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Background: Mild cognitive impairment (MCI) is highly prevalent in a memory
clinic setting and is heterogeneous regarding its clinical presentation, underlying
pathophysiology, and prognosis. The most prevalent subtypes are single-domain
amnestic MCI (sd-aMCI), considered to be a prodromal phase of Alzheimer’s disease
(AD), and multidomain amnestic MCI (md-aMCI), which is associated with multiple
etiologies. Since synaptic loss and dysfunction are the closest pathoanatomical
correlates of AD-related cognitive impairment, we aimed to characterize it in patients
with sd-aMCI and md-aMCI by means of resting-state electroencephalography (EEG)
global field power (GFP), global field synchronization (GFS), and novel cerebrospinal
fluid (CSF) synaptic biomarkers.

Methods: We included 52 patients with sd-aMCI (66.9 ± 7.3 years, 52% women) and
30 with md-aMCI (63.1 ± 7.1 years, 53% women). All patients underwent a detailed
clinical assessment, resting-state EEG recordings and quantitative analysis (GFP and
GFS in delta, theta, alpha, and beta bands), and analysis of CSF biomarkers of synaptic
dysfunction, neurodegeneration, and AD-related pathology. Cognitive subtyping was
based on a comprehensive neuropsychological examination. The Mini-Mental State
Examination (MMSE) was used as an estimation of global cognitive performance. EEG
and CSF biomarkers were included in a multivariate model together with MMSE and
demographic variables, to investigate differences between sd-aMCI and md-aMCI.
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Results: Patients with sd-aMCI had higher CSF phosphorylated tau, total tau and
neurogranin levels, and lower values in GFS delta and theta. No differences were
observed in GFP. The multivariate model showed that the most important synaptic
measures for group separation were GFS theta, followed by GFS delta, GFP theta, CSF
neurogranin, and GFP beta.

Conclusion: Patients with sd-aMCI when compared with those with md-aMCI have
a neurophysiological and biochemical profile of synaptic damage, neurodegeneration,
and amyloid pathology closer to that described in patients with AD. The most prominent
signature in sd-aMCI was a decreased global synchronization in slow-frequency bands
indicating that functional connectivity in slow frequencies is more specifically related to
early effects of AD-specific molecular pathology.

Keywords: electroencephalography, synaptic dysfunction, amnestic mild cognitive impairment (aMCI),
Alzheimer’s disease, EEG power, global field synchronization (GFS)

INTRODUCTION

Mild cognitive impairment (MCI) is an intermediate stage
between cognitively healthy brain aging and dementia (Winblad
et al., 2004) and is one of the most common diagnoses in memory
clinic (Wahlund et al., 2003). It represents a risk condition for
future development of dementia, with an annual conversion rate
ranging from 5 to 15% (Bruscoli and Lovestone, 2004; Farias
et al., 2009). The risk of progression to dementia is even higher
among patients with MCI from the specialized memory clinics
than community-based populations, emphasizing the need for
improved clinical phenotyping of patients with objectively
evident cognitive impairment (Mitchell and Shiri-Feshki, 2009).
Several diagnostic criteria for MCI have been proposed so far
(Petersen, 2004; Winblad et al., 2004; Albert et al., 2011), all
of which highlight the heterogeneity of this condition in terms
of its clinical and etiological presentation. MCI is typically
classified as amnestic or non-amnestic, depending on whether
there is an objectively evident impairment in the memory
domain (Petersen, 2004, 2016; Winblad et al., 2004). Amnestic
MCI (aMCI) is considered to clinically correspond to the
prodromal stage of typical Alzheimer’s disease (AD) (Dubois
et al., 2014; Petersen, 2016) and has been linked to the AD
biomarker profile including positive markers for amyloid and tau
pathology (Visser et al., 2009; Wolk et al., 2009). MCI can be
additionally classified as a single or multiple domain based on the
number of affected cognitive domains, with the latter including
deficits in memory, language, attention, executive function, and
visuospatial skills (Petersen, 2004; Albert et al., 2011). Objectively
verified impairment in multiple cognitive domains seems to be
related to the faster progression to dementia, including dementia
due to AD, Lewy bodies (DLB), and cerebrovascular disease
(Petersen, 2004; Hughes et al., 2011).

Cognitive subtypes of MCI still exhibit variability in terms
of disease etiology and prognosis, emphasizing the role of
biomarkers in delineating more homogeneous subgroups of
patients with objective cognitive impairment. Recent studies have
shown that markers of synaptic degeneration and dysfunction are
closely related to cognitive impairment (Scheff et al., 2006, 2007;

Headley et al., 2018) and future cognitive deterioration in
patients with MCI (Poil et al., 2013; Kvartsberg et al., 2015a),
supporting their role in characterizing subgroups of patients with
cognitive impairment.

Electroencephalography (EEG) is a neurophysiological
method that can detect real-time changes in the brain synaptic
activity associated with different vigilance states, cognitive
load, and pathological brain disorders. Its clinical use spans
across a spectrum of brain disorders with underlying synaptic
pathology that causes cortical hypo- and hyperexcitability, focal,
or more generalized cerebral dysfunction (Schomer and Lopes
da Silva, 2015). The nature of cortical and subcortical synaptic
degeneration and loss in patients with cognitive impairment
therefore suggest EEG as a candidate neurophysiological marker
of impaired cerebral activity. So far, most of the research studies
have emphasized the advantage of quantitative EEG (qEEG)
that offers objective, comprehensive, and more generalizable
interpretation of EEG analyses (Smailovic and Jelic, 2019).
The quantitative resting-state EEG analysis commonly assesses
the power and synchronization of EEG oscillations across
four conventional frequency bands that are also routinely
described during visual EEG assessments (Schomer and Lopes
da Silva, 2015). The most common qEEG finding in patients
with cognitive impairment includes the increase in power in
slow-frequency bands (i.e., delta and theta) and decrease in
power in fast-frequency bands (i.e., alpha and beta) (Smailovic
and Jelic, 2019). At the same time, the decrease in global EEG
synchronization has also been reported in patients with cognitive
impairment, noted as early as in patients with subjective
cognitive decline (SCD) (Koenig et al., 2005). In the context of
MCI subtypes, different qEEG changes have been reported in
relation to the underlying neurodegenerative or cerebrovascular
pathology (Moretti et al., 2012; Schumacher et al., 2020) and
duration of disease symptoms (Moretti et al., 2010).

Synaptic dysfunction in patients with cognitive impairment
can be further assessed by changes in molecular markers available
from cerebrospinal fluid (CSF) that are thought to reflect
degeneration and loss of pre- or postsynaptic compartments in
the central nervous system. Recent studies support neurogranin,
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a postsynaptic neuron-specific protein, as a CSF marker of
synaptic degeneration in AD (Kvartsberg et al., 2015b; Portelius
et al., 2018). Neurogranin is mainly expressed in the cortical and
hippocampal neurons and has an important role in regulating
synaptic plasticity (Bogdanovic et al., 2002; Zhong et al., 2009;
Zhong and Gerges, 2012). Previous studies have shown that
increased neurogranin levels in the CSF correlate with poor
memory scores and aMCI presentation (Lista et al., 2016; Headley
et al., 2018) as well as progression to AD dementia in patients with
MCI (Kvartsberg et al., 2015a).

Despite the close relationship between synaptic markers and
measures of cognitive impairment, their role in characterizing
heterogeneous clinical presentation of the mild neurocognitive
disorders is yet to be fully elucidated. The main aim
of this study was to investigate whether EEG power and
synchronization and novel CSF synaptic marker neurogranin,
in addition to the conventional CSF markers of amyloid and
tau pathology, differentiate subtypes of aMCI based on the
single- vs. multidomain cognitive profile. We hypothesized
that neurophysiological and molecular markers of synaptic
dysfunction have added value to conventional AD biomarkers in
characterizing aMCI subtypes.

MATERIALS AND METHODS

Study Population
The study included 82 patients from memory clinic recruited
at Karolinska University Hospital and diagnosed with MCI
based on the clinical criteria by Winblad et al. (2004). Our
comprehensive clinical assessment included clinical interviews
with the patient and informant, blood testing, lumbar puncture,
screening for depression, and somatic and neurological
examinations. MCI of the amnestic type has been defined during
a discussion on the consensus diagnostic round and was based
on the clinical observation and summarized neuropsychological
test profile. Patients with an amnestic profile of MCI were further
clinically subtyped into a single domain (sd-aMCI; n = 52) and
multiple-domain amnestic MCI (md-aMCI: n = 30) based on
the standard neuropsychological examination including tests of
language, visuospatial ability, executive functions, and memory
(Table 1; Ekman et al., 2020). Impairment in memory and/or any
other cognitive domain was standardized by z-transformation of
test results, using age- and education-adjusted Swedish norms
and references (Arnáiz and Almkvist, 2003; Wechsler, 2003,
2010). Clinical Dementia Rating (CDR) scale was used to assess
the level of disease severity. The CDR global score was 0 or 0.5
with no major difficulties in performing independent activities
of daily living. Global cognitive performance was estimated
by means of the Mini-Mental State Examination (MMSE)
(Folstein et al., 1975).

All patients underwent lumbar puncture and CSF
conventional (i.e., Aβ42, p-tau, and t-tau) and synaptic
(i.e., neurogranin) biomarker analysis and resting-state EEG
recording at the baseline. The exclusion criteria involved patients
younger than 50 years, presence of any major psychiatric or
neurological disorder, brain trauma, psychotropic medication,

TABLE 1 | Cognitive tests used for subtyping of MCI patients into sd-aMCI and
md-aMCI groups in the current study.

Cognitive domains Neuropsychological tests

Language WAIS-IV: Similarities; BNT; Letter Fluency (F-A-S);
Semantic Fluency (animals)

Visuospatial WAIS-IV: Block Design; RCFT; Copying Geometric
Shapes; Clock Drawing/Reading Test

Executive WAIS-IV: Digit Symbol; Trail-Making Test A&B;
D-KEFS: Trail-Making Test 1–5

Attention/Working memory WAIS-IV: Digit span and Arithmetic; RCFT; WMS-III:
Logical Memory

Semantic/Episodic memory WAIS-IV: Information; RAVLT; RCFT; WMS-III:
Logical Memory

BNT, Boston Naming Test; D-KEFS, Delis-Kaplan Executive System; MCI,
mild cognitive impairment; RCFT, Rey-Osterrieth Complex Figure Test; WAIS-IV,
Wechsler Adult Intelligence Scale 4th edition; WMS-III, Wechsler Memory Scale 3rd
edition; md-aMCI, multidomain amnestic MCI; sd-aMCI, single-domain amnestic
MCI.

and the time gap between the EEG recording and lumbar
puncture longer than 6 months. Demographics and clinical
data in the whole MCI cohort as well as in sd-aMCI and md-
aMCI subgroups are presented in Table 2. We also presented
descriptive data for a selection of neuropsychological tests within
different cognitive domains to illustrate the differences between
the sd-aMCI and md-aMCI groups (Table 3). The study was
approved by the Local Ethical Committee of the Karolinska
Hospital and Regional Ethical Review Board in Stockholm (Dnr:
2020-00678, 2011/1978-31/4).

Cerebrospinal Fluid Sampling and
Analysis
All CSF samples were collected according to the standard lumbar
puncture procedure (Engelborghs et al., 2017). Conventional
markers of AD (i.e., Aβ42, t-tau, and p-tau) were analyzed using
the xMAP technology and INNO-BIA AlzBio3 kit (Innogenetics)
(Olsson et al., 2005). The clinical cutoff value for amyloid
positivity according to the CSF Aβ42 levels was < 550 ng/L.
Neurogranin concentrations in the CSF were analyzed using
the in-house-developed ELISA assay as described previously in
detail by Kvartsberg et al. (2019).

TABLE 2 | Demographics and clinical characteristics in the whole MCI cohort and
sd-aMCI and md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

Age, years 65.49
(7.42)

66.85
(7.31)

63.13
(7.12)

0.059 0.028

Sex, women (%) 52% 52% 53% 0.001 0.999

Education, years 12.58
(3.94)

12.18
(3.31)

13.27
(4.83)

0.018 0.281

MMSE 27.31
(1.94)

27.65
(1.67)

26.73
(2.24)

0.053 0.040

Data presented as mean and standard deviation except for sex, where percentage
of women is presented. p-values were obtained using t-tests (or ANCOVA when
including age as a covariate) for all the variables except for sex, where the chi-
square test was used. MMSE, Mini-Mental State Examination. sd-aMCI, single-
domain amnestic MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.
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TABLE 3 | Neuropsychological test results in z-scores for subtyping of MCI
patients into sd-aMCI and md-aMCI groups.

Cognitive domains/
Neuropsychological tests

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Language

Similarities 0.23 (0.89) −0.28 (0.79)

Visuospatial

W: Block Design 0.24 (1.05) −0.63 (0.80)

RCFT, copy −0.69 (0.97) −1.83 (2.14)

Executive

W: Digit symbol −0.52 (0.89) −1.02 (0.87)

Attention/Working memory

Digit span −0,32 (0.85) −0.94 (0.64)

Episodic memory

RAVLT, total learning −1.37 (0.84) −1.32 (0.96)

RAVLT, delayed recall −1.71 (0.86) −1.87 (0.81)

RCFT, immediate recall −0.88 (1.16) −1.24 (1.03)

Data presented as mean and standard deviation. RAVLT, Rey Auditory Verbal
Learning Test; W, Wechsler Adult Intelligence Scale (WAIS) 3rd and 4th edition.

Electroencephalography Recordings and
Analysis
All MCI patients underwent resting-state EEG recording within
6 months of lumbar puncture and CSF sampling. Resting-state
EEGs were recorded as a standard clinical procedure for 15–
20 min on the nervous system at the Department of Clinical
Neurophysiology at Karolinska University Hospital (NicoletOne
EEG Reader v5.93.0.424, Natus NicoletOne, Pleasanton, CA)
using the standard placement of 21 scalp electrodes according to
the 10/20 system. Trained biomedical engineers were noting any
changes in the vigilance states and alarming patients in the case of
drowsiness during EEG recording. The standard recording setup
was described previously in detail by Smailovic et al. (2018).

All EEGs were exported in the common average reference
montage and preprocessed following the same procedure. All
exceptional events during the resting-state eyes-closed recording,
such as periods of eyes opening, drowsiness, alarming of
the patient, movements, and other non-physiological and
physiological artifacts, were removed by visual inspection and
manual artifact rejection. Ocular artifacts were additionally
removed by using electrooculogram (EOG) and semi-automated
independent component algorithm (ICA). Preprocessed EEGs
were analyzed in frequency-transformed artifact-free 2 s EEG
epochs and averaged within subjects. The qEEG analysis involved
two complementary and comprehensive EEG measures of global
field power (GFP) and global field synchronization (GFS). GFP
reduces and summarizes data across multiple EEG channels to
a single measure of generalized EEG amplitude. Specifically, in
the context of this study, GFP corresponds to the root mean
of spectral amplitudes across all EEG channels (Huang et al.,
2000; Michel, 2009). GFS, in contrast, reflects, for a particular
frequency, the amount of the EEG activity that can be explained
by a common phase across all EEG electrodes (Koenig et al.,
2001). The computation of GFS measure has been introduced
and described in detail in Koenig et al. (2001). GFP and GFS

measures were averaged in predefined conventional frequency
bands defined within the frequencies as follows: delta (1–3.5 Hz),
theta (4–7.5 Hz), alpha (8–11.5 Hz), and beta (12–19.5 Hz). The
beta frequency range was defined between 12 and 20 Hz since
EEG frequencies above 20 Hz may be contaminated with muscle
artifacts (Goncharova et al., 2003; Whitham et al., 2007).

Statistical Analysis
We compared sd-aMCI and md-aMCI groups with t-tests when
the dependent variables were continuous and chi-square tests
when the dependent variables were categorical. We applied the
Mann-Whitney U-test for group differences when continuous
variables were not normally distributed. We also used analysis
of variance (ANCOVA) to compare sd-aMCI and md-aMCI
groups in MMSE scores while controlling for the effect of age
as a covariate. Effect sizes are reported as eta squared (η2) and
interpreted per convention: small = 0.01, medium = 0.06, and
large = 0.14. We further wanted to compare EEG measures
with CSF biomarkers and key clinical measures, such as MMSE,
in their capacity to differentiate sd-aMCI from md-aMCI. For
this analysis, we used MMSE instead of the comprehensive
neuropsychological protocol to avoid circularity, since the MCI
subtype was based on the neuropsychological protocol. Age, sex,
and education were also included to assess their role in the
model. Given the nature of our variables, the multicollinearity
between several of the variables, and the sample size, we chose
to apply a classification random forest model, which is superior
to the general linear model and other statistical methods in
such a scenario (Breiman, 2001; Machado et al., 2018). Random
forest is an ensemble method in machine learning based on
growing of multiple decision trees via bootstrap aggregation
(i.e., bagging). Each tree predicts a classification independently
and votes for the corresponding class. The best model for
each outcome variable is chosen from the majority of votes.
The combination of bootstrap aggregation (Breiman, 1996) with
random feature selection (Amit and Geman, 1997) in a random
forest is important to prevent data overfitting and increase the
prediction power. Our random forest model included 5,000 trees,
providing an accurate estimation of the importance of variables
without introducing too much noise in the model due to the
addition of redundant trees. Each of the trees was trained on
randomly selected 70% of the data and subsequently tested on the
unseen 30% of the data. A total of three variables were randomly
selected and tested at each split, where the number of variables
was defined by the square root of the total number of predictors
in the model. The maximum depth of each tree was determined
by the maximum number of nodes in each tree, ensuring at
least one observation per node (i.e., trees were not truncated
at a given depth). We conducted a random forest classification
model (Liaw and Wiener, 2002), with the MCI subtype (i.e.,
sd-aMCI vs. md-aMCI) treated as the outcome variable, and
age, sex, education, MMSE, CSF amyloid-beta 42, CSF p-tau,
CSF t-tau, CSF neurogranin, and the four GFP and four GFS
qEEG measures included as the predictors. We accounted for
the fact that the outcome variable presented with an unbalanced
number of cases in its two levels (i.e., sd-aMCI n = 52 and md-
aMCI n = 30). When the groups are not balanced in size, the
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probability of taking observations from the larger group is higher,
which could affect the performance of the model. Therefore, we
a priori fixed our model to select random samples of the two
MCI groups that were 50/50 in proportion. We reported the
classification error as a measure of goodness of the model (i.e.,
out-of-the-bag estimated error rate, OOB-EER) (Breiman, 2001).
When outcome variables are dichotomous, as it is our case, the
error by chance is 50%. Therefore, a classification error below
50% is better than chance, with values closest to 0% denoting
better classification performance, hence, good reliability of the
model. We also reported the importance of the predictors as
a measure of their contribution toward differentiating the sd-
aMCI and md-aMCI groups. Higher important values denote
a stronger contribution to the prediction. The random forest
model was further complemented with the Pearson correlation
coefficients (or point biserial correlation in the case of categorical
variables, which were coded as dummy variables), to present the
magnitude and direction of the association between variables
(i.e., bivariate association). All the analyses were performed
using the R1 version 3.2.4 software, with a p-value ≤ 0.05
deemed significant.

RESULTS

Demographics and Clinical
Characteristics
With respect to the demographical characteristics, patients in the
md-aMCI group were significantly younger (63.1 ± 7.1 years)
than patients in the sd-aMCI group (66.9 ± 7.3 years). There
were no statistically significant differences in the distribution of
sex and years of education between the two groups. However,
patients in the md-aMCI group obtained significantly lower
MMSE scores (26.7 ± 2.2) than patients in the sd-aMCI group
(27.7 ± 1.7) (p = 0.040) (Table 2). ANCOVA showed that group
differences in MMSE scores remained significant when including
age as a covariate (p = 0.040). The differences in age and MMSE
were, however, small, with effect sizes (η2) below 0.06. Results
of the neuropsychological test presented in z-scores for patients
with sd-aMCI and md-aMCI are presented in Table 3.

Conventional and Synaptic
Cerebrospinal Fluid Biomarkers
The analysis of conventional AD CSF biomarkers revealed that
patients from the sd-aMCI group had higher CSF t-tau (p = 0.009)
and p-tau levels (p = 0.031) than patients from the md-aMCI
group. Even though the sd-aMCI group exhibited lower CSF
Aβ42 levels and included a higher percentage of patients with
CSF amyloid positive than those in the md-aMCI group, the
difference was not statistically significant in the patient cohort
of this study. In contrast, neurogranin levels were significantly
increased in the CSF of patients with sd-aMCI compared with
those with md-aMCI (p = 0.044) (Table 4).

1www.R-project.org

TABLE 4 | Conventional and synaptic CSF biomarkers in the whole MCI cohort
and sd-aMCI and md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

CSF amyloid-beta
42 (ng/L)

697
(255.6)

673
(249.7)

738
(264.8)

0.015 0.273

CSF amyloid-beta
42, abnormal (%
positive)

33% 35% 30% 0.002 0.854

CSF t-tau (ng/L) 397 (212.7) 443 (231.9) 317 (145.9) 0.082 0.009

CSF p-tau (ng/L) 66 (25.3) 70 (26.5) 58 (21.4) 0.057 0.031

CSF neurogranin
(ng/L)

204 (75.1) 217 (80.3) 182 (60.2) 0.050 0.044

Data presented as mean and standard deviation except for CSF amyloid-beta
42, abnormal where percentage of a positive biomarker is presented. p-values
were obtained using t-tests for all the variables except for CSF amyloid-beta 42,
abnormal, where the chi-square test was used. The cutoff value for CSF Aβ42
positivity < 550 ng/L. CSF, cerebrospinal fluid. sd-aMCI, single-domain amnestic
MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.

TABLE 5 | qEEG measures of global field power (GFP) and synchronization (GFS)
in four conventional frequency bands in the whole MCI cohort and sd-aMCI and
md-aMCI subgroups.

Variables Whole
cohort
(N = 82)

sd-aMCI
(n = 52)

md-aMCI
(n = 30)

Effect size
(η2)

p-value

GFP delta 0.102
(0.051)

0.098
(0.048)

0.109
(0.056)

0.010 0.367

GFP theta 0.055
(0.044)

0.054
(0.044)

0.058
(0.046)

0.002 0.717

GFP alpha 0.157
(0.120)

0.164
(0.135)

0.144
(0.090)

0.007 0.468

GFP beta 0.036
(0.029)

0.039
(0.032)

0.030
(0.023)

0.025 0.180

GFS delta 0.550
(0.026)

0.545
(0.022)

0.558
(0.030)

0.059 0.029

GFS theta 0.554
(0.026)

0.549
(0.024)

0.563
(0.027)

0.063 0.023

GFS alpha 0.576
(0.036)

0.575
(0.032)

0.578
(0.043)

0.002 0.719

GFS beta 0.516
(0.022)

0.516
(0.022)

0.518
(0.022)

0.002 0.720

Data presented as mean and standard deviation. p-values were obtained using
t-tests for all the variables.
GFP, global field power; GFS, global field synchronization. sd-aMCI, single-domain
amnestic MCI; md-aMCI, multidomain amnestic MCI.
Significant p-values are written in bold text.

Quantitative Electroencephalography
Parameters in Single-Domain Amnestic
Mild Cognitive Impairment and
Multidomain Amnestic Mild Cognitive
Impairment
The qEEG analysis showed that the sd-aMCI group had a
statistically significant lower GFS delta (p = 0.029) and theta
(0.023) compared with that of the md-aMCI group. There were
no statistically significant differences in the EEG measure of
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FIGURE 1 | Classification model for differentiating sd-aMCI and md-aMCI.
The x-axis displays the importance of the variables in the differentiation
between sd-aMCI and md-aMCI, with higher values (i.e., dots to the right side)
indicating a greater importance. MDA, mean decrease accuracy; GFP, global
field power; GFS, global field synchronization; MMSE, Mini-Mental State
Examination; MCI, mild cognitive impairment; md-aMCI, multidomain
amnestic MCI; sd-aMCI, single domain amnestic MCI.

global power (i.e., GFP) between the two groups, in any of the
conventional frequency bands (Table 5).

Classification Model for Differentiating
Single-Domain Amnestic Mild Cognitive
Impairment and Multidomain Amnestic
Mild Cognitive Impairment
The multivariate model showed a good performance (out-of-the-
bag error = 35.5%). Figure 1 shows that several EEG measures
had an important contribution toward discriminating the sd-
aMCI and md-aMCI groups, including GFS theta and delta
and GFP theta and beta. This contribution was beyond the
differences in age and MMSE between the two MCI groups. Other
measures that were important to differentiate sd-aMCI from
md-aMCI were age, education, CSF p-tau, MMSE, CSF Aβ42,
and neurogranin. Regarding the direction of these measures,
lower GFS theta and delta, lower GFP theta, higher GFP
beta, lower education, older age, higher MMSE scores, higher
CSF p-tau and neurogranin, and lower CSF amyloid-beta 42
were almost always related to sd-aMCI (17.0% of classification
error), while the opposite was not always true for md-aMCI
(65.5% of classification error). Figure 2 shows the correlation
matrix between all predictors and the outcome variable in our
random forest model.

DISCUSSION

This study reports that the qEEG measure of global synchrony
(i.e., GFS) in slow frequencies, in particular in the theta band,
is the strongest discriminator between the two most common

MCI subtype
Age
Sex 
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MMSE 
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CSF p-tau
CSF neurogranin

GFP delta 
GFP theta 
GFP alpha 
GFP beta 
GFS delta
GFS theta
GFS alpha
GFS beta

M
C

Is
ub

ty
pe Ag

e
Se

x
Ed

uc
at

io
n

M
M

SE
C

SF
am

yl
oi

d-
be

ta
42

C
SF

t-t
au

C
SF

p-
ta

u
C

SF
ne

ur
og

ra
ni

n
G

FP
de

lta
G

FP
th

et
a

G
FP

al
ph

a
G

FP
be

ta
G

FS
de

lta
G

FS
th

et
a

G
FS

al
ph

a
G

FS
be

ta

Correlation coefficient 

-1.0      0        1.0 

FIGURE 2 | Correlation matrix between all predictors and outcome variable of
the random forest model. MCI subtype was coded as sd-aMCI = 0 and
md-aMCI = 1. Sex was coded as women = 0 and men = 1. GFP, global field
power; GFS, global field synchronization; MMSE, Mini-Mental State
Examination; CSF, cerebrospinal fluid.

clinical subtypes of aMCI: single-domain (sd-aMCI) and multi-
domain amnestic MCI (md-aMCI). The GFS in theta-frequency
band was significantly lower in the sd-aMCI group than that
of the md-aMCI group, followed by lower GFS in the delta
band. These differences and the capacity of qEEG measures to
discriminate between MCI groups were above and beyond group
differences in MMSE and age. Patients with single-domain aMCI
in this study, in accordance with the literature and the common
clinical experience, had more pathological changes in CSF
biomarkers of amyloid pathology and neurodegeneration (Visser
et al., 2009; Damian et al., 2013). Interestingly, a previous study by
Koenig et al. (2005) on GFS alterations on the clinical continuum
of AD showed that the decrease in the alpha-frequency band
was more pronounced than in other frequency bands, with a
gradient mode of decrease across the severity of the functional
decline. This might not be at odds with our findings in this study
since patients with early AD and dementia show a shift of alpha
power peak toward lower frequencies in the theta range (Samson-
Dollfus et al., 1997; Moretti et al., 2004). It would have been of
interest to subdivide alpha frequencies in slow and fast alpha
bands since they could have different functional significance as
suggested previously (Schomer and Lopes da Silva, 2015).

In the study by Koenig et al. (2005), 2-center large data
sets from cognitively healthy subjects and patients ranging from
subjective and MCI to the most severe stages of AD dementia
were included although not with a balanced number of cases
in different diagnostic categories. Thus, there was a noteworthy
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heterogeneity of the contrast groups phenotyped only by the
clinical assessment and not by additional consideration of disease
biomarkers. Furthermore, the inclusion of a considerable number
of healthy subjects might have introduced a bias toward alpha
frequencies, since the GFS in the alpha band was strongest in the
healthy controls thus increasing contrast toward other groups.

Another EEG study that explored changes in global EEG
synchronization in AD showed a decrease in GFS in beta-
frequency band in patients with AD with more severe disease
stages when compared with those in healthy controls (Ma et al.,
2014). However, only GFS in the slow delta band correlated
significantly with a CDR scale, a measure of clinical disease
severity, which was also found in an earlier study by Park et al.
(2008). Increased synchronization within and between frontal
and parietal areas in the delta band has been further associated
with better visual episodic memory performance (Tóth et al.,
2012), while the overall increase in the EEG delta activity was
observed during the performance of arithmetic tasks (Dimitriadis
et al., 2010). Delta synchronization has been additionally related
to the object maintenance in short-term memory in experiments
involving primates (Siegel et al., 2009). These findings highlight
the functional importance of slow-frequency synchronization for
maintaining healthy cognitive performance.

Our findings are further supported by a plausible conceptual
background. Amnestic syndrome in AD is driven by
hippocampal dysfunction (Dubois et al., 2014), and it was
shown that the source of theta activity originates in the
hippocampus and entorhinal cortex (Schomer and Lopes da
Silva, 2015). It is plausible that cortico-cortical disconnection in
the limbic system is an early event in the pathophysiology of the
amnestic syndrome. Although intraoperative recordings, as well
as magnetoencephalography (MEG) studies, have confirmed the
existence of hippocampal theta activity in human subjects (de
Araújo et al., 2002; Jacobs and Kahana, 2010), it is still speculative
to conclude that theta activity in our patient population has an
exclusive hippocampal origin without in-parallel application
of source imaging. Studies performed in rodents have shown
that theta oscillations seem to coordinate the activity of
widespread neural networks, such as prefrontal, somatosensory,
and entorhinal cortices (Chrobak and Buzsáki, 1998; Siapas
et al., 2005; Sirota et al., 2008). Thus, alterations in the scalp-
recorded theta activity are possibly a result of a more complex
neuronal network dysfunction. Additionally, both theta and delta
activities were shown to reflect EEG slowing due to cholinergic
deafferentation of the cortex that is a major neurotransmitter
failure in AD and occurs already at the MCI stage of the disease
(Spehlmann and Norcross, 1982; Whitehouse et al., 1982;
Riekkinen et al., 1990; Lee et al., 1994; Haense et al., 2012).

Interestingly, some neuropsychiatric diseases that could also
cause memory impairment in a cluster of other clinical features
have shown similar alteration in the GFS. For example, in
obsessive-compulsive disorder, a decreased GFS in delta, theta,
and the slow alpha band was reported (Özçoban et al., 2018).
Decreased GFS in theta-frequency band was also reported in first-
episode, neuroleptic-naïve patients with schizophrenia (Koenig
et al., 2001). In healthy subjects, a simple working memory
activation paradigm increases the activity in the theta band
(Gevins et al., 1997). Decreased functional synchrony in the theta

band in resting-state EEG of cognitively impaired subjects might
therefore reflect disease-induced desynchronization of neuronal
networks that are necessary for successful performance of the
working memory task. In addition, a number of other studies
showed that scalp-recorded theta power and synchronization
in humans correlated with cognitive processing involved in
encoding and retrieving verbal stimuli (Kahana, 2006).

In contrast, neither of the spectral power-related EEG
measures played any significant role in discriminating the two
amnestic subtypes of MCI. In previous publications, a temporal
pattern of changes in EEG power spectra has been repeatedly
confirmed on a continuum of AD, including MCI. The temporal
dynamics of EEG power alterations during the course of the
disease include an early increase in theta and decrease in beta
power, followed by a decrease in alpha and an increase in
delta power (Coben et al., 1985; Dierks et al., 1991; Prichep
et al., 1994). Interestingly, the recent MEG study by López et al.
(2014) showed an increase in delta and theta and a decrease
in alpha and beta power in patients with md-aMCI compared
with those with sd-aMCI; however, it involved relative power
measures on topographical clusters of sensors, thus presenting
with some key methodological differences. In addition, Moretti
et al. (2009) showed a correlation between the increase of
the relative theta/gamma power ratio and performance on
memory tests in subjects with MCI. Another study that assessed
changes in topographical resting-state EEG sources between
different MCI subtypes showed increased occipital theta and
decreased centro-parieto-occipital alpha activity in amnestic
compared with non-amnestic MCI. The same study observed
a positive correlation between central-parietal alpha and a
negative correlation between frontal delta sources and scores
on cognitive tests assessing attention, episodic memory, and
executive functions (Babiloni et al., 2010).

However, it may not be surprising that global spectral
power parameters do not play a role in discriminating the two
clinical entities with amnestic profiles and similar low grades of
functional impairment since our study did not include cognitively
healthy individuals or patients with more severe stages of AD
as contrast groups. Rather, our study included patients with
MCI at an intermediate cognitive level of impairment, with
minimal differences in global cognition (MMSE) between MCI
groups, despite showing different cognitive profiles (i.e., single-
vs. multiple-domain impairments). This is supported by the
low importance of MMSE to discriminate the two MCI groups
in our multivariate analysis. In addition, inclusion of the local
relative EEG power measures instead of the global parameters
that summarize the amplitude/power across all EEG channels
may be more sensitive to the fine EEG power changes between
MCI subtypes as indicated by some of the previous studies
(Moretti et al., 2009; López et al., 2014). Thus, in contrast to GFS
that seems to be a trait marker of AD-related early functional
disconnection of neuronal networks, differential alterations in
global EEG power frequency spectra seem to be a state marker
of disease progression.

It is interesting that a novel CSF molecular marker of synaptic
pathology, i.e., neurogranin, did not considerately contribute
to discriminating the two MCI groups in our multivariate
model. This implies that changes in neurophysiological
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markers of synaptic dysfunction in sd-aMCI, a group that
represents prodromal AD, may precede changes in markers of
molecular synaptic pathology. Another explanation could be that
neurogranin is associated with conditions with memory-related
deficits irrespective of AD pathology as was suggested in a study
that found that this synaptic marker is also sensitive to age-
related cognitive performance on memory tests in neurologically
healthy older adults (Casaletto et al., 2017). However, this was
contradicted by studies suggesting that the CSF neurogranin is
specific to AD-type synaptic dysfunction (Wellington et al., 2016;
Portelius et al., 2018).

It is interesting that the biological profile of clinically defined
sd-aMCI in this study is closer to the biological profile of AD in
contrast to the empirically data-driven classification of sd-aMCI
recently published by Edmonds et al. (2021). This discrepancy
emphasizes a need for validation of different diagnostic criteria
in diverse clinical populations. It is of utmost importance to
characterize this prodromal AD stage as early and as accurately
as possible to convey the risk and likelihood of developing AD
dementia to patients (Frederiksen et al., 2021).

A limitation of our multivariate model is the small groups
size, especially for the patients with md-aMCI (n = 30) when the
cohort is split in 70% for training and 30% for testing of model
performance. However, the multivariate model in this study
was designed as an extension of the univariate tests for group
differences, to investigate EEG measures and CSF biomarkers
in the context of age, sex, education, and MMSE measures.
Both set of analyses converged in the findings, validating the
results from the multivariate model despite the small group
size for the test set. Another limitation is that the non-memory
cognitive domains affected in the md-aMCI group may vary from
patient to patient. Hence, our current results could be expanded
in future studies with a larger md-aMCI group, by analyzing
associations of different non-memory cognitive domains with
qEEG and CSF biomarkers. Importantly, the inclusion of the
control group in such comparisons may extend the panel of
relevant qEEG and CSF biomarkers for contrasting different
cognitive subtypes and considerably add to the interpretation
of the results when it comes to the expected direction of
change from the cognitively healthy state. Furthermore, the
analysis of GFS measure over full EEG frequency spectra
instead of averaging across standard frequency bands, or a
local topographical parcellation of synchronization patterns,
may provide more detailed and physiologically meaningful
results in this patient group. Addition of the analysis in
the gamma-frequency range while addressing high-frequency
artifact contamination would be of further interest since
gamma oscillations have been associated with different cognitive
processes and were shown to be impaired in AD (Herrmann and
Demiralp, 2005; van Deursen et al., 2008; Zheng et al., 2016;
Etter et al., 2019).

In conclusion, our study suggests that measures of global
EEG synchronization could contribute to the characterization of
synaptic dysfunction in different MCI cognitive subtypes. Future
studies are required to address and further explore some of the
limitations of this study by including other clinical and etiological
subtypes of MCI as well as cognitively healthy subjects.
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