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Previous studies have indicated that physical activity may be beneficial in reducing

the risk for Alzheimer’s disease (AD), although the underlying mechanisms are not

fully understood. The goal of this study was to evaluate the relationship between

habitual physical activity levels and brain amyloid deposition and AD-related blood

biomarkers (i.e., measured using a novel high-performance mass spectrometry-based

assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143

cognitively normal older adults, all of whom had brain amyloid deposition assessed using

positron emission tomography and had their physical activity levels measured using the

International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation

between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association

between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711.

Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40,

Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42

and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in

previous studies, differed between APOE ε4 carriers and non-carriers. Taken together,

these data indicate a complex relationship between physical activity and brain amyloid

deposition and potential blood-based AD biomarkers in cognitively normal older adults.

In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring

further clarification.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
in older adults, and the number of affected individuals is
set to escalate in the coming decades. Currently, there is
no cure for AD, and available pharmaceutical therapies are
focused on relieving the severity of associated symptoms.
Extracellular plaques primarily comprising beta-amyloid (Aβ)
deposits are one of the major hallmark pathologies of AD.
The deposition of Aβ in the brain has been demonstrated to
occur many years before the onset of clinical symptoms and
contributes to neuronal death and loss of cognitive abilities
(Villemagne et al., 2013). Thus, this research is focused on
understanding and identifying interventions that can slow
amyloid deposition and improve cognition in cognitively normal
(CN) older adults who are currently at-risk for AD (based
on high brain amyloid deposition) and in individuals with an
AD diagnosis.

High levels of physical activity (PA) have been reported as
one lifestyle factor that may protect against the development
of AD pathology and, in addition, can slow brain atrophy and
the associated progressive cognitive decline (Schultz et al., 2015;
Delli Pizzi et al., 2020; Dougherty et al., 2021). Substantial
evidence exists from animal studies to support the role of
exercise in reducing brain Aβ levels, likely through multiple
mechanisms. These mechanisms affect the Aβ production, by
shifting the processing of amyloid precursor protein (APP)
toward the non-amyloidogenic pathway via increases in a
disintegrin and metalloproteinase (ADAM10) and reductions in
beta-site APP cleaving enzyme (BACE). In addition, exercise in
animal models has also demonstrated increased Aβ catabolism by
upregulating Aβ-degrading enzymes such as insulin-degrading
enzyme and neprilysin, among others (Moore et al., 2016;
Koo et al., 2017; Khodadadi et al., 2018; Brown et al., 2019;
Zhang X. et al., 2019; Zhang X. L. et al., 2019). Building
on this animal work, several reports from human studies
have linked higher levels of PA with lower brain amyloid
deposition, measured under positron emission tomography
(PET) using amyloid-binding ligands (Liang et al., 2010;
Brown et al., 2012, 2013; Okonkwo et al., 2014; Rabin
et al., 2019). As expected, CSF-related biomarkers were also
affected by PA in cognitively healthy adults (Law et al.,

2018).
Based on the current literature, there appears to be individual

variability in the relationship between PA and AD-related

pathologies, with carriage of the apolipoprotein E (APOE) ε4
alleles, the greatest known genetic risk factor for sporadic (i.e.,
non-familial) AD. PA has been associated with lower brain
amyloid (Head et al., 2012; Brown et al., 2013) and Tau burdens
(Brown et al., 2018) and preserved cognitive functions (Jensen
et al., 2019) to a greater extent in APOE ε4 carriers, compared
with non-carriers in both healthy controls and patients with
AD. However, studies that have reported higher PA levels to
be associated with reduced dementia risk years later and have
provided inconsistent results regarding whether ε4 carriers or
non-carriers receive the greatest benefit (Podewils et al., 2005;
Rovio et al., 2005).

In addition to amyloid burden measured via neuroimaging,
PA is associated with AD-related blood biomarkers such as
plasma Aβ measured by enzyme-linked immunosorbent assays
(ELISA) (Baker et al., 2010; Brown et al., 2013; Stillman et al.,
2017). More recently, a high-performance immunoprecipitation-
mass spectrometry (IP-MS) assay quantifying plasmaAβ peptides
was validated in two independent cohorts (Nakamura et al.,
2018). This assay was able to differentiate between individuals
with high brain amyloid deposition from those with low brain
amyloid deposition. The high specificity and sensitivity are key
features of this assay and may highlight differences in Aβ levels
that could go undetected when using less sensitive assays. As a
consequence, this more sensitive Aβ assessment could be used
to more specifically evaluate the efficacy of medical/physical
therapies with regard to blood-based biomarkers. As different
techniques of Aβ measurement may yield different observations,
the goal of this study was to assess the relationship between
brain Aβ deposition, AD-related blood biomarkers (assessed
with a high-performance mass spectrometry assay), and habitual
PA levels. We also wanted to evaluate whether the association
between PA and AD-related biomarkers was more marked in
APOE ε4 allele carriers.

MATERIALS AND METHODS

The AIBL Cohort and Procedures
The Australian Imaging, Biomarkers and Lifestyle (AIBL)
study of aging was approved by the Human Research Ethics
Committees of St. Vincent’s Health, Hollywood Private Hospital,
and Austin Health and Edith Cowan University (Australia).
All methods were performed in accordance with the relevant
guidelines and regulations. AIBL is a longitudinal study
comprising older adults (age range of 64–88 years) who are
CN, have mild cognitive impairment (MCI) or AD, and are
evaluated every 18 months. A more detailed description of the
recruitment process has been previously described (Ellis et al.,
2009). In the AIBL cohort, more than 2,350 individuals have
been enrolled to date, and all participants gave written and
informed consent before participation. Participants attended the
study site in the morning, after an overnight fast. Several physical
parameters, such as weight, blood pressure, and pulse rate,
were recorded, after which a fasting blood sample was collected
for subsequent processing and analysis (Ellis et al., 2009).
Cognitive and lifestyle evaluations were then performed, and
diagnostic classifications (i.e., CN, MCI, or AD) were performed
in accordance with the National Institute of Neurological and
Communicative Diseases and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) criteria by an
expert clinical panel (Folstein et al., 1975; Mckhann et al., 1984;
Saxton et al., 2000; Winblad et al., 2004). For this study, a total of
143 CN participants (Mini-Mental State Examination [MMSE]≥
25) (Pangman et al., 2000) who were previously assessed for
brain amyloidosis, PA, and blood biomarkers, assessed with the
novel high-performance IP-MS assay, employed by Nakamura
and colleagues (Nakamura et al., 2018), were included. We
acknowledged that, however, the absence of brain Tau levels
(either by imaging or biofluid) is a limitation of this study.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 March 2022 | Volume 14 | Article 771214

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Pedrini et al. Physical Activity and Alzheimer’s Disease

Blood Collection and APOE Genotype
Plasma was isolated from whole blood collected in
ethylenediaminetetraacetic acid (EDTA) tubes by centrifugation,
aliquoted, and stored at −80◦C. The APOE ε4 status was
determined by genotyping cells from whole blood as previously
described (Gupta et al., 2011).

Measurement of Aβ Species
Plasma Aβ levels were measured using IP-MS to quantify
Aβ-related peptides of different mass using matrix-associated
laser desorption/ionization time of flight (MALDI-TOF)
mass spectrometry after isolation and enrichment by
immunoprecipitation from plasma. Briefly, 250 µl of plasma was
mixed with an equal volume of Tris buffer [10 pM stable-isotope-
labeled (SIL) Aβ1−38 peptide, 0.2% w/v n-dodecyl-β-D-maltoside
(DDM), and 0.2% w/v n-nonyl-β-D-thiomaltoside (NTM)].
Normalization of the signal for all Aβ-related peptides was
performed using the SIL-Aβ1−38 peptide as internal standard,
while DDM and NTM were used for reducing nonspecific
binding. Antibody beads were prepared by coupling monoclonal
antibody 6E10 (BioLegend) directly to Dynabeads M-270
Epoxy and then used to immunoprecipitate plasma Aβ-related
peptides and the internal standard by incubating them with
plasma samples for 1 h. Elution of the peptides was performed
using glycine buffer (pH 2.8) containing 0.1% w/v DDM.
Upon the adjustment of the pH to 7.4 with Tris buffer, the
immunoprecipitation was repeated, and the peptides were eluted
with 5mMHCl in 70% acetonitrile and applied on four wells of a
900µm µFocus MALDI plateTM (Hudson Surface Technology)
prespotted with α-cyano-4-hydroxycinnamic acid (CHCA) and
methanediphosphonic acid (MDPNA). MALDI-linear TOF
mass spectrometer (AXIMA Performance, Shimadzu/KRATOS)
equipped with a 337 nm nitrogen laser in the positive ion
mode was used to acquire mass spectra. The levels of plasma
Aβ-related peptides were normalized with SIL-Aβ1−38 and used
as plasma Aβ-related peptide levels. The reproducibility of the
assay was verified using human EDTA plasma. The intra- and
interday assay coefficients of variance (CVs) obtained for Aβ1−40

were 4.2–4.7% (n = 5) and 3.2–6.8% (n = 3), respectively; for
Aβ1−42, the CVs were 6.8–7.8% and 1.6–7.7%, respectively,
and for APP669−711, the CVs were 2.9–8.2% and 4.7–10.7%,
respectively, supporting the reliability of the measurements. A
more detailed description of the mass spectrometry methods is
reported elsewhere (Nakamura et al., 2018).

Imaging Data
All participants within the current study underwent a PET scan
with either Pittsburgh compound B (11C-PiB), flutemetamol
(18F-FLUTE), or florbetapir (18F-FBP) to measure brain amyloid
load (Pike et al., 2007). The PET methodology for each tracer
has been described elsewhere (Rowe et al., 2010; Vandenberghe
et al., 2010; Wong et al., 2010). For the semiquantitative analysis,
a standardized uptake value (SUV) was obtained from cortical
and subcortical brain regions and then related to the SUV of
the recommended reference region of each tracer to generate a
tissue ratio termed the SUV ratio (SUVR). For PiB, the SUVs
were normalized to the cerebellar cortex; for flutemetamol,

the SUVs were normalized to the whole cerebellum, and for
florbetapir, the SUVs were normalized to the pons (Clark et al.,
2011; Lundqvist et al., 2013). For the combination of data
from different PET tracers, the Before the Centiloid Kernel
Transformation (BeCKeT) values were used, which represent a
linear transformed standardization of FLUTE and FBP SUVR
onto “PiB-like” SUVR (Villemagne et al., 2014). The cutoff value
used to define brain amyloidosis was 1.4, such that participants
considered amyloid negative (Aβ-) had a BeCKeT SUVR score <

1.4 and those considered amyloid positive (Aβ+) had a BeCKeT
SUVR score ≥ 1.4.

Measurement of Physical Activity
Levels of PA were measured using the International Physical
Activity Questionnaire (IPAQ) (Craig et al., 2003). The IPAQ
is a subjective questionnaire that relies on participants to recall
their PA from the previous 7 days. It is composed of 4 sections,
namely, work activity, transportation activity, housework, and
leisure-time activity. A metabolic equivalent score (MET) was
associated with each question, and the total of the MET score was
then assessed by multiplying the MET scores by the number of
minutes per week spent participating in that activity to produce
a 7-day activity score (i.e., METs min/week). We excluded
questionnaires in which reported PA levels were two SDs above
or below the mean, as well as incomplete questionnaires. The
IPAQ has been validated in several studies indicating that the
questionnaire is suitable for the measurement of PA (Craig
et al., 2003; Hagstromer et al., 2006). Based on the standard
IPAQ scoring instructions, participants within this study were
divided into individuals with low-to-moderate level physical
activity (LMPA; combined due to small number in low group)
or high physical activity (HPA), using the same parameters
described elsewhere (Brown et al., 2018). Our analysis used self-
reported levels of PA, and although we acknowledged self-report
can be erroneous, the IPAQ is a validated tool, and within
the AIBL study cohort, we have reported associations between
self-reported IPAQ data and measures of objective PA using
actigraphy (Brown et al., 2012).

Statistical Analysis
Descriptive statistics including means and SDs or proportions
were calculated for LMPA and HPA groups, with comparisons
employing independent sample t-tests or χ

2 tests as appropriate.
Linear models were employed to compare continuous variables
(i.e., Aβ1−40, Aβ1−42, APP669−711, Aβ1−40/Aβ1−42 ratio, and
APP669−711/Aβ1−42 ratio) between categories, corrected for
covariates age and sex. Response variables were log transformed
as necessary to better approximate normality and variance
homogeneity. The composite z-score was also calculated and
used in linear model analyses (z-score: average of Aβ1−40/Aβ1−42

ratio and APP669−711/Aβ1−42 ratio individual z-scores [(z-score
Aβ1−40/Aβ1−42 ratio + z-score APP669−711/Aβ1−42 ratio)/2]).
Analyses were also run stratifying the cohort based on APOE
ε4 carriage (ε4–/ε4+) and brain amyloid status (Aβ-/Aβ+).
Associations between continuous variables were assessed using
linear regression and partial correlation, with corrections for sex,
age, and APOE ε4 allele carriage status. A p-value < 0.05 was

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2022 | Volume 14 | Article 771214

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Pedrini et al. Physical Activity and Alzheimer’s Disease

TABLE 1 | Demographic information of study participants based on self-reported

physical activity groups.

Total sample

(n = 143)

LMPA

(n = 65)

HPA (n = 78) p

Age (years,

mean ± SD)

74.0 ± 5.5 73.9 ± 5.5 74.0 ± 5.5 0.912

Sex (n M/F) 77/66 32/33 45/33 0.312

Brain Aβ status

(n Aβ –/+)

81/62 36/29 45/33 0.782

APOE ε4 allele

carriers (n –/+)

91/52 41/24 50/28 0.899

PiB/FLUTE/FBP

(n)

60/39/44 26/19/20 34/20/24 0.871

Demographic data of study participants were stratified by physical activity levels. Low-to-

moderate physical activity (LMPA) and high physical activity (HPA) levels were assessed

using the International Physical Activity Questionnaire (IPAQ). Brain amyloid deposition

was measured using positron emission tomography. Values are expressed as mean ±

SD or as the number of cases overall. A univariate analysis or χ
2 analysis was used to

assess differences between the LMPA and HPA groups.

regarded as significant. Analyses were carried out using the SPSS
version 25 software (Chicago, IL, USA).

RESULTS

Demographic details of the study participants are summarized
in Table 1. No significant differences in age, sex, brain amyloid
deposition, APOE ε4 carriage, and tracer used were found
between participants with LMPA and HPA levels.

We evaluated the differences in plasma AD-biomarker levels
(i.e., Aβ1−42, Aβ1−40, and APP669−711) between the PA groups in
all participants and after stratifying by APOE ε4 carriage status or
brain amyloid status (Table 2). Lower plasma Aβ1−42 levels were
observed in the HPA group compared with those in the LMPA
group, in all participants (p = 0.017 and p = 0.024, unadjusted
and adjusted, respectively). After stratifying by APOE ε4 status
or brain amyloid status, this difference was evident only in non-
ε4 carriers (p = 0.003 and p = 0.004, unadjusted and adjusted,
respectively) and in the Aβ- group (p = 0.014 and p = 0.012,
unadjusted and adjusted, respectively). A total of 60 individuals
(out of 81) who are brain Aβ- were also APOE non-ε4 carriers
(out of a total of 91). This may explain why brain Aβ- and APOE
non-ε4 carrier groups appear to have similar results.

Similarly, lower plasma Aβ1−40 levels were observed in the
HPA group compared with the LMPA group, in all participants
(p= 0.043, unadjusted and a trend toward statistical significance
upon adjustment, p = 0.057). Further, after stratifying by APOE
ε4 status or brain amyloid status, this difference was evident only
in the non-ε4 carriers (p = 0.020 and p = 0.019, unadjusted
and adjusted, respectively) and in the Aβ- group (p = 0.043
and p = 0.031, unadjusted and adjusted, respectively) (Table 2).
Plasma APP669−711 was observed to be lower in the HPA group
compared with that in the LMPA group, in all participants (p
= 0.006 and p = 0.007, unadjusted and adjusted, respectively).
After stratifying by APOE ε4 status or brain amyloid status, this
difference was significant only in the non-ε4 carriers (p < 0.001

TABLE 2 | Comparison of plasma biomarkers between low-to-moderate physical

activity (LMPA) and high physical activity (HPA) groups.

LMPA HPA p(F) pa(Fa)

Aβ1−42

(a) All 0.344 ± 0.087 0.312 ± 0.060 0.017 (5.844) 0.024 (5.189)

(b) ε4– 0.364 ± 0.090 0.316 ± 0.058 0.003 (9.002) 0.004 (8.602)

ε4+ 0.311 ± 0.073 0.305 ± 0.064 0.772 (0.085) 0.986 (0.000)

(c) Aβ- 0.367 ± 0.091 0.324 ± 0.056 0.014 (6.283) 0.012 (6.576)

Aβ+ 0.315 ± 0.074 0.295 ± 0.061 0.267 (1.257) 0.422 (0.655)

Aβ1−40

(a) All 8.731 ± 2.165 8.054 ± 1.686 0.043 (4.184) 0.057 (3.698)

(b) ε4– 8.948 ± 2.362 7.944 ± 1.537 0.020 (5.655) 0.019 (5.745)

ε4+ 8.362 ± 1.766 8.251 ± 1.937 0.770 (0.086) 0.760 (0.094)

(c) Aβ- 8.849 ± 2.375 7.902 ± 1.631 0.043 (4.220) 0.031 (4.817)

Aβ+ 8.586 ± 1.904 8.262 ± 1.761 0.483 (0.499) 0.867 (0.043)

APP669−711

(a) All 0.296 ± 0.061 0.270 ± 0.054 0.006 (7.669) 0.007 (7.520)

(b) ε4– 0.305 ± 0.064 0.259 ± 0.049 <0.001 (15.512) < 0.001 (14.810)

ε4+ 0.282 ± 0.054 0.289 ± 0.060 0.628 (0.237) 0.543 (0.375)

(c) Aβ- 0.294 ± 0.064 0.261 ± 0.050 0.012 (6.612) 0.012 (6.580)

Aβ+ 0.299 ± 0.059 0.282 ± 0.059 0.227 (1.487) 0.260 (1.294)

Plasma Aβ1−42, Aβ1−40, and APP669−711 levels were compared between low-to-

moderate physical activity (LMPA) and high physical activity (HPA) groups in all (a)

participants, (b) participants stratified by apolipoprotein E (APOE) ε4 genotype status

(ε4–/ε4+), and (c) brain amyloid status (Aβ-/Aβ+), using general linear models. Physical

activity was measured by the International Physical Activity Questionnaire (IPAQ), and

brain amyloid deposition was measured using positron emission tomography. Plasma

Aβ1−42, Aβ1−40, and APP669−711 data were natural log transformed to better approximate

normality and variance homogeneity. pa(Fa ) represents p-values adjusted for age and sex.

P < 0.05 (italic) was considered significant. Data are presented in mean ± SD.

for both unadjusted and adjusted) and in the Aβ- group (p =

0.012 for both unadjusted and adjusted) (Table 2).
We have also assessed the effect of PA with regard to brain

amyloidosis, and we did not find any significant effect of
PA before any stratification. The same results were observed
after stratification for APOE ε4 status or brain Aβ status
(Supplementary Table 1).

In Table 3, the ratios of plasma APP669−711/Aβ1−42 and
Aβ1−40/Aβ1−42 were also assessed with regard to PA and APOE
ε4 status or brain Aβ status, and no differences between the PA
groups were observed in the whole cohort, nor after stratifying
by APOE ε4 status or brain Aβ status. We also assessed the
composite z score for plasma ratios of APP669−711/Aβ1−42

and Aβ1−40/Aβ1−42, and we did not observe any significant
differences related to different intensities of PA. Stratifying
by APOE ε4 status or brain amyloid status, like in our
previous analyses, did not result in significant composite z-score
differences in any of the subgroups (Table 3).

However, levels of plasma Aβ1−42 were significantly lower (p
= 0.013 and p = 0.031, unadjusted and adjusted, respectively),
and the ratios APP669−711/Aβ1−42 and Aβ1−40/Aβ1−42

were significantly higher (APP669−711/Aβ1−42: p < 0.001
for both unadjusted and adjusted; Aβ1−40/Aβ1−42: p =

0.001 and p < 0.001, unadjusted and adjusted, respectively)
in APOE ε4 carriers compared with the ε4 non-carriers
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TABLE 3 | Comparison of plasma biomarkers ratios between low-to-moderate

physical activity (LMPA) and high physical activity (HPA) groups.

LMPA HPA p(F) pa(Fa)

APP669−711/

Aβ1−42

(a) All 0.880 ± 0.148 0.874 ± 0.140 0.801 (0.064) 0.653 (0.203)

(b) ε4– 0.855 ± 0.140 0.826 ± 0.124 0.303 (1.073) 0.311 (1.039)

ε4+ 0.924 ± 0.154 0.960 ± 0.127 0.355 (0.870) 0.556 (0.351)

(c) Aβ- 0.814 ± 0.130 0.809 ± 0.108 0.848 (0.037) 0.840 (0.041)

Aβ+ 0.963 ± 0.128 0.963 ± 0.130 0.984 (0.000) 0.694 (0.157)

Aβ1−40/Aβ1−42

(a) All 25.76 ± 4.16 25.97 ± 3.47 0.736 (0.114) 0.709 (0.140)

(b) ε4– 24.89 ± 4.07 25.28 ± 3.25 0.611 (0.261) 0.645 (0.124)

ε4+ 27.24 ± 3.97 27.21 ± 3.58 0.977 (0.001) 0.659 (0.197)

(c) Aβ- 24.31 ± 3.90 24.43 ± 3.12 0.881 (0.022) 0.963 (0.002)

Aβ+ 27.55 ± 3.81 28.08 ± 2.77 0.533 (0.394) 0.303 (1.079)

Composite

z-score

(a) All −0.004 ± 0.882 0.003 ± 0.816 0.960 (0.003) 0.966 (0.002)

(b) ε4– −0.208 ± 0.844 −0.256 ± 0.741 0.771 (0.085) 0.751 (0.101)

ε4+ 0.344 ± 0.852 0.466 ± 0.744 0.582 (0.307) 0.534 (0.392)

(c) Aβ- −0.427 ± 0.695 −0.429 ± 0.625 0.988 (<0.001) 0.927 (0.009)

Aβ+ 0.522 ± 0.810 0.593 ± 0.665 0.703 (0.147) 0.720 (0.130)

APP669−711/Aβ1−42, and Aβ1−40/Aβ1−42 ratios and the composite z-score of the

same ratios were compared between low-to-moderate physical activity (LMPA) and

high physical activity (HPA) groups in all (a) participants, (b) participants stratified by

apolipoprotein E (APOE) ε4 genotype status (ε4–/ε4+), and (c) brain amyloid status (Aβ-

/Aβ+), using general linear models. Physical activity was measured by the International

Physical Activity Questionnaire (IPAQ), and brain amyloid deposition was measured using

positron emission tomography. pa(Fa ) represents p-values adjusted for age and sex. P <

0.05 (italic) was considered significant. Data are presented in mean ± SD.

(Table 4). Similarly, the levels of Aβ1−42 were significantly
lower (p = 0.001 for both unadjusted and adjusted), and
the ratios APP669−711/Aβ1−42 and Aβ1−40/Aβ1−42 were
significantly higher (APP669−711/Aβ1−42: p< 0.001 for both
unadjusted and adjusted; Aβ1−40/Aβ1−42: p< 0.001 for both
unadjusted and adjusted) in the Aβ+ group compared with
the Aβ- group (Table 4). More detailed analysis indicated
that in most cases, the differences in Aβ1−42 levels and
APP669−711/Aβ1−42 and Aβ1−40/Aβ1−42 ratios are affected by
APOE genotype and are irrespective of the intensity of the PA
(Supplementary Table 2).

The linear regression analysis indicated that the levels of
plasma Aβ1−42 were significantly and negatively associated
with brain amyloid deposition in the whole cohort and both
PA groups (p < 0.001, p = 0.010 and p < 0.001 for the
whole cohort, LMPA and HPA, respectively) (Table 5). These
results were confirmed in partial correlation analyses upon
correction for age, sex, and APOE ε4 status, (p = 0.001, p =

0.027, and p = 0.001 for the whole cohort, LMPA, and HPA,
respectively) (Table 5). Conversely, no statistically significant
associations were observed between brain amyloid and Aβ1−40

or APP669−711, regardless of whether the analysis was performed
with or without adjustment for age, sex, and APOE ε4 status
(Table 5).

TABLE 4 | Comparison of the effect of APOE ε4 status and brain Aβ status on

plasma Aβ1−42 levels and blood biomarker ratios.

APOE ε4 status

Aβ1−42 ε4– ε4+ p(F)# pa(Fa)#

All 0.337 ±

0.077

0.308 ±

0.068

0.013

(6.297)

0.031

(4.746)

APP669−711/Aβ1−42 ε4– ε4+ p(F) pa(Fa)

All 0.839 ±

0.131

0.943 ±

0.139

< 0.001

(19.936)

< 0.001

(15.129)

Aβ1−40/Aβ1−42 ε4– ε4+ p(F) pa(Fa)

All 25.10 ±

3.62

27.22 ±

3.72

0.001

(11.077)

< 0.001

(14.582)

Brain Aβ status

Aβ1−42 Aβ- Aβ+ p(F)# pa(Fa)#

All 0.343 ±

0.077

0.305 ±

0.068

0.001

(11.733)

0.001

(11.876)

APP669−711/Aβ1−42 Aβ- Aβ+ p(F) pa(Fa)

All 0.811 ±

0.117

0.963 ±

0.128

< 0.001

(54.898)

< 0.001

(54.199)

Aβ1−40/Aβ1−42 Aβ- Aβ+ p(F) pa(Fa)

All 24.38 ±

3.47

27.83 ±

3.28

< 0.001

(36.509)

< 0.001

(36.304)

Plasma Aβ1−42 and the ratios APP669−711/Aβ1−42 and Aβ1−40/Aβ1−42 were compared

with regards to APOE ε4 genotype status (ε4–/ε4+), and brain amyloid status (Aβ-/+)

using general linear models. Brain amyloid deposition was measured using positron

emission tomography. Plasma Aβ1−42 data were natural log transformed to better

approximate normality and variance homogeneity (#). pa(Fa ) represents p-values adjusted

for age and sex. P < 0.05 (italic) was considered significant. Data are presented in mean

± SD.

DISCUSSION

In this report, we assessed the association between PA and blood
biomarkers (plasma Aβ1−40, Aβ1−42, APP669−711 levels) in CN
older adults. Additionally, we examined how the carriage of
the APOE ε4 allele (i.e., an important risk factor for sporadic
AD) (Corder et al., 1993) affects the relationship between PA
and AD biomarkers. We observed that (a) individuals reporting
higher levels of PA had lower plasma AD biomarkers in APOE
ε4 noncarriers and brain Aβ deposition groups and (b) plasma
biomarker ratios are associated with APOE ε4 carrier status and
with brain Aβ deposition status.

To date, the linkage between PA, risk of dementia, and
APOE ε4 status are not clear. PA has shown to be inversely
associated with brain amyloid deposition and to a greater
extent in APOE ε4 carriers (Head et al., 2012; Brown et al.,
2013); however, contradictory results have been reported when
examining dementia risk as an outcome measure (Podewils et al.,
2005; Rovio et al., 2005). Our results indicate that high PA has
a trend-level association with lower brain amyloid levels only
in individuals with high brain amyloidosis. Additionally, high
PA is associated, albeit nonsignificantly, with lower SUVR in
noncarriers of the APOE ε4 allele, while it was not a factor in
APOE ε4 carriers. These data are in partial contradiction with
previously published findings, also using AIBL study data (Brown
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TABLE 5 | Correlation of brain amyloid load with blood biomarkers levels in the all-study participants and after stratification by PA levels.

All participants LMPA HPA

Brain Aβ deposition (Ln Aβ) β p β p β p

Plasma Aβ1−42 (Ln Aβ1−42) Unadjusted −0.335 < 0.001 −0.318 0.010 −0.408 < 0.001

Adjusted* −0.290 0.001 −0.280 0.027 −0.389 0.001

Plasma Aβ1−40 (Ln Aβ1−40) Unadjusted −0.016 0.850 −0.069 0.584 0.020 0.864

Adjusted* −0.007 0.935 −0.092 0.478 0.028 0.812

Plasma APP669−711 (Ln APP669−711) Unadjusted 0.071 0.402 0.035 0.783 0.081 0.480

Adjusted* 0.055 0.519 0.095 0.464 0.000 0.999

Linear regression was performed between brain Aβ deposition and plasma Aβ1−42, Aβ1−40, and APP669−711 in all participants and after stratification based on physical activity levels.

Data were natural log transformed to better approximate normality and variance homogeneity. Physical activity was measured by the International Physical Activity Questionnaire (IPAQ),

and participants were stratified based on low-to-moderate-level physical activity (LMPA) and high physical activity (HPA). P< 0.05 (italic) was considered significant. Adjusted* represents

analyses adjusted for age, sex, and APOE ε4-carrier status.

et al., 2013), in which the effect of PA on brain amyloid deposition
was restricted to APOE ε4 carriers. Such discrepancies may come
from the fact that these analyses were performed on different
numbers of healthy controls, which may affect the final results.
The main reason for using a different cohort was our interest
in evaluating the effect of PA on AD biomarkers when these
were assessed using a more specific assay. Such biomarkers were
assessed using a high-performance mass spectrometry analysis
(Nakamura et al., 2018), which has the advantage of having
a higher specificity and sensitivity compared with commercial
ELISAs, which have been widely used for the analysis of Aβ1−40

and Aβ1−42. Utilizing this more sensitive and more specific
assay for the measurement of Aβ1−42, Aβ1−40, and APP669−711,
Nakamura et al. were able to identify individuals (i.e., CN, MCI,
and AD) with aberrant brain amyloidosis. However, this study
could only be performed using healthy controls from the AIBL
cohort who had AD biomarkers assessed by this new technique,
and while our results may suggest a novel approach, one of the
limitations of this study is the size of the cohort used.

The analysis of our biomarkers indicated that higher PA was
significantly associated with lower levels of Aβ1−40, Aβ1−42,
and APP669−711 in CN ε4 non-carriers, while no relationship
was observed in those carrying at least one APOE ε4 allele.
It must be noted, however, that while Aβ1−42 levels were
significantly higher in ε4 carriers, APOE ε4 status had no
effect on Aβ1−40 and APP669−711 levels. These data are in
accordance with other reports that show associations of higher
PA with lower levels of plasma Aβ in humans and mouse
models of AD (Baker et al., 2010; Stillman et al., 2017;
Khodadadi et al., 2018), although our original report did not
observe a similar association between plasma Aβ and PA
(Brown et al., 2013). Our original report, however, indicated
an effect of HPA on the Aβ1−42/Aβ1−40 ratio in APOE ε4
noncarriers (Brown et al., 2013). While the size of the cohort
may still be a limiting factor, the more sensitive Aβ assays
may also play a role in justifying these discrepancies. Increased
specificity and sensitivity may detect forms of Aβ that could
go undetected in regular ELISA kits, and this could lead
to assessing Aβ levels more accurately. This, in turn, would
allow for more reliable analyses involving Aβ levels that
could lead to a more appropriate assessment of biomarkers,

as seen with the findings of Nakamura et al., where plasma
Aβ and a related fragment reflected brain amyloidosis with
high accuracy.

Additionally, an inverse correlation between brain amyloid
deposition and Aβ plasma levels observed in AD participants
within the AIBL cohort suggested that patients with AD with
higher brain amyloid deposition had lower plasma Aβ1−42

levels (Lui et al., 2010). These results indicate that in AD,
Aβ1−42 is sequestered in the brain in the form of amyloid
plaques resulting in lower plasma Aβ1−42 levels. As data
from this study indicated that increased PA was associated
with lower levels of brain amyloid and plasma levels of
Aβ1−40, Aβ1−42, and APP669−711, we then evaluated if such
inverse correlation was retained. As shown, we have reported
that there is a significant inverse correlation between brain
amyloid and plasma Aβ1−42, which was not affected by the
level PA. One possible mechanism could be that the main
effect of PA was associated with lower brain amyloid and
plasma Aβ1−40, Aβ1−42, and APP669−711 levels (in non-ε4
carriers only) and is more likely a consequence of a shift
toward a non-amyloidogenic pathway, while it has no effect
on the transport of Aβ through the blood-brain barrier into
the circulation.

The ratio Aβ1−40/Aβ1−42 (or its inverse) and the ratio
APP669−711/Aβ1−42 have also been indicated in previous reports
as specific predictors of brain amyloidosis (Ovod et al., 2017;
Nakamura et al., 2018; Chatterjee et al., 2019; Schindler et al.,
2019) or AD (Lui et al., 2010). Our study, as all others, reported
that these plasma biomarker ratios can significantly differentiate
CN healthy controls with high brain amyloidosis vs. CN healthy
controls with low brain amyloidosis; however, PA does not
significantly alter these ratios. Similar results were obtained when
stratified for APOE ε4 carrier status, where these ratios were
significantly different in APOE ε4 carriers vs. noncarriers (due
to the underlying APOE ε4 effect on plasma Aβ1−42), but these
results were not affected by PA. A schematic representation of
how PA can affect plaque formation and Aβ1−42 transport across
blood-brain barrier (BBB) is illustrated in Figure 1.

To summarize, our data indicated that (a) PA was associated

with lower levels of AD-related plasma biomarkers in healthy

control APOE ε4 noncarriers and Aβ-individuals, (b) plasma
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FIGURE 1 | Schematic representation of how physical activity (PA) may reduce Aβ generation with consequently reduced transport of Aβ1−42 across the blood-brain

barrier (BBB) into circulation. In apolipoprotein E (APOE) ε4– (A), increased intensity of PA is followed by a reduced generation of Aβ1−42 with consequently reduced

plaque formation in the brain and reduced transport of Aβ1−42 in the bloodstream. In APOE ε4+ (B), the lower levels of Aβ1−42 in the bloodstream are a consequence

of increased Aβ1−42 retention in the brain with greater plaque formation. The intensity of PA does not appear to affect Aβ1−42 plasma levels.

levels of Aβ1−42, but not Aβ1−40 or APP669−711, inversely
correlated with brain amyloidosis, and (c) PA was associated
with lower brain amyloidosis in healthy controls at risk of
AD, although the analysis approaches statistical significance.

Although we have indicated that our study has some limitations,
we have reported that PA influences AD biomarker levels, likely
affecting the process underlying the amyloidogenic pathway.
Further studies are, therefore, necessary to confirm the validity of
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our findings in a larger cohort and to determine the involvement
of different levels of PA with regards to plasma AD biomarkers.
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