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Perioperative neurocognitive disorders (PNDs) are frequent complications 

associated with cognitive impairment during the perioperative period, 

including acute postoperative delirium and long-lasting postoperative 

cognitive dysfunction. There are some risk factors for PNDs, such as age, 

surgical trauma, anesthetics, and the health of the patient, but the underlying 

mechanism has not been fully elucidated. Pyroptosis is a form of programmed 

cell death that is mediated by the gasdermin protein and is involved in 

cognitive dysfunction disorders. The canonical pathway induced by nucleotide 

oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-

containing protein 3 (NLRP3) inflammasomes contributes to PNDs, which 

suggests that targeting NLRP3 inflammasomes may be an effective strategy 

for the treatment of PNDs. Therefore, inhibiting upstream activators and 

blocking the assembly of the NLRP3 inflammasome may attenuate PNDs. The 

present review summarizes recent studies and systematically describes the 

pathogenesis of NLRP3 activation and regulation and potential therapeutics 

targeting NLRP3 inflammasomes in PNDs patients.
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Introduction

Perioperative neurocognitive disorders (PNDs) are frequent complications associated 
with cognitive impairment during the perioperative period, including acute postoperative 
delirium (PD) and long-lasting postoperative cognitive dysfunction (POCD), which were 
once considered two distinguishing (Evered et al., 2018). Some PNDs patients develop 
Alzheimer’s disease (AD; Vanderweyde et al., 2010), and preclinical AD patients tend to 
suffer from PNDs when exposed to anesthesia and surgery (Evered et al., 2016). There are 
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several risk factors for PNDs, including increasing age, surgical 
trauma, anesthetics, poor health, lower education levels, pain, and 
some preconditions, such as anticholinergic medications, mental 
disease, and abnormal sleep rhythm(Kalisvaart et  al., 2006; 
Kotekar et al., 2018; Ni et al., 2019; Wei et al., 2019). Among the 
potential risk factors, advanced age is a relatively definite risk 
factor. With the aging of the population and the increased demand 
for surgery, it is foreseeable that the incidence of PNDs will 
increase (Wei et  al., 2019) and lead to increased morbidity, 
mortality, and a heavier social burden (Androsova et al., 2015). 
Therefore, examination of PNDs pathogenesis and effective 
treatment strategies are important.

The underlying mechanism of PNDs has not been fully 
elucidated. Many recent clinical trials and experiments have 
proposed several hypotheses, including neuroinflammation 
(Cibelli et al., 2010; Safavynia and Goldstein, 2018; Xiang et al., 
2019), synapse dysfunction (Xu et al., 2017), amyloid beta (Aβ) 
accumulation, and tau protein phosphorylation (Yu et al., 2020), 
which indicate that a common pathogenic pathway exists 
between PNDs and neurodegenerative disorders, especially 
AD. Among these, neuroinflammation may be the highlighted 
mechanism of PNDs (Cibelli et  al., 2010; Safavynia and 
Goldstein, 2018; Xiang et al., 2019). This theory includes three 
parts: peripheral inflammation, central inflammation, and the 
link between these conditions. The elevation of proinflammatory 
cytokines in the periphery and cerebrospinal fluid is positively 
related to PNDs (Liu et al., 2018). Patients with high interleukin 
(IL)-1β in presurgical cerebrospinal fluid (CSF) tend to suffer 
from PNDs (Ji et al., 2013). Damaged peripheral cells caused by 
surgery release high molecular group box 1 protein (HMGB1), 
which is a type of damage-associated molecular pattern (DAMP) 
that may be  sensed by Toll-like receptors (TLRs; Lotze and 
Tracey, 2005). HMGB1 is also increased in the hippocampus 
after surgery and may contribute to changes in the blood–brain 
barrier (BBB; He et  al., 2012). The nuclear factor (NF)-κB 
signaling pathway is triggered and upregulates the release of 
cytokines [(TNF)-α, IL-1β, and IL-6], which maintain peripheral 
inflammation (Li et al., 2022). Changes in the permeability or 
integrity of the BBB may be  the bridge between peripheral 
inflammation and neuroinflammation (Li et al., 2022). Notably, 
intestinal inflammation induces neuroinflammation via a certain 
mechanism and ultimately contributes to cognitive impairment 
(He et al., 2021). The imbalance of gut microbiota caused by 
surgery or anesthesia contributes to the development of PNDs 
(Lian et al., 2021).

Pyroptosis is an inflammatory form of programmed cell 
death, that leads to plasma membrane disruption, potassium 
efflux, and IL-1β and IL-18 release by canonical or noncanonical 
pathways. The NOD-, LRR-, and pyrin domain-containing 
protein 3 (NLRP3) inflammasome plays an important role in 
the canonical pyroptosis pathway, which is associated with 
neurodegenerative diseases, such as AD, Parkinson’s disease, 
and epilepsy (Moujalled et al., 2021; Xia et al., 2021), and is a 
pivotal role in PNDs (Zhang et al., 2021b). In recent studies, 

NLRP3 is significantly increased in the PNDs mouse model 
(Zhang et al., 2021b) and is associated with isoflurane-induced 
cognitive impairment (Wang et  al., 2018; Yin et  al., 2018). 
Inhibiting NLRP3 and caspase-1 (its downstream target) with 
MCC950 and AC-YVAD-CMK, respectively, reduced the 
expression of IL-1β and attenuated PNDs (Fan et al., 2018; Fu 
et al., 2020; Zhang Z. et al., 2021). It seems that NLRP3 could 
lead PNDs directly.

At the same time, NLRP3 has a strong relationship with the 
risk factors for PNDs. NLRP3 inflammasome increases in the 
hippocampus of aged rats (Wang et al., 2022). Pain contributes to 
PNDs (Chi et  al., 2013), the NLRP3 inflammasome mediates 
postoperative mechanical pain, and knockout of NLRP3 reduced 
mechanical hypersensitivity and pain-like behavior in mice 
(Cowie et al., 2019). The NLRP3 inflammasome is also involved 
in abnormal sleep rhythm. The expression of the NLRP3 
inflammasome (NLRP3, ASC, and active caspase-1) increased in 
the hippocampal CA1 region of mice in the sleep deprivation 
group, and this effect could be reversed by sleep recovery (Fan 
et al., 2021). NLRP3 inflammasome activation could be induced 
by Aβ accumulation and lead to Tau hyperphosphorylation, which 
may verify the role of the NLRP3 inflammasome in AD 
pathogenesis (Ising et  al., 2019). In addition, colitis could 
upregulate neuroinflammation, Aβ deposition, and cognitive 
impairment, but this effect could be  mitigated by kickout of 
NLRP3 (He et al., 2021).

Therefore, NLRP3 not only induces PNDs directly but also 
promotes risk factors for PNDs. The NLRP3 inflammasome plays 
a potential role in the pathogenesis of PNDs, and any treatment 
inhibiting the NLRP3 inflammasome pathway may be an effective 
strategy to treat PNDs. The present review summarizes recent 
studies and systematically describes the pathogenesis of NLRP3 
activation and regulation and potential therapeutics targeting 
NLRP3 inflammasomes in PNDs patients.

Components of NLRP3 and its 
mechanism

The NLRP3 inflammasome is a multiprotein complex that 
includes the NLRP3 protein, apoptosis-associated speck-like 
protein containing a CARD (ASC), and pro-caspase-1. The 
NLRP3 protein (the sensor of the NLRP3 inflammasome) is a 
pattern recognition receptor (PRR) that consists of an amino-
terminal pyrin domain (PYD), a central NACHT domain (which 
has ATPase activity), and a carboxy-terminal LRR domain. ASC 
consists of an N-terminal PYD and a C-terminal caspase-
recruitment domain (CARD), and pro-caspase-1 has an 
N-terminal CARD. After recognizing the stimulus, NLRP3 
oligomerizes and recruits ASC via a PYD domain interaction, and 
then ASC recruits pro-caspase-1 via a CARD domain interaction 
and induces the self-cleavage of pro-caspase-1 (Swanson et al., 
2019). The active form of caspase cleaves pro-IL-1β and pro-IL-18 
into their mature forms (Lawlor and Vince, 2014). This step is the 
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assembly process and effect of the NLRP3 inflammasome. There 
are potential therapeutic strategies for each step in this process.

There are three kinds of NLRP3 inflammasome activation 
pathways: the canonical, noncanonical, and alternative NLRP3 
inflammasome pathways, as shown in Figure 1. The canonical 
pathway is also known as the two-signal model (Huang et al., 
2021). The first signal from TLRs or cytokine receptors induces 
NLRP3 and pro-IL-1β expression via NF-κB activation and is the 
priming of the NLRP3 inflammasome. The second signal is 
triggered by microbial products or danger signals, such as ATP, 
pore-forming toxins, and viral RNA (Bauernfeind et al., 2009; He 
et al., 2016; Xing et al., 2017). Once these stimuli are sensed, the 
assembly and activation of the NLRP3 inflammasome is initiated 
as described above. Several events are regarded as activation 
signals of the NLRP3 inflammasome, including mitochondrial 
dysfunction (Zuo et al., 2020), mitochondrial DNA (mtDNA) 
synthesis (Zhong et al., 2018), reactive oxygen species (ROS) (Wei 

et al., 2019), ionic flux [potassium efflux (Muñoz-Planillo et al., 
2013), calcium influx (Murakami et al., 2012), and chloride efflux 
(Tang et al., 2017; Swanson et al., 2019)], trans-Golgi disassembly 
(Gaidt et al., 2016), and plasma membrane rupture (Beckwith 
et al., 2020). In contrast to the canonical pathway, the noncanonical 
pathway is dependent on caspase-4/5 (mouse caspase-11), which 
may be converted to an active state via direct binding to LPS 
and lipid A. Active caspase-4/5/11 also induces pyroptosis via 
pore formation, which is characteristic of GSDMD (Shi et al., 
2014). Plasma membrane rupture and K+ efflux further trigger 
activation of the NLRP3 inflammasome. The alternative pathway 
is completed by TLR4-TRIF-RIPK1-FADD-CASP8 signaling, 
which responds to LPS and ultimately causes IL-1β release (Gaidt 
et al., 2016). Apolipoprotein C3 (ApoC3) primes the alternative 
pathway via TLR2/4-SCIMP-Lyn-Syk-TRPM2-CASP8 in human 
monocytes. However, alternative NLRP3 inflammasome 
activation does not induce ASC speck formation or pyroptosis 

FIGURE 1

Three pathways of NLRP3 inflammasome activation. The canonical pathway requires two steps to complete: the priming step and the activation 
step. During the priming step, TLR or cytokine receptors sense stimuli and trigger the NF-κB pathway, which prompts the transcription of NLRP3 
and pro-IL-1β and triggers numerous events upstream of the NLRP3 inflammasome, such as mitochondrial dysfunction, mitochondrial DNA 
(mtDNA) synthesis, reactive oxygen species (ROS), trans-Golgi disassembly, plasma membrane rupture, and ionic flux. Finally, GSDMD is induced 
into its active form, which creates pores in the plasma membrane and facilitates cytokine release. Noncanonical signaling is activated by LPS and 
mediated by caspase11 (caspase-4/5 in humans), which also independently induces pyroptosis and activates the canonical pathway via ionic flux. 
The alternative pathway does not induce pyroptosis. It is mediated by the LPS-induced TLR4-TRIF-RIPK1-FADD-CASP8 signaling pathway or 
ApoC3-induced TLR2/4-SCIMP-Lyn-Syk-TRPM2-CASP8 pathway. Caspase-8 promotes the assembly of the NLRP3 inflammasome and cytokine 
release.
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(Zewinger et al., 2020). Therefore, canonical and noncanonical 
NLRP3 inflammasome activation are described in this article 
because they induce GSDMD to execute pyroptosis.

GSDMD is the substrate of caspase-1/4/5/11 and may be cleaved 
to form the gasdermin-N-terminal and gasdermin-C-terminal. The 
latter autoinhibits the gasdermin-N-terminal, which is the functional 
segment that contributes to pyroptosis (Shi et al., 2017). Once the 
interaction of these two segments is disrupted by caspase, the GSDMs 
are activated (Shi et al., 2015). Therefore, there are two ways in which 
GSDMs are activated. First, proteases cleave and release the NT active 
domain, and second, the CT domain is mutated, which diminishes 
the negative regulation of the NT domain by the CT domain (Liu 
X. et  al., 2021). Once the GSDMD-N-terminal is released, it 
oligomerizes in the membrane to form pores that permit the release 
of cytokines, such as IL-1β, and lead to ion flux, such as calcium and 
potassium, which may further prompt activation of the NLRP3 
inflammasome (Liu et  al., 2016; Fischer et  al., 2021). GSDMD-
induced pyroptosis contributes to cognitive disorders caused by 
sevoflurane neurotoxicity (Wen-Yuan et al., 2022). An increasing 
number of studies have shown that other members of the gasdermin 
family (GSDMA3, GSDMB (Zhou et al., 2020), GSDMC (Hou et al., 
2020), and GSDME (Rogers et  al., 2017; Wang Y. et  al., 2017) 
contribute to pyroptosis via other caspases or molecules (Huang 
et al., 2021).

Based on the compound of NLRP3 and its mechanism, any 
blocking the assembly process of the NLRP3 inflammasome, 
inhibiting the activation signals of the NLRP3 inflammasome, and 
decreasing and dysfunction of GSDMD (downstream of NLRP3 
inflammasome) could relieve PNDs.

Posttranscriptional modifications 
(PTMs)

PTM of the NLRP3 inflammasome, including ubiquitination, 
phosphorylation, small ubiquitin-like modifier (SUMO) ylation, 
alkylation, and S-nitrosylation, is involved in regulating 
inflammasome activation (Tang T. et al., 2021). PTMs may occur 
at any step in the pyroptosis pathway of proteins, such as NLRP3 
and gasdermins (Fischer et al., 2021). Different PTMs do not work 
independently but interact with each other. The mechanism is 
very complex. We used the NLRP3 inflammasome as an example 
to briefly introduce the effects of PTMs, as shown in Figure 2. The 
molecule that promotes the activation of NLRP3 could induce 
PNDs, while the other inactive NLRP3 may be  a potential 
treatment strategy for PNDs.

Ubiquitination

Ubiquitination of a protein requires E1 (ubiquitin-activating 
enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin 
ligase; Glickman and Ciechanover, 2002). E3 ubiquitin ligases are 
associated with the regulation of NLRP3 inflammasome 

activation by targeting NLRP3 inflammasome components 
(Lopez-Castejon, 2020). Several E3 ligases are associated with 
NLRP3 inflammasome activation (Akther et al., 2021). Wan et al. 
found that the core component of E3 ligases, cullin1 (CUL1), 
catalyzed NLRP3 ubiquitination to suppress the activation of 
NLRP3  in resting cells, and it disassociated from NLRP3 to 
facilitate the assembly and activation of the NLRP3 
inflammasome to protect against inflammatory stimuli and 
infection (Wan et al., 2019). In contrast, Peli1 catalyzes K (lys)63 
ubiquitination of ASC, which contributes to NLRP3 
inflammasome activation by promoting ASC/NLRP3 interaction 
(Zhang et  al., 2021a). Kaempferol (Ka) inhibits NLRP3 
inflammasome activation by promoting autophagic degradation 
of the NLRP3 inflammasome and NLRP3 ubiquitination (Han 
et al., 2019). Deubiquitinases (DUBs) are important components 
of the ubiquitin system that counter the role of ubiquitinases to 
achieve balance. The DUBs USP7 and USP47 activate the NLRP3 
inflammasome, but the specific mechanism is not clear (Palazón-
Riquelme et al., 2018).

There are three mechanisms by which E3 ubiquitin ligases affect 
NLRP3 inflammasome activation, including lys48-, lys63- or mixed 
lys48- and lys63-linked ubiquitination. There are three functional 
mechanisms: proteasomal degradation of NLRP3, autophagic 
degradation of NLRP3, and NLRP3 inactivation without protein 
degradation (Tang T. et al., 2021). A recent study demonstrated that 
the E3 ubiquitin ligase TRIM65 was a negative regulator of NLRP3 
inflammasome activation, and it suppressed the assembly and 
activation of the NLRP3 inflammasome by promoting K48 and K63 
ubiquitination of NLRP3, which did not lead to its degradation 
(Tang T. et al., 2021).

Phosphorylation

Phosphorylation mediates the priming, assembly, 
localization, and degradation of the NLRP3 inflammasome by 
regulating deubiquitination or ubiquitination of NLRP3  in 
macrophages (Gong et  al., 2018). The phosphorylation of 
NLRP3 at S198 (mouse NLRP3 S194) by JNK1, a TLR-IRAK1/4 
downstream kinase, is a key regulator of the deubiquitination 
and activation of NLRP3 (Song et  al., 2017). The 
dephosphorylation of S198 or phosphorylation of the S3 
residue hinders the homo-oligomerization of NLRP3 and its 
interaction with ASC to inhibit its activation (Mangan et al., 
2018). Protein kinase A (PKA) promotes NLRP3 ubiquitination 
and deactivates ATPase by directly phosphorylating NLRP3 at 
S295 (mouse NLRP3 S291), which inhibits the activation of 
NLRP3 (Guo et al., 2016; Mortimer et al., 2016). The protein 
tyrosine kinase (PTK) Lyn phosphorylates NLRP3 at Tyr918 
(mouse NLRP3 Y915) and promotes NLRP3 ubiquitination to 
inhibit inflammasome activation (Tang J. et al., 2021). Some 
kinases or phosphatases that promote NLRP3 inflammasome 
activation, such as protein tyrosine phosphatase nonreceptor 
22 (PTPN22), never in mitosis A-related kinase 7 (NEK7), 
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death-associated protein kinase (DAPK), and Bruton’s tyrosine 
kinase (BTK; Gong et  al., 2018), may also be  potential 
treatment targets.

Current clinical trials of NLRP3-targeting kinase inhibitors 
primarily focus on tumors (such as mantle cell lymphoma) and 
autoimmune diseases (such as rheumatoid arthritis), and whether 
NLRP3 phosphorylation is a practical treatment target needs 
further study (Gong et al., 2018).

SUMO modification

SUMOylation works like ubiquitination, and its function 
relies on E1 activating enzymes, E2 conjugating enzymes 
(UBC9), and E3 protein ligases. There are three types of SUMO 
proteins: SUMO1, SUMO2, and SUMO3 (Gareau and Lima, 
2010; Qin et al., 2021). Tripartite motif-containing protein 28 
(TRIM28) SUMOylates NLRP3 to inhibit K48 ubiquitination 
and the degradation of NLRP3, which promotes inflammasome 
activation (Qin et al., 2021). SUMO-specific proteases (SENP6 

and SENP7) contribute to NLRP3 inflammasome activation, 
and MAPL SUMOylates NLRP3, leading to the suppression of 
inflammasome activation (Barry et al., 2018). SENP3 is a specific 
SUMO1 protease that deSUMOylates the NLRP3-Lys204 
residue and leads to inactivation of NLRP3 (Shao L. et al., 2020).

Alkylation

Several chemicals target NLRP3 ATPase and inhibit the 
activation of NLRP3 by alkylation, including parthenolide, 
BAY11-7085, BOT-4-one, 3,4-methylenedioxy-β-nitrostyrene 
(MNS), and acrylamide derivatives (Shim et  al., 2017). 
Parthenolide directly alkylates Cys285 of caspase-1 p20 to 
inactive caspase-1 and the NLRP3 inflammasome, and BAY11-
7085 inhibits NLRP3 (Juliana et  al., 2010). BOT-4-one is an 
NLRP3-alkylating agent that significantly inhibits NLRP3 
inflammasome activation by inhibiting the ATPase activity of 
NLRP3 and enhancing NLRP3 ubiquitination. However, the 
specific residues associated with alkylation are not clear and need 

FIGURE 2

The consistency of the NLRP3 inflammasome and the regulation of PTMs on the NLRP3 inflammasome. The dotted line indicates the removal of 
small molecular modifications, and the solid line indicates the promotion of PTMs. The blue background indicates an explicit interaction site with 
NLRP3, and the yellow background indicates that the site is not clear. The molecules listed on the left side inactivate the NLRP3 inflammasome, 
and the factors on the right side activate the NLRP3 inflammasome.
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further examination (Shim et al., 2017). MNS inhibits NLRP3 
activation by alkylating NLRP3 and suppressing ATPase activity 
similarly to BAY11-7085 (He et al., 2014).

S-nitrosylation

Inducible nitric oxide synthase (iNOS) causes the 
S-nitrosylation of NLRP3, which plays a negative role in NLRP3 
inflammasome assembly and IL-1β maturation (Mishra et al., 
2013). The S-nitrosylation of caspase-1 may contribute to the 
inhibitory effect of NO on absent in melanoma 2 (AIM2) and 
NLR family CARD domain-containing 4 protein (NLRC4; 
Hernandez-Cuellar et al., 2012). NO directly S-nitrosylates the 
inflammasome and downregulates NLRP3 activation and IL-1β 
release (Park et al., 2013).

Treatments

NLRP3 inflammasome activation and the induction of 
canonical pyroptosis are related to PNDs. Any blockade of the 
pathway, such as upstream of the NLRP3 inflammasome, the 
formation of the NLRP3 inflammasome, and its downstream 
factors (GSDMD, IL-1β, and IL-18), inhibits pyroptosis and may 
reverse the progression of PNDs. We  described some drugs, 
chemicals, new materials, and technologies to potentially treat the 
activation of NLRP3 in PNDs.

Drugs

Except for the molecules or proteins introduced in the PTM 
section that target  the NLRP3 inflammasome pathway, some 
drugs have therapeutic efficacy evidence to alleviate cognitive 
dysfunction and are presented in Table 1.

Inhibition of factors upstream of The NLRP3 
inflammasome

Suberoylanilide hydroxamic acid (SAHA), a histone 
deacetylase inhibitor, suppresses NLRP3 inflammasome 
activation by enhancing autophagy and ameliorating 
sevoflurane-induced PNDs (Fang et al., 2021). Dexmedetomidine 
(DEX) is a commonly used analgesic in the clinic, that reduces 
the occurrence of PNDs. DEX blocks NLRP3 inflammasome 
activation by inhibiting NF-κB, reducing the oxidative stress 
response, promoting NLRP3 inflammasome degradation, and 
inhibiting NLRP3 inflammasome activation via autophagy 
(Yang et  al., 2020; Zhang et  al., 2021b; Cho et  al., 2022; Li 
et al., 2022).

Atorvastatin (an HMG-CoA reductase inhibitor) (Liu 
P. et  al., 2021) and PHA 568487 [a nicotinic acetylcholine 
receptor (nAChR) agonist] (Terrando et  al., 2011) prevent 
PNDs by inhibiting NF-κB activation and mitochondrial 

dysfunction. Elamipretide attenuates NLRP3 inflammasome-
induced pyroptosis and impairs synaptic and cognitive 
function by improving mitochondrial function (Zuo et  al., 
2020). Lidocaine also improves the cognitive injury caused by 
isoflurane by reducing mitochondrial dysfunction (Li et al., 
2019). Several traditional medicines have clinical effects, such 
as Chikusetsu saponin IVa (ChIV) and ginsenosides (Rh1, Rg3) 
from Korean red ginseng (RGE), which downregulate the 
NLRP3 pathway by reducing the production of ROS (Kim 
et al., 2014; Shao A. et al., 2020). Salidroside (Sal) and Prussian 
blue nanozyme (PBzyme) effectively supreess the activation 
of  the NLRP3 inflammasome and pyroptosis via their 
ROS-scavenging properties in mouse models of Parkinson’s 
disease and AD (Zhang X. et  al., 2020; Cai et  al., 2021; Ma 
X. et al., 2022), and these agents may be used as treatments in 
a PNDs model.

Inhibition of NLRP3 inflammasome activation
Inhibiting the components of the NLRP3 inflammasome, 

such as ASC, NLRP3 protein, and pro-caspase-1, effectively 
suppress its activation. Because ASC and caspase also play 
roles in other inflammatory processes, NLRP3 is specific to 
the canonical pathway and a better target. MCC950 is a 
specific NLRP3 inhibitor that effectively inhibits NLRP3-
associated downstream events to prevent PNDs in mouse 
models (Coll et al., 2015; Fan et al., 2018). MM01 inhibited 
inflammation by preventing ASC oligomerization and 
pro-caspase activation in mouse peritonitis models, but its 
pharmacological action and safety need further confirmation 
(Soriano-Teruel et al., 2021). U50488H is a κ-opioid receptor 
agonist and annexin-A1 (ANXA1) tripeptide that effectively 
inhibits pyroptosis and improves PNDs by targeting the 
NLRP3 inflammasome via an unclear mechanism (Song et al., 
2021; Zhang et al., 2022).

Inhibition of factors downstream of The NLRP3 
inflammasome

GSDMD is a characteristic sign and key protein of 
pyroptosis, and it is a common substrate of the canonical and 
noncanonical NLRP3 inflammasome activation pathways. 
GSDMD is a specific and advantageous target, and any treatment 
focusing on GSDMD may alleviate pyroptosis and prevent 
PNDs. Dimethyl fumarate (DMF), disulfiram (DSF), and 
necrosulfonamide (NSA) inhibit GSDMD by modifying Cys191 
(Cys192  in mice) residues (Liu X. et al., 2021). NSA inhibits 
GSDMD pore formation by hindering the oligomerization of 
GSDMD dimers but does not affect the cleavage of GSDMD 
(Rathkey et al., 2018). However, Liu et al. demonstrated that the 
inhibitory effects of NSA and BAY11-7082 involved inhibition 
of the cleavage of caspase-1, IL-1β, and GSDMD. DSF is the only 
direct inhibitor of GSDMD, and it prevented pyroptosis by 
inhibiting GSDMD pore formation. However, DSF did not 
inhibit GSDMD cleavage or caspase-11. In contrast, NSA, 
Bay11-7,082, DMF, and z-VAD-fmk have little or no effect on 
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TABLE 1 NLRP3 inflammasome-associated drugs.

Drug Functional mechanism or site Function and effect

Suberoylanilide hydroxamic acid 

(SAHA)

Increased histone H3 and H4 acetylation Fang et al. (2021) Autophagy↑

NLRP3 inflammasome↓

Sevoflurane-induced cognitive decline↓

Dexmedetomidine (DEX) Autophagy–ubiquitin pathway of NLRP3 inflammasome Zhang 

et al. (2021b)

NLRP3↓, CASP1↓, and IL-1β↓ in the hippocampus

Learning and memory ability impairment↓

NF-κB pathway Wang L. et al. (2017) mRNA levels of hippocampal IL-1β, IL-6, and TNF-α↓

α2-AR/AMPK/mTOR pathway Yang et al. (2020) Autophagy↑

Reducing the oxidative stress response Cho et al. (2022) NLRP3 inflammasome information↓

cognitive impairment in POCD mice↓

Atorvastatin, an HMG-CoA 

reductase inhibitor

Inhibiting the NF-κB-NLRP3 inflammasome pathway

protecting the integrity of the blood–brain barrier (BBB) Liu P. 

et al. (2021)

IL-1β↓, IL-6↓, TNF-α↓ in the hippocampus and serum

NLRP3 inflammasome↓ in the hippocampus

NF-κB pathway↓

PHA 568487, a nAChR agonist Inhibiting NF-κB activation Terrando et al. (2011) NF-κB activation↓ in bone marrow-derived macrophage 

(BMDM)

postoperative cognitive impairment↓

Elamipretide, as a mitochondrial-

targeted peptide

Improving mitochondrial function Zuo et al. (2020) NLRP3 inflammasome-induced pyroptosis ↓

impairment of synaptic and cognitive↓

Lidocaine Reducing mitochondrial damage Li et al. (2019) Cognitive impairment↓

Mitochondrial structure damage↓

ChIV ROS Shao A. et al. (2020). NLRP3-caspase-1 pathway↓

ROS production ↓

Ginsenosides (Rh1, Rg3) of Korean 

red ginseng (RGE)

ROS and intracellular calcium ions Kim et al. (2014). Activation of NLRP3 and AIM2↓

IL-1β ↓

pyroptosis↓

Salidroside (Sal) Inhibiting the TLR4/MyD88/NF-κB signaling pathways;

TXNIP/NLRP3/caspase-1 pathways Zhang X. et al. (2020)

IL-1β, IL-18 and Gasdermin D↓ in PD mice

TLR4, MyD88, p-IκBα, and p-NF-κB↓ in LPS-induced BV2 cell

pyroptosis↓

TLR4/NF-κB/NLRP3/caspase-1 signaling pathway Cai et al. (2021) TLR4, MyD88, NF-κB, P-NF-κB, NLRP3, ASC, cleaved 

Caspase-1, cleaved GSDMD, IL-1β, and IL-18↓ in vitro

pyroptosis↓

Prussian blue nanozyme (PBzyme) Scavenging ROS Ma X. et al. (2022) IL-1β, IL-6, and TNF-α, NLRP3, cleaved caspase-1, GSDMD, 

cleaved GSDMD, and ROS generation↓ in PD mice.

MCC950 Inhibiting NLRP3 Fan et al. (2018), Coll et al. (2015) NLRP3-induced pyroptosis↓

MM01 ASC-CARD domain-related residuals, such as Trp-169. Soriano-

Teruel et al. (2021).

ASC-mediated inflammatory signaling(NLRP1/NLRC4)↓

ASC oligomerization and pro-caspase activation↓

U50488H, k-opioid receptor 

agonist

The NLRP3/caspase-1 pathway Song et al. (2021) NLRP3 and associated proteins↓ Pyroptosis↓

cerebral and cognitive impairment↓

Annexin-A1 (ANXA1) tripeptide NLRP3 inflammasome Zhang et al. (2022) PNDs-like behavior ↓

ASC, NLRP3, and IL-1β↓

Necrosulfonamide (NSA) Cys191 on GSDMD Rathkey et al. (2018). Oligomerization of GSDMD dimer↓; SDMD pore formation↓ in 

murine and human cells; pyroptotic cell death↓;does not interfere 

with inflammasome formation.

Cleavage of caspase-1 Hu et al. (2020). Processing of caspase-1, IL-1β, and GSDMD↓ in cells

Disulfiram (DSF) GSDMD pore formation Hu et al. (2020). No apparent effect on ASC speck formation, the cleavage of 

caspase-1, GSDMD, and pro-IL-1β

IL-1β, TNF, and IL-6↓in the serum of mice

Dimethyl fumarate (DMF) Succination of GSDMD Humphries et al. (2020). IL-1β↓ in vivo; GSDMD-caspases interaction, processing, and the 

oligomerization of GSDMD↓

Anakinra and canakinumab IL-1β antagonist Dinarello et al. (2012)
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GSDMD inhibition (Hu et  al., 2020). DMF plays a role in 
inhibiting pyroptosis by succinate GSDMD, which prevents the 
interaction of GSDMD and caspase (Humphries et al., 2020). 
Rats treated with DSF or NFA exhibited attenuated cognitive 
impairment caused by sevoflurane neurotoxicity (Wen-Yuan 
et al., 2022).

Inhibition of cytokines also prevents PNDs. The IL-1β 
antagonists anakinra and canakinumab are less effective than the 
inhibitors of GSDMD because these agents only inhibit a single 
cytokine (Liu X. et al., 2021).

Technologies

Gene and gene editing technology
Genes affect protein expression and influence the 

mechanism of PNDs. Knockdown of SETD7 effectively 
suppressed NLRP3-dependent pyroptosis and reversed 
isoflurane-induced cognitive dysfunction (Ma C. et al., 2022). 
Overexpression of DUSP14 partially suppressed the NLRP3-
caspase-1 pathway by reducing the levels of cytokines and 
pyroptosis to ultimately ameliorate cognitive dysfunction (Que 
et al., 2020). HTR2A upregulation reduced the expression of 
pyroptosis-related genes (cleaved GSDMD, NLRP3, and ASC) 
and suppressed pyroptosis in hippocampal neurons in PNDs 
rats (Wu et al., 2022).

Clustered regularly interspaced short palindromic repeats/
CRISPR-associated nuclease9 (CRISPR/Cas9) is a new gene 
editing technology that targets any genomic locus using only a 
complex nuclease protein with short RNA as a site-specific 
endonuclease. CRISPR/Cas9 has been used in the field of 
cancer research to edit genomes to examine the mechanisms of 
tumorigenesis and development (Zhang H. et al., 2021) and 
explore the complex interactions and disruptions in genes that 
contribute to Huntington’s disease (HD, a neurodegenerative 
disease; Tabrizi et al., 2020) and AD (Schrauben et al., 2020). 
AD and PNDs may have similar mechanisms and gene effects, 
and CRISPR/Cas9 may be used in future studies of PNDs.

Targeted protein degradation (TPD)
TPD technology uses two naturally occurring protein 

degradation systems in cells (the ubiquitination proteasome 
system and lysosomal degradation pathway) to achieve specific 
and efficient degradation of disease-related proteins and 
facilitate disease treatment. Proteolysis targeting chimera 
(PROTAC) technology is based on the E3 ligase of the 
ubiquitination proteasome system, and it induces the 
degradation of a given protein of interest (Nalawansha and 
Crews, 2020). Compared to traditional small-molecule 
inhibitors, drugs based on TPD technology are less restricted 
in the selection of target proteins and act on “nondrug-
resistant” proteins. Compared to gene or mRNA translation, 
TPD drugs are specific, fast, and free from posttranslational 

modifications. TPD experienced explosive growth in cancer 
research and entered clinical development as a cancer therapy 
(Dale and Cheng, 2021).

As misfolded protein aggregates are associated with many 
neurodegenerative diseases, TPD was applied to target 
proteins of interest to treat these diseases, such as AD, HD, 
and Parkinson’s disease (Hyun and Shin, 2021; Benn et al., 
2022). Tau proteins cause Aβ aggregation and play a role in 
AD, which is also the potential role of PNDs (Yu et al., 2020). 
In 2016, Chu et al. reported the TPD for tau protein using a 
peptide-based PROTAC compound and reduced the 
neurotoxicity of Aβ through TU006-mediated lowering of the 
tau protein in an AD transgenic mouse model (Chu et  al., 
2016). M. C. Silva et al. synthesized the degrader compound 
QC-01-175, which binds CRBN E3 ligase and tau protein to 
induce ubiquitination of tau protein and proteasomal 
degradation in frontotemporal dementia neuronal cell models 
(Silva and Ferguson, 2019). Small-molecule PROTACs have 
been shown to induce the degradation of huntingtin in 
fibroblasts from HD patients by E3 ligase (Yamashita 
et al., 2020).

As PROTAC technology is based on the E3 ligase of 
ubiquitination, which also moderates NLRP3 inflammasome 
activation (as introduced in the previous PTMs section), it may 
be used in future studies of PNDs focusing on NLRP3-related 
proteins. At least now, there is no report of TPD safety and 
application in PNDs studies. All of these findings need to 
be confirmed by future research.

Nanotechnology
Nanotechnology is a rapidly emerging field that manipulates 

assorted synthetic and naturally occurring materials in nanoscale 
dimensions (1–1,000 nm), and it is used in tissue regeneration, 
drug delivery, and pharmaceuticals (Sridhar et al., 2015). It uses 
a variety of materials to synthesize functional organizations, such 
as polymers, lipids, viruses, and organometallic compounds. 
Nanoparticles (NPs) link biological molecules or ligands that act 
as address tags to direct the NPs to specific sites and specific 
cellular organelles or specifically follow the movement of 
individual proteins or RNA molecules (Gupta et al., 2019). NPs 
have been widely used in research on cancer to carry different 
medicines that induce pyroptosis for cancer immunotherapy 
(Ding et al., 2021) and inhibit pyroptosis in sepsis (Liu B. et al., 
2021; Chen et al., 2022). Yao et al. reported that NPs carrying 
hesperidin, which is an extract in citrus fruits, effectively 
identified inflammatory neutrophils and quickly accumulated in 
the injured area to reduce the secretion of inflammatory factors 
in traumatic brain injury (Yao et  al., 2022). NSA could bind 
directly to Cys191 of human GSDMD or to Cys192 of mouse 
GSDMD and then inhibit GSDMD pore formation and reduce 
the release of IL-1β, but had potential toxic organic solvents. 
Several types of porous NPs, mesoporous silica (MSN), porous 
cross-linked cyclodextrin carriers (CD-NP), and a mesoporous 
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magnesium-phosphate carrier (MPC-NP), targeted delivered 
NSA to phagocytic cells and effectively inhibited GSDMD 
activation to regulate inflammatory responses (Boersma 
et al., 2022).

Various NPs or nanomedicines (NMs) have been 
synthesized in recent decades to exploit the existing 
physiological mechanisms of passage through the BBB, 
including receptor- and adsorptive-mediated transcytosis, 
which facilitate the transcellular transport of NPs from the 
blood to the brain, to explore their potential application in the 
diagnosis and therapy of AD (Gupta et  al., 2019). 
Nanotechnology graphene oxide (GO)/graphene is a novel 
nanocarbon material that alleviates Aβ burden and improves  
learning and memory in a mouse model of AD (Xiao et al., 
2016) and PNDs in mice (Zhang J. et al., 2020).

Although there is less research on the use of nanotechnology 
in PNDs treatment, nanotechnology will likely be  used for 
PNDs treatment in the future based on emerging research of 
this new technology.

Discussion

PNDs are frequent complications with cognitive 
impairment that is identified during the perioperative period 
and may be  induced by surgery or anesthetic. PNDs occur 
more commonly in elderly patients. With the aging of the 
population and the increased demand for surgery, the 
foreseeable increase in PNDs will lead to increased morbidity, 
mortality, and a heavier burden on families and society 
(Androsova et  al., 2015; Wei et  al., 2019). The underlying 
mechanisms are complex and unclear, but inflammation 
may  be  the key mechanism of PNDs (Cibelli et  al., 2010). 
Pyroptosis is an inflammatory form of programmed cell 
death  that contributes to neuronal death, is associated with 
neurodegenerative diseases, such as AD and Parkinson’s 
disease, and is related to PNDs. NLRP3 inflammasome-
induced canonical pyroptosis may be  associated with the 
mechanism of PNDs (Zhang et al., 2021b). The present study 
primarily demonstrated NLRP3 inflammasome-related 
neuroinflammation in PNDs and the components and 
mechanisms of NLPR3 induced pyroptosis. The review 
introduced the PTMs of NLRP3 and suggested prevention 
strategies (drugs and new technology) by targeting NLRP3 
inflammasomes in future studies of PNDs.

The NLRP3 inflammasome is a multiprotein complex that 
includes NLRP3 protein, ASC, and pro-caspase-1 (Swanson 
et al., 2019). There are three kinds of NLRP3 inflammasome 
activation pathways, as presented in Figure 1. There are several 
targets that interfere with NLRP3-dependent pyroptosis, 
including upstream of the NLRP3 inflammasome, the 
inflammasome itself, and downstream of the inflammasome. 
NF-κB is a critical upstream target of the NLRP3 inflammasome 

(Bauernfeind et al., 2009). Activation of the NF-κB pathway 
upregulates the transcription of NLRP3 and IL-1β, which are 
necessary for canonical NLRP3 pathway activation 
(Bauernfeind et al., 2009). Mitochondrial dysfunction (Zhou 
et al., 2011; Zuo et al., 2020), ionic flux (Muñoz-Planillo et al., 
2013; Swanson et al., 2019), trans-Golgi disassembly (Gaidt 
et  al., 2016), and plasma membrane rupture (Schorn et  al., 
2011) are also likely upstream events of the NLRP3 
inflammasome. Inhibition of these pathways also effectively 
downregulates the expression of the NLRP3 inflammasome. 
However, using these pathways as treatment targets may result 
in a lack of specificity because they also participate in other 
signaling pathways. Targeting the assembly of the 
inflammasome is a highly specific strategy, but there are few 
definite drugs at present. Notably, GSDMD is an indispensable 
target of pyroptosis and may be  a specific target to 
control pyroptosis.

PTMs are an emerging and potential research field because 
they modify multiple proteins. PTMs occur at many steps in 
pyroptosis pathway proteins, such as NLRP3 and gasdermins 
(Fischer et al., 2021). We used the NLRP3 inflammasome as an 
example to briefly introduce PTMs, including ubiquitination, 
phosphorylation, SUMOylation alkylation, and S-nitrosylation. 
Some molecules that influence the PTMs of NLRP3 are 
presented in Figure 2. Different PTMs work interactively, and 
inactivating NLRP3 may be a potential treatment strategy for 
PNDs. The specific functional site and mechanisms that may 
be the target of PNDs need further research.

Based on current knowledge of NLPR3-induced pyroptosis, 
we  briefly listed some drugs that decrease pyroptosis and 
release PNDs, focusing on upstream of the NLRP3 
inflammasome, the inflammasome itself, and downstream of 
the inflammasome (Table  1). Some new technologies are 
emerging, including gene editing, TPD, and nanotechnology. 
TPD performs in a highly specific and advanced manner using 
the PTM mechanism to regulate the degradation of particular 
proteins. Nanotechnology is a rapidly emerging program that 
is applied in tissue regeneration, drug delivery, and 
pharmaceuticals (Sridhar et al., 2015). Various NPs or NMs 
have been synthesized to exploit the existing physiological 
mechanisms of disease treatments by carrying the drug 
through the BBB to provide a high concentration at the target 
receptor and prolonging the drug effect time. Although there 
is less research on the application of new technologies in PNDs, 
these technologies are widely used in the research of cancer 
and AD (Xiao et al., 2016; Dale and Cheng, 2021; Ding et al., 
2021). Therefore, their use for PNDs treatment is highly likely 
in the near future.

In conclusion, NLRP3 inflammasomes induce the canonical 
pyroptosis pathway, which contributes to PNDs and is an effective 
therapeutic target for the treatment of PNDs. Based on the 
mechanisms of the NLRP3 pathway, any activation of NLRP3 
upstream promoting factors, the NLRP3 inflammasome, and its 
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downstream factors (GSDMD, IL-1β, and IL-18) may 
be treatment targets for PNDs. The current review systematically 
illustrated some drugs, chemicals, new materials, and 
technologies that inhibit the activation of NLRP3 and may 
be used to treat PNDs patients in the future.
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