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Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common 

neurodegenerative diseases, characterized by gradual and selective loss of 

neurons in the central nervous system. They affect more than 50 million people 

worldwide, and their incidence increases with age. Although most cases 

of AD and PD are sporadic, some are caused by genetic mutations that are 

inherited. Both sporadic and familial cases display complex neuropathology 

and represent the most perplexing neurological disorders. Because of the 

undefined pathogenesis and complex clinical manifestations, there is still 

no effective treatment for both AD and PD. Understanding the pathogenesis 

of these important neurodegenerative diseases is important for developing 

successful therapies. Increasing evidence suggests that microglial autophagy 

is associated with the pathogenesis of AD and PD, and its dysfunction has been 

implicated in disease progression. In this review, we focus on the autophagy 

function in microglia and its dysfunction in AD and PD disease models in an 

attempt to help our understanding of the pathogenesis and identifying new 

therapeutic targets of AD and PD.
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Introduction

Microglia are the resident mononuclear phagocytes in the central nervous system 
(CNS), belonging to the non-neuronal glial system and supporting neuronal functions. 
They are originated from the myeloid and broadly distributed throughout the brain and 
spinal cord (Ginhoux et  al., 2013). During development, microglia sculpt immature 
neuronal circuits by phagocytizing and eliminating synaptic structures (axons and dendritic 
spines) in a process known as synaptic pruning (Paolicelli et al., 2011; Schafer et al., 2012). 
In CNS parenchyma, microglia account for 5%–20% of the total glial cell population and 
10% of the non-neuronal cells (Lawson et al., 1990; Perry, 1998). They play fundamental 
roles in the control of immune responses and the maintenance of CNS homeostasis (Perry 
et al., 2010; Salter and Stevens, 2017). They also carry other exclusive characteristics, such 
as unique motility with their fine processes, which can scan the whole brain parenchyma 
every few hours (Davalos et al., 2005; Nimmerjahn et al., 2005).
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Under physical conditions, microglia phagocytose synaptic 
structures to remodel the presynaptic environment and release 
soluble factors in the mature and aging brains (Tremblay et al., 
2011; Su et  al., 2016). However, under certain pathological 
conditions or during aging, this function can go beyond 
physiological control, resulting in an inflammatory state and the 
progression of neurodegeneration. Understanding age-related 
microglia response is important for the cure of the severe 
neurodegenerative diseases (Fuger et  al., 2017; Salter and 
Stevens, 2017).

Neurodegenerative diseases are progressive disorders, 
characterized by the age-dependent loss of neuronal structures or 
functions that leads to neuronal death (Ross and Poirier, 2004). 
These diseases, including AD and PD, are increasingly being 
realized to share common cellular and molecular mechanisms. 
They are featured by selective neuronal vulnerability in specific 
brain regions and intracellular or extracellular deposits of 
abnormal proteins in or between neurons and other cells (Wong 
et al., 2002; Nussbaum and Ellis, 2003; Selkoe, 2003; Ross and 
Pickart, 2004). Emerging evidence points to the inflammatory 
responses in the CNS as a major cause and a common feature in 
neurodegenerative diseases. Pro-inflammatory cytokines are 
chronically increased in the aging brain (Godbout et al., 2005; 
Sierra et al., 2007), which is correlated with characteristics of the 
occurrence of chronic neurodegenerative diseases.

In this review, we  summarized the current knowledge of 
microglial autophagy in the chronic neurodegeneration process 
and discuss the roles of microglial autophagy in disease 
pathogenesis and its potential as a new therapeutic target.

Microglia reaction in 
neurodegeneration

Autophagy process in microglia

Aging is the major risk factor for neurodegeneration diseases. 
Microglia play fundamental roles in aging progress and 
neurodegenerative disease progression. Although a large body of 
work about the functional dynamics of microglia during aging has 
been reported and although phagocytosis is known to be executed 
mainly by microglia, the elaborated details and the involvement of 
microglial dysfunction in neurodegenerative diseases remain to 
be fully investigated (Sierra et al., 2013; Abiega et al., 2016).

Neurons depend largely on autophagy to maintain cellular 
homeostasis by eliminating pathological protein aggregates, and 
defect of this process contributes to the pathologies of many 
neurodegenerative diseases (Marino et al., 2011; Goldsmith et al., 
2022). Autophagy is an evolutionarily conserved cellular 
degradation and recycling process that initiates with the formation 
of a double membrane structure, associated with the endoplasmic 
reticulum in mammalian cells. Compromising the autophagy 
pathway can contribute to neurodegenerative diseases, such as PD, 
and impaired autophagy process is proved in postmortem brain 

samples from patients with AD and PD (Anglade et al., 1997; 
Nixon et al., 2005; van Beek et al., 2018). Although most studies 
assessing the role of CNS autophagy in aging and 
neurodegeneration have focused on neurons, emerging findings 
suggest that autophagy may also vitally be regulated by glial cells 
(Choi et  al., 2020). Recent evidence indicates that specific 
impairment of noncanonical autophagy in microglia could reduce 
the capacity of clearance β-amyloid and result in progressive 
neurodegeneration in a mouse model of AD (Heckmann et al., 
2019), which is consistent with previously reported results in 
autophagy-related gene 7 (atg7) knockout mice (Cho et al., 2014). 
In PD mouse model, atg5 knockout microglia can aggravate 
neuroinflammation and dopaminergic neuron loss in the 
substantia nigra (SN; Tu et  al., 2021). Therefore, targeting 
microglial autophagy in these diseases has a proposed 
therapeutic potential.

Key autophagy regulators and 
pathways in microglia

In general, microglia participate in autophagy by phagocytosis 
in the CNS. Because of the critical role of autophagy in protein 
and organelle quality control (Mizushima et al., 2011; Yamamoto 
and Yue, 2014), the impairment of autophagy will result in 
accumulation of aggregated proteins and damaged organelles, 
which are common pathological hallmarks in AD and 
PD. Accumulating evidence indicates that the autophagy 
machinery in microglia can contribute to the emergence, 
acceleration, or amelioration of CNS disease conditions (Keller 
et al., 2020). So far, two specific mechanisms appear to be relevant 
to CNS pathology: activation of the inflammasome and increase 
of autophagy protein-mediated endocytosis/phagocytosis. 
Autophagy pathways are implicated in the regulation of 
inflammasome function at various steps by removing triggering 
agents, inflammasome constituents, or downstream effector 
molecules (Saitoh et al., 2008; Harris et al., 2011; Liu et al., 2016). 
As the major cellular component of the innate immune system in 
the brain, microglia have been found to execute pivotal functions 
during CNS homeostasis and pathology (Heneka et  al., 
2014, 2018).

In response to microenvironmental stimuli and factors, 
microglia can change morphologically and functionally to 
migrate to the injury sites. They can recognize harmful entities 
through Toll-like receptors (TLRs) and trigger receptor 
expression in myeloid cells 2 (TREM2; Blander and Medzhitov, 
2004; Takahashi et al., 2005) and signaling pathway activation 
that leads to reorganization of new phagosomes (Koizumi et al., 
2007; Yao et al., 2019). Canonical autophagy pathways require a 
multistep assembly mechanism. In most cells, ATG proteins 
regulate the formation of the autophagosome that involves 
multiple proteins and molecular changes. Initiation of autophagy 
requires the association of the unc-51-like kinase 1 (ULK1) 
kinase complex (Shang and Wang, 2011), the phosphorylation 
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of the transmembrane protein ATG9 and the class III 
phosphatidylinositol 3-kinase (PI3KC3) complex (Young et al., 
2006; Russell et al., 2013; Zhou et al., 2017), the recruitment of 
phosphatidylinositol 3-phosphate (PI3P) effector proteins, and 
the conjugation of ubiquitin-like human ATG8 to 
phosphatidylethanolamine (PE) on a nascent phagophore 
(Dooley et al., 2014). Finally, the mature autophagosome fuses 
with lysosomes to autolysosomes, resulting in the degradation of 
cargos (Julg et al., 2020). So far, this kind of autophagy pathway 
has been found in many important cellular functions, including 
pathogen defense (Gutierrez et al., 2004; Ogawa et al., 2005), 
pro-inflammatory response (Saitoh et al., 2008; Houtman et al., 
2019), and intracellular aggregates (Choi et  al., 2020). In 
noncanonical autophagy processes, autophagy processes can 
be  deployed to fulfill functions without involving lysosomal 
delivery of cytosolic cargo. For example, BECN1 is required for 
conjugating LC3 to the phagosomes or endosomes during this 
process, and the phagocytic ingestion and subsequent 
degradation of Aβ plaques (Sanjuan et  al., 2007; Heckmann 
et al., 2019). Deletion of BECN1 in BV2 microglial cells in APP 
transgenic mouse brain slices resulted in insufficient 
phagocytosis of Aβ (Lucin et  al., 2013). In the meantime, 
microglia from human AD brains exhibit reduced BECN1 
(Lucin et  al., 2013). So far, studies related to the canonical 
autophagy pathways have been widely reported in microglia, 
while studies related to the noncanonical process still need to 
be further explored.

Microglia engulf apoptotic cells during 
degeneration

Given that microglia are resident immune cells, one of their 
roles is to ingest and clear neuronal debris resulting from 
programmed cell death during CNS development, a process that 
constantly senses the neural environment and eliminates excess 
neurons generated as part of normal neurogenesis in postnatal 
development and adult (Nimmerjahn et al., 2005; Marin-Teva 
et al., 2011; Brown and Neher, 2014). Microglia are not only the 
debris cleaner activated by damaged or dying neurons, but also are 
active neuronal scavengers to drive neuronal programmed cell 
death by inducing apoptosis. Neuronal apoptosis would 
be induced by the release of nerve growth factor (Frade and Barde, 
1998), tumor necrosis factor (Sedel et al., 2004; Takahashi et al., 
2005), glutamate (Bessis et al., 2007), or superoxide ions (Marin-
Teva et al., 2004; Wakselman et al., 2008) from microglia. In the 
innate immune system, complement proteins function as “eat me” 
signals, which can mark apoptotic cells for removal by 
macrophages that express C3 receptors (CR3; van Lookeren 
Campagne et al., 2007). And microglia are the only CNS cell type 
that expresses CR3 (Schafer et  al., 2012). Under physiological 
conditions, the “blinded” microglial phagocytosis is coupled to 
apoptosis through “find-me” signals, such as UDP and ATP, 
released by apoptotic cells (Elliott et al., 2009; Abiega et al., 2016).

However, phagocytosis is impaired during aging (Gabande-
Rodriguez et al., 2020), and blocking phosphatidylserine (PS) with 
Annexin V decreases almost all of the capacity of microglial 
phagocytosis of damaged neurons (Krasemann et al., 2017). This 
will increase the number of phagocytosing microglia, a mechanism 
that could be targeted in pathological conditions (Abiega et al., 
2016; Salter and Stevens, 2017). Thus, uncoupling of phagocytosis 
will lead to an accumulation of apoptotic cells and build up a 
detrimental microenvironment.

Dynamics of microglia in responding to 
degeneration

In the CNS, one of the main cell types that are responsible for 
removing aggregated proteins from brain parenchyma is 
microglia. Microglia continuously supervise and process the 
microenvironment in search of stimuli or inflammatory signals. 
Microglia respond to numerous signals such as amyloid-beta (Aβ) 
peptides (Zhang et al., 2011), α-synuclein (α-syn) (Zhang et al., 
2007), complement, and cytokines (Aloisi, 2001). Through this 
surveillance, they detect diverse extracellular signals, and 
consequently integrate with and respond to microenvironmental 
alterations to maintain CNS homeostasis (Salter and 
Stevens, 2017).

Microglia contribute to the clearance of Aβ peptides by 
phagocytosis and the degradation process by releasing enzymes, 
such as insulin-degrading enzyme (IDE), which can degrade Aβ 
in the extracellular space (Tamboli et  al., 2010; Heneka et  al., 
2015). Several microglia surface receptors have been shown to 
mediate phagocytic clearance of Aβ peptides, including TLR2, 
TLR4, and TLR6 and CD14, CD36, and CD45 (Grommes et al., 
2008; Zhu et al., 2011). At the same time, the delivery process of 
Aβ is also pivotal. For example, neuronal exosomes can bind Aβ 
peptides and accelerate its phagocytic clearance by microglia in a 
phosphatidylserine-dependent way (Yuyama et  al., 2012). 
Microglia can phagocytose and clear extracellularly aggregated 
α-syn faster than other cells (Lee et al., 2008a). Also, autophagy 
protects the nervous system by suppressing NLRP3 inflammasome 
activation (Su et  al., 2016). Deletion of DJ1 leads to impaired 
microglial autophagy and reduces the ability of microglia to 
uptake and degrade extracellular α-syn, which could exacerbate 
the pro-inflammatory situation in DJ1 KD microglia (Nash et al., 
2017). Therefore, exploring the detailed molecular mechanism of 
microglial autophagy is crucial for the cure of neurodegeneration.

The autophagy of microglia in 
Alzheimer’s disease

Alzheimer’s Disease is the most prevalent neurodegenerative 
disease in the world, affecting 55 million people by 2021, and is 
expected to reach 78 million by 2030. The most obvious 
pathological features of AD patients are intracellular Tau tangles 
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and extracellular Aβ plaques. In the late stage of human AD, a 
plenty of neurons are lost in the cortex and hippocampus (Nelson 
et al., 2012). At present, there have been many studies about the 
mechanism of AD, among which neuroinflammation is 
considered to be  an important factor in the pathogenesis of 
AD. Therefore, it is necessary to explore the autophagy function 
of microglia in AD.

Abnormal Aβ and Tau can 
be  pathogens in AD

During the development of AD, Aβ plaques form in the brain 
of patients as a result of accumulation of Aβ peptides resulting 
from the cleavage of amyloid precursor protein (APP) by 
γ-secretase and β-site APP cleaving enzyme 1 (Hampel et  al., 
2020). In AD brain, alterations in AMPK signaling are a central 
issue (Vingtdeux et al., 2010; Zimmermann et al., 2020). As a 
homeostasis sensor, AMPK activates microglial autophagy in the 
presence of Aβ, consequently leading to their lysosomal 
degradation (Cho et  al., 2014; Julg et  al., 2020). The activated 
microglial cells are predominantly located surrounding Aβ 
plaques (Frautschy et al., 1998; Nicoll et al., 2003; Zotova et al., 
2013). Many studies have found that the degradation of Aβ 
plaques is accomplished through the process of autophagy in 
microglia (Lee and Landreth, 2010; Kitazawa et  al., 2011). 
Activation of peroxisome proliferator-activated receptor-α 
(PPARA)-mediated induction of microglial autophagy with 
gemfibrozil and Wy14643 has been associated with amelioration 
of AD-like phenotype in the APP-PSEN1 mouse model (Luo et al., 
2020). Also, disruption of noncanonical autophagy in microglia 
via targeted deletion of Rubicon and atg5 in vivo leads to the 
increased deposition of toxic Aβ and subsequent cognitive 
impairment in the 5 × FAD AD mouse model (Heckmann et al., 
2019). Estfanous et al. reported that the ability of microglia to 
degrade Aβ was inhibited in AD patients compared with normal 
people (Estfanous et al., 2022). ACAT1/SOAT1 inhibitor K604 can 
improve the ability of microglia to clear Aβ-42 (Shibuya et al., 
2014). These studies demonstrate that microglia can clear Aβ 
through autophagy process.

In AD patients, another pathological feature is neurofibrillary 
tangle that is formed by aggregation of abnormal phosphorylation 
Tau protein, which results in dysfunction of Tau protein, decrease 
in microtubule stability, and loss of neuronal function (Alonso 
et al., 2018). Hyperphosphorylated Tau protein in AD patients can 
be secreted into the extracellular part of neurons (Fiandaca et al., 
2015; Jia et al., 2019), and microglia could engulf oligomers of 
extracellular Tau (Majerova et al., 2014). Other studies have also 
illustrated that Tau can activate microglia to promote brain 
inflammation (Jin et  al., 2021). Zilkova et  al. found that Tau 
antibodies could promote the absorption of Tau in human 
microglia (Zilkova et al., 2020). Furthermore, many studies have 
shown that activated microglia are involved in Tau-mediated 
lesions, such as Tau aggregation (Gorlovoy et al., 2009; Maphis 

et al., 2015), transmission (Asai et al., 2015; Wang et al., 2022), and 
Tau phagocytosis (Brelstaff et  al., 2018; Hopp et  al., 2018). 
Researchers have found that inhibition of microglia proliferation 
can improve Tau-induced neuronal degeneration and loss of 
function (Mancuso et al., 2019). These studies suggest that Tau 
and microglia have mutually reinforcing effects.

Microglia recognize pathogens by 
pattern recognition receptors

As mentioned above, both extracellular Aβ aggregation and 
Tau protein secretion can cause changes in microglia, but how 
these abnormal proteins activate microglia remains unclear. 
Under normal physiological conditions, microglia protect the 
CNS by reducing harmful stimuli, such as pathogenic molecular 
patterns (PAMPs) and damaging molecular patterns (DAMPs). 
Some receptors, such as TLRs and nuclear oligomerization 
domain-like receptors, and viral receptors, are expressed on the 
surface of microglia. All these receptors belong to pattern 
recognition receptors (PRRs) and can recognize PAMPs and 
DAMPs, thus leading to the activation of microglia (Glass et al., 
2010). Similarly, Aβ and tau can be  recognized by microglial 
PRRs, such as TLR2, TLR4, cluster of differentiation 14 (CD14), 
and cluster of differentiation 47 (CD47). Upon binding to these 
receptors, Aβ and tau can be internalized to induce inflammation 
through specific pathways involving NLRP3, MYD88, or NF-κB 
(Taro and Shizuo, 2007; Dansokho and Heneka, 2018; Kabzinski 
et al., 2019; Lee J. H. et al., 2021; Leng and Edison, 2021), leading 
to the transcription of pro-IL-β and NLRP3 (Lee J. H. et al., 2021; 
Leng and Edison, 2021) and the phagocytic activity of microglia. 
Stimulated and activated microglia also produce pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β 
(IL-1β), IL-16, and chemokines (Kabzinski et al., 2019). In turn, 
phagocytosis removes pathological stimuli to maintain 
brain homeostasis.

PRRs-mediated signal transduction promotes the release of 
inflammatory cytokines from microglia. TLR is expressed in cell 
membranes and the cytoplasm, and the TLR in cytoplasm can 
detect the nucleic acid of viruses and bacteria. Some TLRs can 
bind to other molecules, such as CD14 and CD36, as co-receptors 
(Dansokho and Heneka, 2018).

TLR-mediated signaling pathways lead to the production of 
type I  IFNs and pro-inflammatory cytokines from microglia 
(Figure 1), and there are two ways to contribute to the release of 
inflammatory cytokines, MyD88 and TRIF-dependent pathways, 
respectively (Taro and Shizuo, 2007). It has pointed out that the 
activation of TRL4 produces beneficial (Michaud et al., 2013) and 
harmful (Zhang et al., 2015) inflammatory reactions in AD. TLR2 
has been reported to produce a severe inflammatory response to 
Aβ (Nixon et al., 2005). However, activation of TRL9 facilitates the 
clearance of Aβ (Scholtzova et al., 2014). These studies suggest that 
activation of different TLRs produces different inflammatory 
responses, and that the same TLR also produces different 
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inflammatory responses to different stimuli. It has also been 
shown that the activation of TLR2 and TLR4 in the early stage of 
AD contributes to the clearance of Aβ, while long-term activation 
may lead to the accumulation of Aβ (Lee S. et al., 2021). Therefore, 
the inflammatory response mediated by TLRs is complex, and 
we need to further understand the role of different TLRs in the 
signaling pathways.

Inflammasomes are a group of polyprotein complexes, which 
exist in microglia and can also recognize PAMPs or DAMPs. 
Therefore, inflammasomes are also considered to belong to 
intracellular PRRs-NOD-like receptors (NLRs) (Strowig et al., 
2012). Inflammasome has various forms, including NLRP1, 
NLRP3, NLRP6, NLRP7, NLRP12, etc. (Dansokho and Heneka, 
2018). Under normal physiological condition, the NLRP 
inflammasome forms vesicle-autophagosome with PAMPs or 
DAMPs, which then fuses with lysosome resulting in degradation 
of the cargo. Nevertheless, excessive activation of NLRP3 
inflammasome can contribute to development of inflammatory 
diseases (Biasizzo and Kopitar-Jerala, 2020). NLRP inflammasome 
plays a certain role in the pathogenesis of AD. In monocytes of AD 
patients, the mRNA and protein levels of NLRP3 are significantly 
increased (Saresella et al., 2016), and NLRP1 is activated in the 
hippocampus of AD patients (Španić et al., 2022). The abnormal 
Aβ and Tau induce inflammation through specific pathways 
involving MYD88 or NF-κB (Yang et al., 2020; Barczuk et al., 
2022), leading to the transcription of pro-IL-β and NLRP3 (Lee 

J. H. et al., 2021; Leng and Edison, 2021). Increasing evidence has 
shown that soluble Aβ oligomers can activate the NLRP3 
inflammasome in microglia (Lučiūnaitė et  al., 2020), while 
deletion or inhibition of NLRP3 in APP/PS1 in mice will reduce 
spatial memory loss and Aβ aggregation (Michael et al., 2012; 
Dempsey et al., 2017; Feng et al., 2018). In addition, p-Tau and 
aggregated Tau can also activate the NLRP3 inflammasome in 
microglia and further aggravate Tau lesions (Jiang et al., 2021). 
Similarly, inhibition of NLRP3  in TauP301S transgenic mice 
reduces Tau phosphorylation and Aβ accumulation in the 
hippocampus (Stancu et al., 2019). In conclusion, these studies 
show that NLRP3 inflammasome plays an important role in the 
development of AD, perhaps because the excess NLRP3 
inflammasome in AD cannot be degraded by autophagy, leading 
to a more severe inflammatory response.

The autophagy of microglia in PD

PD is the second most common neurodegenerative disease 
after AD. The main pathological features of PD patients consist 
of the loss of dopaminergic neurons (DA) neurons in the SN 
pars compacta and the abnormal aggregation of α-syn in the 
form of Lewy bodies. Typical clinical features of PD include 
bradykinesia, tremor, muscle rigidity, and postural instability. 
Activated microglia, as well as high levels of reactive oxygen 

FIGURE 1

The mechanisms by which microglia respond to aggregated proteins. Firstly, aggregates (Aβ/Tau/α-syn) are recognized by microglial pattern 
recognition receptors, such as TLR2 and TLR4. Afterward, these receptor binding activates the specific signaling pathways involving 
MYD88/NF-κB, which leads to transcription of NLRP3 and subsequent enables the release of inflammatory cytokines, namely IL-18 and IL-β. 
Further, the release of cytokines will induce chronic inflammatory responses.
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species (ROS) and many inflammatory factors such as TNF-α 
and IL-1β, were observed in both the SN and striatum of PD 
patients (McGeer et  al., 1988; Mogi et  al., 1994a,b). Many 
articles have shown that the loss of microglial autophagy 
exacerbates the inflammatory response, affects the survival of 
neurons, and accelerates the progression of PD (Su et al., 2016; 
Nash et al., 2017; Houtman et al., 2019; Qin et al., 2021; Cai 
et al., 2022). However, the mechanisms linking dopaminergic 
neuronal death to microglial autophagy have not been 
completely elucidated.

NLPR3 inflammasome and microglial 
autophagy

Microglial autophagy and inflammatory response are 
necessary for protecting against external stimuli. When the 
inflammatory response in the brain is continuously activated, 
overactivated inflammasomes can cause neuronal damage (Lee 
et al., 2019; Ji et al., 2020). As early as 2006, it was reported that 
neuronal autophagy dysfunction induces neurodegenerative 
diseases in mice (Komatsu et al., 2006), and recent studies have 
linked microglial autophagy to NLRP3 inflammasomes (Su et al., 
2016; Biasizzo and Kopitar-Jerala, 2020; Badanjak et al., 2021), 
elucidating the important role of NLRP3 inflammasomes 
activation triggered by autophagy deficiency in microglial cells in 
the development of PD.

NLR family pyrin domain 3 (NLRP3), a widely studied 
oligomeric multiprotein inflammasome complex, is highly 
expressed in microglia. Microglial hyperactivation of the NLRP3 
inflammasome has been well-documented in various 
neurodegenerative diseases, including PD (Lee et al., 2019; Wang 
et al., 2019; Biasizzo and Kopitar-Jerala, 2020; Ahmed et al., 2021). 
Autophagy protects the nervous system by clearing NLRP3 
inflammasome activation (Su et  al., 2016; Cai et  al., 2022). 
Likewise, inflammasome signaling pathways can also regulate 
microglia activation necessary to balance between required host 
defense inflammatory response and to prevent excessive and 
detrimental inflammation (Lee et al., 2008b; Freeman et al., 2017).

Deletion of an atg5 in microglia causes age-dependent 
PD-like symptoms in mice (Cheng et al., 2020; Tu et al., 2021). 
Microglia-specific knockout of atg5 had no obvious PD 
symptoms at 10 weeks of age in mice (Qin et  al., 2021); 
however, there is a marked PD-like impairment of motor 
coordination in mice as young as 3 months old due to excessive 
inflammasome-mediated release IL-1β and subsequent 
production of pro-inflammatory factor (Cheng et al., 2020), 
implying that the autophagy damage caused by atg5 was 
age-dependent. Impaired autophagy in microglia may result in 
excessive NLRP3 inflammasome activation, which may 
aggravate MPTP-induced dopaminergic neuronal injury and 
neuroinflammation in PD mice (Qin et  al., 2021). And 
inhibition of NLRP3 inflammasome activation by 
administration of the NLRP3-specific inhibitor MCC950 

reduced neuroinflammation levels and rescued the loss of 
tyrosine hydroxylase (TH)-positive neurons in the SN (Cheng 
et al., 2020). The mechanism by which impaired autophagy 
resulted in enhanced NLRP3 activation in the context of PD is 
unclear, but NLRP3 inflammasome activity is negatively 
regulated by microglial autophagy (Plaza-Zabala et al., 2017; 
Houtman et al., 2019; Qin et al., 2021). In conclusion, the role 
of autophagy in microglia has been identified during the 
development of PD. Neuroinflammation is a critical initiation 
step for dopaminergic neuron degeneration and PD 
development. Microglial autophagy deficiency may sensitize 
the cells to stimulation and boost neuroinflammation (Qin 
et al., 2021; Xu et al., 2021). Targeting microglial autophagy 
might be an effective way to regulate neuroinflammation in the 
treatment of neurodegenerative diseases (Houtman et al., 2019; 
Bartels et al., 2020; Cheng et al., 2020).

Downregulation of DJ1, a PD-related protein, exacerbates 
neuroinflammation and oxidative stress (Taira et al., 2004; Nash 
et  al., 2017). Knockdown of DJ1 via Nrf2/Trx1/NLRP3 axis 
accelerated microglia-mediated neuroinflammation and apoptosis 
(Ji et al., 2020). In addition, the relationship between LRRK2, 
another important PD-related protein, and autophagy and 
neuroinflammation has been extensively studied. We can learn 
more about the relationship between LRRK2 and microglial 
autophagy from a recently published review (Zhang et al., 2022).

α-syn and microglial autophagy

In PD, neuron-released α-syn and its accumulation in Lewy 
bodies result in degeneration of the SN dopaminergic system (Xu 
et al., 2002). Oligomeric α-syn secreted by neurons is toxic and 
can mediate the activation of microglia through TLRs (Figure 1), 
especially TLR2 and TLR4 mediates (Fellner et al., 2013; Kim 
et  al., 2013), and therefore induces a chronic inflammatory 
response (Lee et al., 2008a; Béraud and Maguire-Zeiss, 2012; Choi 
et al., 2020). Intriguingly, impaired microglial autophagy provokes 
a decrease of DA when α-syn is expressed in mice (Choi et al., 
2020). Deletion of PD-associated DJ1 protein leads to impaired 
microglial autophagy, reduces the ability of microglia to uptake 
and degrade extracellular α-syn, and exacerbates 
pro-inflammatory in DJ1 knockdown microglia (Nash et  al., 
2017). Although glia and neurons in the brain can take in and 
degrade extracellular α-syn, microglia show the highest efficiency 
through selective autophagy in vitro and in vivo (Lee et al., 2008a; 
Choi et  al., 2020). But excess α-syn also inhibits microglial 
autophagy and exacerbates oxidative stress. Blocking Drp-1 would 
enhance autophagy flux and inhibit α-syn aggregation to reduce 
exosome release (Fan et al., 2019). Therefore, clearing extracellular 
α-syn by microglial autophagy is considered to be a vital way in 
maintaining neuronal function and is crucial for the 
treatment of PD.

Recently, a cargo-selective autophagy process in microglia, 
termed “synucleinphagy” (Figure  2), has been identified to 
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promote neuroprotection by efficient clearance of neuron-
derived α-syn in a PD mouse model (Choi et al., 2020). This 
process is mediated through TLR4-NF-κB signaling by 
transcriptional upregulation of the autophagy receptor, p62/
SQSTM1, and leads to the endocytosis- and phago-independent 
ingestion of extracellular α-syn. At last, the cargo will be targeted 
into autophagosomes. It is assumed that this binding is mediated 
by p62’s recognition of ubiquitinated α-syn (Kuusisto et al., 2001; 
Lamark et  al., 2009; Julg et  al., 2020). Future studies should 
identify the specific E3 ligase of α-synuclein in microglia 
responsible for synucleinphagy. However, neurons do not 
degrade α-syn through this pathway due to the lack of the TLR4-
NF-κB pathway (Redmann et al., 2017; Choi et al., 2020). The 
question of how α-syn is taken up by microglia and released into 
the cytosol remains to be addressed. Studies have shown that the 
ability of microglia to selectively clear α-syn by autophagy is 
important for alleviating neuronal damage. It has been 
confirmed that extracellular α-syn induces autophagy damage in 
microglia by activating TLR4 and its downstream P38 and AKT/
mTOR signaling (Tu et  al., 2021), affects the sensitivity of 
microglia to senescence, and accelerates the evolvement of 
PD. Extracellular pathological α-syn exacerbates dopamine 
neuronal loss and reduced lysosomal activity of microglia in 
TLR4-deficient mice (Venezia et al., 2021). α-syn binds to TLRs 
on the surface of microglia, and different types of α-syn may 
interact with different autophagy proteins in microglia, which 
determines whether α-syn is degraded by microglia or inhibits 
microglial autophagy.

Therapeutic opportunities by targeting 
microglia

Targeting microglial autophagy has been proposed to have 
great therapeutic potential in these diseases (Uddin et  al., 
2018). In neurodegenerative diseases, the mitochondria in 
microglia can be  damaged by the misfolded protein 
aggregations and released mtDNA and ROS, which over-
activates the NLRP3 inflammasome. Autophagy inducers can 
decrease the levels of mtDNA and ROS via the autophagic 
degradation of damaged mitochondria (Wu et al., 2021). The 
enhancement of autophagy by inducers to inhibit the NLRP3 
inflammasome-mediated inflammatory responses through the 
degradation of the damaged mitochondria and generated ROS 
(Gurung et al., 2015; Dai et al., 2017), is a promising strategy. 
Recently, many new drugs, like nanoparticles, which can cross 
the blood–brain barrier, have brought light to the treatment of 
AD and PD.

AD treatment
Currently, Aβ accumulation indicates the initial effect that 

drives Tau-seeded pathologies and Tau-mediated neurotoxicity 
and pathogenesis in AD (He et al., 2018). Anti-Aβ antibody 
and nanoparticles-mediated Aβ clearance have been the 
mainstream direction of anti-AD drug development 
(Fernandez-de-Retana et  al., 2017). Aducanumab, a 
monoclonal antibody, has been approved for the treatment of 
AD, which selectively targets aggregated Aβ (Sevigny et al., 

FIGURE 2

The mechanism of microglial synucleinphagy. Microglia ingest extracellular α-syn protein, which is sequestered by the autophagy-lysosome 
pathway. This process is mediated through TLR4-NF-κB signaling, and leads to the endocytosis- and phago-independent ingestion of extracellular 
α-syn. In this process, α-syn-TLR4 interaction stimulates p62 expression mediated by NF-κB. Meanwhile, α-syn can enter the cells or penetrate 
cytoplasmic membrane through other endocytosis-independent processes [such as lipid raft (Park et al., 2009)] or endocytosis-dependent 
processes (Lee et al., 2008a). Then, oligomeric p62 binds and recruits ubiquitinated-α-Syn (Ub-α-Syn) into autophagosomes for degradation.
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2016) and promotes Aβ clearance in the brain. But monoclonal 
antibodies against Tau are still in the early experimental stage 
at present (Ji and Sigurdsson, 2021). The latest report shows us 
a “Drug-Carrier” synergy therapy, which is designed to 
simultaneously target Aβ and Tau-associated pathways for AD 
treatment (Han et al., 2022). In this system, the endogenous 
apolipoprotein A-I and its mimicking peptide 4F fused 
angiopep-2 are sequentially grafted onto lipid nanocomposite, 
which can provide the liberty of blood–brain barrier crossing 
and microglia targeted Aβ clearance. For synergy treatment, 
methylene blue is further assembled into APLN for Tau 
aggregation inhibition. After the treatment with “Drug-
Carrier” synergy therapy in AD-Aβ-Tau bearing mouse 
models, this treatment rescued neuron viability and 
cognitive functions.

PD treatment
Andrographolide (Andro), a bicyclic diterpenoid lactone, 

has been reported to exhibit immunomodulatory, anti-
inflammatory, and anti-viral (Panraksa et  al., 2017; Ahmed 
et  al., 2021). Treatment with Andro promoted the parkin-
dependent autophagic flux formation in microglia, leading to 
the removal of defective mitochondria thereby inhibiting the 
activation of the NLRP3 inflammasome. Furthermore, Andro 
can rescue the loss of DA (Ahmed et  al., 2021). Quercetin 
(3,3′,4′,5,7-pentahydroxyflavone; Qu), is one of the most 
common plant flavonoids and prominent dietary antioxidants 
in the human diet (Boots et al., 2008). Qu inhibits LPS-induced 
NLRP3 inflammasome assembly in BV2 cells and alleviates 
neuronal damage by promoting mitophagy, reducing mtROS 
accumulation. Qu treatment protected primary neurons from 
LPS-induced microglial toxicity and attenuated 
neurodegeneration in PD mice (Han et  al., 2021). Recently, 
Yuan et  al. constructed Cu2-xSe-anti-TRPV1 nanoparticles 
(CS-AT NPs), which can target microglia and open their surface 
TRPV1 channels, causing Ca2+ influx to activate ATG5 and 
Ca2+/CaMKK2/AMPK/mTOR signaling pathways and 
promoting autophagy-mediated clearance of α-syn PFFs by 
microglia (Yuan et al., 2022). Altogether, blocking microglia-
mediated neuroinflammation and promoting mitophagy is a 
protective mechanism in halting the early progression of 
PD. Combining the use of the specific inhibitors of the NLRP3 
inflammasome with autophagy inducers is more effective than 
one single treatment in cellular or animal models of 
neurodegenerative diseases (Chen et al., 2019; Xu et al., 2019).

Conclusion

Autophagy and its dysfunction are associated with a variety 
of human pathologies, including aging, neurodegenerative 
disease, heart disease, cancer, and metabolic diseases, such as 
diabetes. A plenty of drugs and natural products have been 

found to modulate autophagy function through multiple 
signaling pathways. Small molecules or nanomedicine that can 
regulate autophagy seem to have great potential to intervene in 
neurodegenerative diseases that are largely due to the 
accumulation of misfolded proteins. Results from the present 
study indicate a correlation between microglial autophagy 
capacity and severity of neurodegeneration, and also provide 
important resources to better understand the pathogenesis of 
these important brain diseases. However, there are a few issues 
that need to be  paid attention to. First, because autophagy 
function is impaired by aging (Gabande-Rodriguez et al., 2020), 
it is necessary to improve autophagy capacity in the aged brain. 
Second, it is also important to increase the efficiency of drug to 
cross the blood–brain barrier. Last but not the least, a deeper 
understanding and accurate detection of the early pathological 
changes in neurodegenerative diseases is important for 
developing more effective therapeutic methods.
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