model developed 
by Cole and colleagues (Cole et  al., 2018).1 Images were 
pre-processed using the Statistical Parametric Mapping 
(SPM12) toolbox (University College London, London, 
United Kingdom), including segmentation into GM, WM, and 
CSF, and normalization to the Montreal Neurological Institute 
(MNI) space using a non-linear registration algorithm 
(DARTEL; Cole et al., 2015). For each individual, the tissue 
volume at each voxel was encoded by modulating the spatially 
normalized GM and WM partial-volume images by the 
Jacobian determinant of the deformation from subject space 
to MNI space (Ashburner, 2009). Images were resampled to a 

1 https://github.com/james-cole/brainageR

voxel size of 1.5 mm, and smoothed using a Gaussian spatial 
smoothing kernel of 4 mm at full-width-half maximum (Cole 
et al., 2015).

The normalized images were combined and reduced to 435 
principal components previously identified for a training cohort 
of 3,377 healthy adults (aged 18 to 92 years), sourced from seven 
publicly available datasets, which cover a range of geographical 
locations (including Australia, the United  States, and 
United Kingdom), scanner strengths and data acquisitions (refer 
to for further details; see Footnote 1). Components accounting 
for 80% of the total variance of chronological age were included 
as input into a Gaussian process algorithm, and the resulting 
rotation matrix was used to predict brain age for the 
NEURO participants.

Brain-PAD represents the deviation of brain age from 
chronological age. A positive value (i.e., older looking brain 
relative to one’s chronological age) is considered a sign of 
advanced brain aging; while negative values (i.e., younger brain 
age relative to chronological age) indicate resilient brain aging. 
While our prior findings show no statistically significant 
correlation between brain-PAD and chronological age (ρ = −0.01, 
p = 0.83), and thus no age bias (i.e., models underestimate brain 
age for older individuals and overestimate brain age for younger 
people; Wrigglesworth et al., 2022a), we included chronological 
age as a covariate in models examining the change in cognition 
and frailty (refer to ‘Longitudinal prediction of change in cognitive 
function and frailty’).

Lifestyle, cognitive function, and health 
measures

Included in the latent class analysis (LCA) were measures of 
cardiometabolic health, lifestyle, cognitive function, and well-
being, collected at baseline in the ASPREE clinical trial (McNeil 
et al., 2017). Binary variables relevant to this study included: (i) 
ever smoked; (ii) obesity (body mass index >30 kg/m2); and (iii) 
hypertension (systolic and/or diastolic blood pressure 
(BP) > 140/90, or on treatment for high BP). Additional 
summary measures of self-reported (iv) physical quality of life 
(QoL) and (v) mental QoL were assessed using the Short-
Form-12 (SF-12; Ware et  al., 1996), as previously described 
(Phyo et  al., 2021b), and divided into tertiles; higher scores 
reflect better QoL. General cognitive status was assessed using 
the (vi) Modified Mini-Mental State Examination (3MS; Teng 
and Chui, 1987), and divided into tertiles; higher scores reflect 
better cognitive function.

Latent class analysis for data clustering

To initially identify unique health clusters of advanced and 
resilient brain agers the cohort was first divided into ‘advanced’ 
and ‘resilient’ brain aging groups; defined by a brain-PAD greater 
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or lesser than 0.5 standard deviations from the mean (i.e., those 
within 0.5 SD of the mean were discarded). Here was an approach 
to identify participants at the tail ends of the distribution to avoid 
overlapping and bias attributed to the brain age model or noise 
inducing image artefacts. Data-driven LCA were then performed 
to identify subclasses within each of these groups based on the 
functional, cognitive, and health measures described above 
(Figure 1).

LCAs were performed using a conventional stepwise approach 
to identify the optimal number of classes in the data. This involved 
first fitting a single-class model, then a two-class model, etc., until 
the next model in the sequence failed to converge (Masyn, 2013; 
Sinha et  al., 2021). Optimal convergence was evaluated using 
multiple unconditional LCAs, with 100 random starting values 
(set seed of 15). Several fit indices were used to determine the 
optimal number of classes, such as the smallest Akaike’s 
information criterion (AIC) and Bayesian information criterion 
(BIC; Masyn, 2013). The extent to which the observed variables 
predicted class membership was evaluated using the average class 
probability (AvePP; Masyn, 2013). Class assignment was 
considered adequate when AvePP values were greater than 0.70 
(Nagin, 2005). Once the models had been fitted, we  assigned 
participants to their most likely class using their highest-class 
posterior probability. The assumption of local independence was 
examined by the strength of the association between two 
categorical variables, conditional to the latent class, using the 
Cramer’s V. Associations greater than 0.5 were further evaluated 
for their impact on the LCA parameters (Sinha et al., 2021).

Classes were described according to how well each measure 
epitomized each class (homogeneity) and distinguished one class 
from the other (separation). A class-specific item probability (i.e., 
the probability that a person in that assigned class will endorse 
that response; Nylund et al., 2007) less than 0.30, or greater than 

0.70, defined a characteristic with a high class homogeneity 
(Masyn, 2013). Separation was indicated by a statistically 
significant difference in the relative frequency between classes, 
using the chi-square test.

To examine whether classes are dependent on brain health, an 
additional LCA was performed on the total cohort of resilient and 
advanced brain agers (n = 326) using the methods described 
above. Analyses were performed using Stata software, version 17.0 
(StataCorp).

Longitudinal prediction of change in 
cognitive function and frailty

To determine whether health clusters of brain aging relate to 
other measures of aging, we  investigated whether class 
membership was differentially associated with changes in 
cognition and frailty. Primary endpoints of ASPREE (ASPREE 
Investigator Group, 2013), including mortality, cardiovascular 
disease and persistent disability, could not be used due to the 
small number of events.

Longitudinal change in cognition was quantified using a 
composite cognitive function score. The composite score was 
derived using a summed z-score from four individual tests 
assessing verbal fluency [Controlled Oral Word Association Test 
(Ross, 2003)], episodic memory [the Hopkins Verbal Learning 
Test – Revised Delayed Recall task (Benedict et  al., 1998)], 
psychomotor speed [Symbol Digit Modalities Test (Smith, 1982)], 
and general cognitive status (3MS). The composite approach was 
adopted to reduce noise and floor/ceiling effects (Jutten et al., 
2019; Ryan et al., 2020). A higher score indicates a better global 
cognitive performance. Cognition was assessed at baseline, year 
1, year 3 and year 5.

FIGURE 1

Overview of study methods, including identification of resilient and advanced brain agers, latent class analyses and the association between 
classes and the change in health outcomes over time. Abbreviations: 3MS = global cognitive function measured using Modified-Mini-Mental State 
(3MS) examination score (Teng and Chui, 1987); brain-PAD = brain-predicted age difference; QoL = quality of life.
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The frailty index (FI) is derived from 67 health deficit measures, 
reflecting a range of health conditions, disease indicators, physical 
disabilities, mental and psychosocial deficits, cognitive function 
and physical performance (Ryan et al., 2022). Scores are calculated 
as the sum of all deficits, divided by the number of items available; 
calculations were performed for participants with data for at least 
50 items to avoid bias or a reliance on imputation (Ryan et al., 
2022). Total scores range from 0 to 1, with a higher score indicating 
a greater number of deficits. The FI was measured at baseline, and 
at annual visits over 3 years. Data from later assessments (i.e., 4-, 5-, 
6- and 7-year visits) were not available at the time of calculating FI, 
therefore could not be included in this study.

Linear mixed models were used to investigate the association 
between the latent subclasses and the longitudinal rate of change 
in FI and composite cognitive function. Models were fitted 
independently for the resilient and advanced brain aging groups, 
and subsequently the total cohort for our additional analysis. 
These include the fixed effects of time (i.e., annual visits with a 
value of 0 [baseline], 1, 3, and 5 years) and exposure (i.e., latent 
class membership, and a binary variable for defining resilient or 
advanced brain aging in the additional analysis), along with the 
interaction between time and exposure to examine the rate of 
change in study outcomes, and a random intercept and slope. 
Models were adjusted for chronological age, sex and education.

Results

Participant characteristics

Brain age was estimated for 531 NEURO participants (mean 
age of 73.8 ± 3.5 years; 48.4% were female), following the exclusion 
of 26 participants based on inadequate image quality. Here, the 
estimated brain age had a significant positive correlation with 
chronological age (ρ = 0.46, p < 0.0001; Figure  2), and a mean 
absolute error (MAE) of 4.96. For this study, 159 participants met 
our criteria for resilient brain aging (mean brain-PAD of -8.7 
± 3.3 years), and 167 for advanced brain aging (mean brain-PAD 
of 5.15 ± 2.7 years). These subgroups were comparable in all 
baseline participant characteristics (Supplementary Table 1).

Two hundred and five people within the ‘normal’ range of 
brain age relative to their chronological age (i.e., brain-PAD was 
within 0.5 standard deviation from the mean) were excluded. 
These participants were comparable to our study sample, except 
there was a higher proportion of women, and higher mean 3MS 
score (Supplementary Table 1).

Latent class analysis

From the latent class analysis, the best solution was two classes 
for both the resilient and advanced brain age groups (Figure 3; 
class-specific item probabilities are reported in 
Supplementary Table 2). For resilient brain aging, selection was 

based on the model reaching maximal convergence before 
identification was insufficient. For the advanced brain age group, 
a maximum identified was three classes, but a two class solution 
was chosen for its parsimony and preventing model overfitting 
(Coelho et  al., 2019). The precision of class assignment was 
evaluated, with an AvePP greater than 0.80 and 0.70 in the resilient 
and advanced brain age groups, respectively, suggesting a low 
chance of misclassification. Identification of the global maximum 
was confirmed, and both models showed an adequate absolute fit 
(resilient: G2  = 294.0, p = 1.00; advanced: G2  = 311.1, p = 1.00). 
We identified no strong relationship (as indicated by a Cramer’s V 
greater than 0.5) between variables within each class, and thus the 
assumption of local independence was not violated 
(Supplementary Tables 3, 4; Sinha et al., 2021).

Classes of resilient and advanced brain aging are characterized 
in Table 1. For the resilient brain age group, a relatively equal 
proportion were assigned to class R1 (54%) and R2 (47%). Class 
R1 was characterized by a low prevalence of obesity, smaller 
likelihood of high (tertile 3) mental QoL, and smaller likelihood 
of low (tertile 1) physical QoL. Class R2 was characterized by a 
higher prevalence of hypertension, lower probability of high 
(tertile 3) general cognitive status and physical QoL, and low to 
moderate scores (tertile 2) in mental QoL.

For the advanced brain age group, 68% were assigned to class 
A1, while the remaining 32% were defined by class A2 (Table 1). 
The characteristics that defined these two classes were very similar 
to those for resilient brain agers, with the exception of there being 
a lower prevalence of people who lived alone in class A2. Classes 
R1 and R2, and A1 and A2 were comparable in chronological age, 
sex and education (Table 1).

To examine a dependency of health-related heterogeneity 
on brain health, we performed an additional LCA on the total 
cohort (n = 326). While a maximum of three classes was 
observed, the two class model was considered optimal, for 
reasons previously described for advanced brain agers (i.e., 
parsimony and overfitting). Results are reported in 
Supplementary Tables 5, 6. Characteristically, these subclasses 
largely replicate clusters generated separately for the advanced 
and resilient subgroups.

Class association with longitudinal 
change in cognitive function and frailty

Class membership was associated with longitudinal change in 
composite cognitive function for resilient brain agers (Table 2). 
Here was a relatively weak, though statistically significant positive 
interaction that was equivalent to a 0.04 standard deviation 
difference per year. We present this finding in Figure 4B, which 
shows class R1 had a better cognitive performance at baseline that 
decreased marginally over consecutive visits, while class R2 had a 
lower cognitive score that increased over the 5-year follow-up. 
Class membership was not significantly associated with change in 
FI (Table 2; Figures 4B). For the advanced brain age group, class 
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membership was not significantly predictive of longitudinal 
change in composite cognitive function or FI (Table  2; 
Figures 5A,B).

To confirm our main findings, latent classes were also identified 
in the full sample of participants, without brain age stratification 
(Supplementary Table  7). Class membership was predictive of 
longitudinal change in cognitive function (Supplementary Figure 1), 
whereby participants in class T1 started with a high cognitive 
performance that decreased over time, while class T2 had a lower 
cognitive score that continued to decrease over the 5 years. Critically, 
while cognition was comparable between groups of advanced and 
resilient brain agers, there was also a significant interaction between 
class membership and brain-PAD, consistent with our main 
observations (Supplementary Figure 1). People with resilient brain 
aging in class 1 had high composite cognitive function scores at 
baseline that decreased over time, while class 2 had lower cognitive 
function at baseline, but show an increase over 5 years. Conversely, 
people in both class 1 and 2 with advanced brain aging show a 
gradual decrease in cognitive performance over follow-up. Class 
membership was neither directly associated with FI, nor was an 
interaction with brain-PAD observed (Supplementary Figure 1).

Discussion

In a cohort of relatively healthy, cognitively unimpaired older 
adults, this study used a combination of brain age prediction, 

data-driven clustering and predictive modelling to determine 
whether there is heterogeneity within ‘resilient’ and ‘advanced’ 
brain age groups related to health, behavioral or cognitive 
measures, and how this heterogeneity relates to future longitudinal 
trajectories of cognition and frailty. We  first demonstrate that 
there is health-related heterogeneity in the older population that 
is independent of brain aging. This was summarized by two 
qualitatively similar health-related clusters being identified in each 
brain age group, one largely characterized by physical qualities 
(i.e., low prevalence of obesity and better physical health; Class 1), 
and the other by poor cardiometabolic health and cognitive 
function (Class 2). Class membership was predictive of 
longitudinal change in cognitive function only for resilient 
brain agers.

To our knowledge, this is the first study to explore whether 
there are health-related profiles of brain aging that differentially 
contribute to changes in cognitive and functional performance. 
While brain age provides a simple and interpretable measure for 
understanding deviations from normative aging trajectories, prior 
evidence suggests there may be multiple imaging signatures that 
effectively characterize brain aging in older adults (Eavani et al., 
2018). Data-driven approaches have also identified considerable 
diversity in neurological diseases, which holds great promise for 
precision medicine (Habes et al., 2020; Wen et al., 2022).

Our findings suggest that cluster formation based on 
cardiometabolic, physical and cognitive factors appear to be a 
stable and generalizable feature of the older population. This 

FIGURE 2

Scatterplot presenting the correlation between the estimated brain age (y-axis) and chronological age (x-axis), measured at baseline for the total 
NEURO cohort (n = 531).
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aligns with established literature (Oldridge et  al., 2001; 
Waldstein and Katzel, 2004; Sullivan et  al., 2007; Lai et  al., 
2020), and findings from the larger ASPREE study (19,114 
participants from United  States and Australia; Phyo et  al., 
2021a). In both brain age categories, “cluster 1” was 
characterized by lower prevalence of obesity and better 
perceived physical QoL (i.e., defined by physical functioning, 
role-physical, bodily pain and general health; Ware et  al., 
1996), while “cluster 2” had a higher prevalence of 
hypertension, poorer physical QoL, and a lower general 
cognitive status.

Our finding that living alone and higher cognitive 
performance are linked to low levels of obesity and better physical 
health was confined to people with advanced brain aging. This 
was despite the comparable proportion of these factors in the 
resilient and advanced brain age groups. Here, discrepancies may 
partly reflect a benefit of independent living on cognitive function 
through flexible neural processes, even with increasing brain 
atrophy (i.e., cognitive reserve; Evans et al., 2019; Stern et al., 
2020; Villa et al., 2021). Living alone is a common occurrence for 

older adults due to the natural shift in social environments with 
aging (Evans et al., 2019; Bzdok and Dunbar, 2020; Villa et al., 
2021). Although this imposes a greater risk for social isolation 
and loneliness (Finlay and Kobayashi, 2018), there is some 
evidence to suggest older people who live alone are more likely to 
engage in regular social activities (Evans et  al., 2019). Social 
engagement requires complex cognitive processes that may help 
improve reserve (Stern et  al., 2020). While this remains 
speculative, people with advanced brain aging may have 
maintained a higher cognitive performance through the influence 
of independent living on cognitive reserve, but this warrants 
further investigation (Evans et al., 2019; Stern et al., 2020; Villa 
et al., 2021).

Class membership was predictive of longitudinal change in 
cognitive function for resilient brain agers only and remained 
when assessed in the total cohort. In this subgroup of resilient 
brain agers, individuals with greater cognitive ability and physical 
functioning at baseline were more likely to show cognitive decline 
over 5 years. Conversely, poorer cognitive function and physical 
health were associated with improvement on the cognitive tests, 
on average, over the study period. This was a small effect that may 
reflect a ‘regression to the mean’ (i.e., resilient brain agers with a 
high or low cognitive score at baseline will present a score that is 
closer to the mean at follow-up; Barnett et al., 2005). However, the 
analogous subgroup of people with relatively poorer cognition and 
physical health in the advanced brain age group did not 
demonstrate a similar effect; these individuals declined in 
performance over time at the same rate as those in the high-
cognition subgroup. Therefore, these findings could indicate a 
residual capacity, or “brain reserve” (Stern et  al., 2020) in the 
resilient brain age group. For individuals already functioning at or 
near to ceiling for their age group, the most likely longitudinal 
trajectories are stability or decline, whereas for people operating 
below capacity at baseline, opportunities for performance 
improvement due to learning (e.g., repeated practice), motivation, 
or intervention are available. This same reserve is not available to 
people with an advanced brain age. Investigating the qualitative 
differences in longitudinal growth trajectories will overcome this 
study’s limitation of identifying latent classes cross-sectionally, and 
further our understanding of these findings. Interestingly, some 
epidemiological studies have also reported a decelerated cognitive 
decline, and a reduced risk of incident dementia, in older adults at 
increased risk of metabolic disease, including a high body fat mass 
and hypertension (Van den Berg et al., 2007; Forti et al., 2010; 
Watts et  al., 2013). Although this finding may be  specific to 
individuals with early neurodegenerative disease, as opposed to 
the healthy population (Watts et al., 2013), emerging evidence 
suggests a higher body fat mass may actually be beneficial for 
maintaining cognitive function in older adults, especially women 
(Luchsinger et al., 2013; Bohn et al., 2020). A meta-analysis of six 
prospective community-based studies also identified a reduced 
risk of dementia when hypertension is controlled through anti-
hypertensive medications (Ding et al., 2020); more than half of the 

A

B

FIGURE 3

Column graph summarizing item-class probabilities from 
unconditional latent class models, performed separately for 
(A) resilient (B) and advanced brain age groups. Abbreviations: 
3MS = global cognitive function measured using Modified-Mini-
Mental State (3MS) examination score (Teng and Chui, 1987); 
mQoL = mental quality of life; pQoL = physical quality of life.
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TABLE 2 Linear mixed models examining the association between health-related profiles in brain aging and change in composite cognitive 
function and frailty index (FI).

Unadjusted Adjusted

ab (95% CI) p ab (95% CI) p

Resilient (n=159):

Composite cognitive function

Class R2 vs R1 0.03 (−0.002, 0.06) 0.07 0.04 (0.003, 0.07) 0.03*

FI

Class R2 vs R1 −0.001 (−0.01, 0.01) 0.84 −0.001 (−0.01, 0.004) 0.69

Advanced (n=167):

Composite cognitive function

Class R2 vs R1 0.01 (−0.04, 0.05) 0.78 0.01 (−0.04, 0.05) 0.84

FI

Class R2 vs R1 0.003 (−0.003, 0.01) 0.33 0.003 (−0.003, 0.01) 0.33

*p < 0.05. Models were adjusted for chronological age, sex and education. aUnstandardized beta-coefficient of the two-way interaction between class membership and time, which 
represents the difference in the rate of change in cognition and frailty between class 2 relative to class 1.

TABLE 1 Demographic and lifestyle characteristics of the latent classes, separately for the resilient and advanced brain aging.

Resilient (n=159) Advanced (n=167)

Characteristics Class R1 
(53.5%)

Class R2 
(46.5%)

p Class A1 
(67.7%)

Class A2 
(32.3%)

p

Age group 0.75 0.25

<75 65 (76.5) 55 (74.3) 83 (73.5) 35 (64.8)

75+ 20 (23.5) 19 (25.7) 30 (26.6) 19 (35.2)

Female gender, n (%) 33 (38.8) 35 (47.3) 0.28 52 (46.0) 18 (33.3) 0.12

<12 years education, n (%) 30 (35.3) 26 (35.1) 0.98 76 (67.3) 30 (55.6) 0.14

Obese, n (%) 5 (5.9) 45 (60.8) <0.0001 12 (10.7) 35 (64.7) <0.0001

Ever smoked, n (%) 37 (43.5) 31 (41.9) 0.84 47 (41.6) 27 (50.0) 0.31

Hypertensive, n (%) 49 (57.7) 70 (94.6) <0.0001 62 (54.9) 49 (90.7) <0.0001

Lives alone, n (%) 16 (18.8) 20 (27.0) 0.22 47 (41.6) 0 <0.0001

3MS overall score, n (%) 0.01 <0.0001

Tertile 1 (78-93) 27 (31.8) 35 (47.3) 29 (25.7) 31 (57.4)

Tertile 2, (94-96) 29 (34.1) 29 (39.2) 38 (33.6) 23 (42.6)

Tertile 3, (97-100) 29 (34.1) 10 (13.5) 46 (40.7) 0

Mental QoL, n (%) <0.0001 <0.0001

Tertile 1 (28.5-54.7) 31 (36.5) 19 (25.7) 31 (27.4) 28 (51.9)

Tertile 2 (54.7-59.1) 38 (44.7) 18 (24.3) 48 (42.5) 5 (9.3)

Tertile 3 (59.1-78.8) 16 (18.8) 37 (50.0) 34 (30.1) 21 (38.9)

Physical QoL, n (%) <0.0001 <0.0001

Tertile 1 (16.2-46.6) 9 (10.6) 44 (59.5) 27 (23.9) 29 (53.7)

Tertile 2 (46.8-54.0) 28 (32.9) 27 (36.5) 39 (34.5) 17 (31.5)

Tertile 3 (54.0-63.7) 48 (56.5) 3 (4.1) 47 (41.6) 8 (14.8)

Bold = high class homogeneity, defined by a class-item probability ≤ 0.30 or ≥ 0.70 (Masyn, 2013). Hypertensive individuals reporting anti-hypertensive treatment (Class R1: n = 26[32.5%]; 
Class R2: n = 49[67.1%]; Class A1: n = 38[36.9%]; Class A2: n = 39[72.2%]). Missing data for obesity (advanced: n = 1) and anti-hypertensive medication data (resilient: n = 6; advanced: n = 10) 
at baseline. Abbreviations: 3MS = global cognitive function measured using Modified-Mini-Mental State (3MS) examination score (Teng and Chui, 1987); QoL = quality of life.

current NEURO cohort with hypertension were on treatment for 
high blood pressure. Further, individuals who have a stable 
cardiovascular risk profile over 5 years have a reduced likelihood 
of dementia compared with those with increasing risk over time 
(D’Agostino Sr et  al., 2008; Farnsworth von Cederwald et  al., 

2022). While there remains insufficient evidence to provide a clear 
interpretation of how different lifestyle and health factors 
influence aging trajectories, future prospective analysis of these 
health clusters may improve our understanding of the interaction 
between brain aging and cognitive outcomes in older adults.
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A B

FIGURE 4

Margin plots presenting the two-way interaction between subclasses of the resilient brain age group and the longitudinal change in (A) composite 
cognitive function, and (B) frailty index. Tables report the frequency of participants who provide data at baseline, and at follow-up assessments. 
b(95% CI) = unstandardized beta-coefficient of the two-way interaction between class membership and time, and the corresponding 95% 
confidence interval.

A B

FIGURE 5

Margin plots presenting the two-way interaction between subclasses of the advanced brain age group and the longitudinal change in 
(A) composite cognitive function, and (B) frailty index. Tables report the frequency of participants who provide data at baseline, and at follow-up 
assessments. b(95% CI) = unstandardized beta-coefficient of the two-way interaction between class membership and time, and the corresponding 
95% confidence interval.

https://doi.org/10.3389/fnagi.2022.1063721
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wrigglesworth et al. 10.3389/fnagi.2022.1063721

Frontiers in Aging Neuroscience 10 frontiersin.org

This study has a number of strengths. Firstly, we  derived 
estimates of brain age from MRI following a rigorous quality 
assessment and using a publicly sourced model that has been 
previously validated using an independent test cohort (Cole et al., 
2018), and which we  have previously shown is not biased by 
chronological age in our population (Wrigglesworth et al., 2022a). 
We also identified subclasses of people within the resilient and 
advanced brain age groups using a person-centered approach that 
focuses on identifying homogenous groups of people rather than 
homogeneous groups of variables (Muthén and Muthén, 2012). 
Further, our application of LCA allowed for quantification of 
uncertainty of class membership through posterior probabilities, 
and permitted the usage of mixed data types (Andreopoulos et al., 
2009; Sinha et al., 2021). A robust approach to assessing model fit 
and classification accuracy was adopted through the combined use 
of multiple inferential (i.e., LR chi-square goodness of fit) and 
descriptive tools (i.e., AIC/BIC information criterion). Finally, 
phenotypic changes in frailty and cognitive function were 
investigated prospectively using data from a large community-
based older cohort, focusing on a stage of life characterized by 
great heterogeneity of aging trajectories.

There are several limitations that must also be considered. 
First, the moderate correlation between brain age and 
chronological age for our study cohort was weaker than achieved 
for the held-out test (n = 857, r = 0.973) and validation cohorts 
(n = 611, r = 0.947; Cole et al., 2018). Here, a less than accurate fit 
of the model may relate to the narrow age-range of our study 
sample, which contrasts the broad age-range of the cohorts used 
to train and validate the model (18 to 92 and 90 years respectively). 
This is further supported by the larger mean error of prediction 
when adjusted for age-range (0.28 vs. 0.05 and 0.07 years for 
held-out and test datasets, respectively).

We identified latent classes cross-sectionally, rather than 
exploring the qualitative differences in longitudinal growth 
trajectories (Nylund et  al., 2007; Eavani et  al., 2018). General 
limitations of LCA include handling missing data, sensitivity to 
extreme outliers, and reliance on relatively large sample sizes for 
reliability (Mccutcheon, 1987; Nylund et al., 2007; Collins and 
Lanza, 2009; Berlin et al., 2014). We mitigated the influence of 
these limitations by evaluating multiple fit criteria and selecting 
variables with a relative frequency greater than 10% of the sample 
(Sinha et al., 2021). Our study sample included primarily white 
people who were generally healthy, clinically cognitively 
unimpaired [i.e., no dementia diagnosis or 3MS (Teng and Chui, 
1987) score ≥ 78], and had completed 12 or more years of formal 
education, potentially limiting generalizability to the wider 
population (Masyn, 2013). Longitudinal study attrition may have 
included individuals with greater health deficits and poorer 
cognitive function. Lastly, given the modest number of 
participants within each class, we may not have been sufficiently 
powered to detect subtle interindividual differences in the 
longitudinal change in frailty index and cognitive function over 
the three and 5 year follow-up period, respectively (Sinha 
et al., 2021).

In conclusion, this study is the first to demonstrate 
heterogeneity related to health, behavior, cognitive function, quality 
of life within the construct of brain age prediction in an older 
community-dwelling cohort. Given the large spectrum of 
interacting factors in a real-world setting, it is critical to our 
understanding of brain age to consider the influence of biological 
and functional measures in aggregate. Identification of differences 
in health-related characteristics based on brain aging may help 
accurately predict long term outcomes, prevention and 
treatment strategies.
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