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Age-related cerebrovascular defects contribute to vascular cognitive impairment and
dementia (VCID) as well as other forms of dementia. There has been great interest in
developing biomarkers and other tools for studying cerebrovascular disease using more
easily accessible tissues outside the brain such as the retina. Decreased circulating
insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the
development of cerebrovascular impairment, a hypothesis that has been supported by
the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal
phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina
mimics common age-related vascular changes in the brain such as the development
of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1
deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-
1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular
damage and retinal stress such as patterns of vascular constriction and Muller cell
activation. These signs of retinal stress are not accompanied by retinal degeneration
or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is
complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the
retina, not all brain pathologies are evident in the retina.

Keywords: insulin-like growth factor 1, retina, intracerebral hemorrhage, retinal vasculature, microhemorrhage,
aging, cerebrovascular aging, vascular cognitive impairment
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INTRODUCTION

Aging elicits multifaceted functional and structural impairment
in the cerebral microcirculation, which has a critical role in
the pathogenesis of vascular cognitive impairment and dementia
(VCID) (Hajdu et al., 1990; Mayhan et al., 1990; Zlokovic,
2011; Jessen et al., 2015; Cooper et al., 2016; Daulatzai, 2016;
Ighodaro et al, 2016). Within the spectrum of age-related
microvascular pathologies [including microvascular rarefaction
(Tarantini et al., 2016; Toth et al., 2017; Norling et al., 2020;
Nyul-Toth et al.,, 2021), disruption of the blood-brain barrier
(BBB) (Verheggen et al., 2020; Nyul-Toth et al., 2021), impaired
regulation of cerebral blood flow (CBF) (Tarantini et al., 2017b,
2021), amyloid pathologies], recent studies highlighted the
pathogenic role of cerebral microhemorrhages (CMHs) in the
genesis of VCID (Poels et al., 2011, 2012; Ungvari et al., 2017).
CMHs are small (<5 mm) bleeds that develop due to the
rupture of cerebral arterioles and capillaries. Aging significantly
increases microvascular fragility (in part due to microvascular
degeneration), which exacerbates the genesis of CMHs, and CMH
burden predicts cognitive decline in older adults (Kato et al.,
2002; Vernooij et al., 2008; Ungvari et al., 2017).

Despite its pathophysiological importance, the human
cerebral microcirculation is not readily accessible for imaging
and functional assessment. The desire to identify novel, accessible
biomarkers and tools for interrogating the cerebromicrovascular
changes that contribute to VCID has led to much work utilizing
the retinal vasculature as a proxy for the brain vasculature (Lipecz
et al,, 2019; McGrory et al., 2019; Czako et al., 2020). Cerebral
and retinal vasculature share developmental and anatomical
origins. The retina is considered part of the central nervous
system, developing from the diencephalon, and exhibits similar
anatomical features and physiological properties, including
microvascular architecture, energy requirements, regulation of
blood flow, and vascular barrier function (London et al., 2013;
Tata et al., 2015; Lipecz et al., 2019). There is increasing evidence
that age-related pathophysiological processes that affect the
central nervous system and the cerebral microcirculation have a
direct profound impact on the retina and retinal microcirculation
as well (Stanton et al., 1995; Liew et al., 2008; Che Azemin et al.,
2013; Csipo et al.,, 2019; Lipecz et al., 2019). Yet it is not clear
whether the retina exhibits all of the tissue level pathologies
that are associated with cerebrovascular aging. Importantly, the
association between increases in microvascular fragility in the
brain and the retina has not yet been investigated.

The mechanisms by which aging exacerbates functional and
structural impairment in the cerebral microcirculation and
promotes the genesis of CMHs include an age-related decline in
circulating insulin-like growth factor 1 (IGF-1) (Sonntag et al.,
2013; Toth et al., 2014, 2015a; Ashpole et al.,, 2017; Tarantini
et al., 2017c, 2021; Fulop et al., 2018). IGF-1 is a vasoprotective
growth factor largely produced by the liver, whose circulating
levels significantly decrease with increasing age (Ungvari and
Csiszar, 2012; Sonntag et al, 2013; Tarantini et al., 2017c).
Animal models of circulating IGF-1 deficiency serve as models of
accelerated aging, mimicking many age-related cerebrovascular
pathologies. These include impaired myogenic autoregulation,

impaired neurovascular coupling, microvascular rarefaction,
decreased cerebral blood flow, and consequential impairment of
higher brain functions (Bailey-Downs et al., 2012; Sonntag et al.,
2013; Toth et al, 2014, 2015a; Fulop et al., 2018). Decreased
circulating IGF-1 levels in rodent models are also associated
with increased BBB permeability, pathological microvascular
remodeling, increased microvascular fragility, and increased
susceptibility to the hypertension-induced development of
CMHs (Bake et al., 2014, 2016; Tarantini et al., 2017¢). Yet, there
are no studies extant investigating the role of circulating IGF-1
deficiency in microvascular pathologies in the retina.

The present study was designed to test the hypothesis
that adult-onset circulating IGF-1 deficiency promotes the
development of a pro-fragility microvascular phenotype both in
the brain and the retina. To test our hypothesis, we used an
established murine model of isolated endocrine IGF-1 deficiency:
knockdown of IGF-1 specifically in the liver using Cre-lox
technology (Igflf/f + TBG-Cre-AAV8) (Tarantini et al., 2017c).
To test microvascular fragility, we induced chronic hypertension
in IGF-1 deficient mice and respective controls [by treatment
with angiotensin II (Ang II) and L-NAME, a NO synthase
inhibitor (Liu et al., 1998; Ho et al., 2008; Bailey-Downs et al.,
2012; Toth et al., 2013, 2015a; Tarantini et al., 2017¢)] and
assessed occurrence of microhemorrhages in both the brain and
retina. We also assessed the effects of circulating IGF-1 deficiency
on the structural integrity of the retina and the retinal vessels.

MATERIALS AND METHODS

Experimental Animals

All animal work was reviewed and approved by the local
Institutional Animal Care and Use Committee (IACUGC;
University of Oklahoma Health Sciences Center, Oklahoma City,
OK, United States). Mice on the C57BL/6 background that were
homozygous for an Igfl floxed allele (Igff/f) were purchased
from Jackson Laboratories (line 016831). These mice have exon 4
of the IgfI gene flanked by loxP sites, allowing for the excision of
this entire exon via Cre recombinase. Transcripts of the altered
Igfl gene yield a protein that fails to bind the IGF-1 receptor.
IGF-1 deficiency was induced in IgfI//f mice by adeno-associated
virus (AAV8)-mediated expression of Cre recombinase in the
liver at 4 months of age, as previously reported (Bailey-Downs
et al., 2012; Toth et al., 2014). The AAVS8 vector was acquired
from the University of Pennsylvania Viral Vector Core (Penn
Vector Core, Philadelphia, PA, United States'). The thyroxine-
binding globulin (TBG) promoter was used to restrict the
expression of the AAV8 vector to hepatocytes. At 4 months of
age, Igft/// mice were randomly assigned to two groups and
were administered approximately 1.3 x 101 viral particles of
AAV8-TBG-Cre or AAV8-TBG-eGFP via retro-orbital injection,
as described (Tarantini et al., 2017c). The majority of circulating
IGF-1 is produced in the liver. Since IGF-1 is critical for
the development of many organ systems during adolescence,
including the cardiovascular system, this model was used to

Thttp://www.med.upenn.edu/gtp/vectorcore
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specifically study the effects of adult-onset circulating IGF-1
deficiency (Toth et al., 2014). Animals were used for experiments
at either approximately 1 year of age (12-14 months) or 2 years
of age (24-27 months). Both male and female mice were
used, however studies were not powered to evaluate the role
of sex as a biological variable. Animals were housed in the
Rodent Barrier Facility at OUHSC under specific pathogen-
free barrier conditions, on a 12-h light/12-h dark cycle, with
access to standard rodent chow (Purina Mills, Richmond, IN,
United States) and water ad libitum. In-cage light levels during
the light cycle were ~30 lux.

Induction of Hypertension

To assess microvascular fragility, hypertension was induced
in study animals at 12-14 months of age. AAV8-TBG-Cre
and AAVS8-TBG-eGFP mice were randomly assigned to either
the “hypertensive” (HT) or “normotensive” (NT) groups.
Hypertension was induced by a combination treatment with
w-nitro-p -arginine-methyl ether [L-NAME (N5751, Millipore
Sigma, St. Louis, MO, United States), 100 mg kg~! day~!, in
drinking water] and administration of angiotensin II [Ang II;
s.c. via osmotic mini-pumps (Alzet Model 2006, 0.15 WL h~1,
42 days; Durect Co, Cupertino, CA, United States)]. Pumps
were filled with either saline or a solution of angiotensin II
(Sigma Chemical Co., St. Louis, MO, United States) that delivered
1 pg min~! kg™! of angiotensin II for up to 28 days. Mini-
pumps were surgically placed in isoflurane anesthetized mice
in the subcutaneous space on the back of the animal. This was
accomplished by making a small incision in the intrascapular
region, blunt dissection of the subcutaneous space, and closure
of the incision with surgical sutures using aseptic techniques.
Animals were given an s.c. injection of sustained release
Buprenorphine (ZooPharm, Fort Collins, CO, United States)
to manage post-operative pain. Animal blood pressure was
measured via the tail-cuff method using the CODA Non-Invasive
Blood Pressure System (Kent Scientific Co., Torrington, CT,
United States) as described (Toth et al., 2015b). Mice were placed
in a restrainer on an animal warmer for the duration of the
measurement to encourage tail vein dilation for accurate blood
pressure measurements.

Standardized Neurological Examination
Mice underwent daily neurological examination to predict the
presence of clinically manifest hemorrhages. The scoring system
evaluates spontaneous activity, symmetry in limb movement,
forelimb outstretching, climbing ability, body proprioception,
and response to vibrissae touch. Scores were summed on an
18-point scale as a measure of neurological function. A decline
in this neurological score correlates with cerebral hemorrhage
development (Toth et al., 2015b). Mice were euthanized at a
neurological score of 15 or lower, or when they reached day
28 post-hypertension surgery, whichever came first. Mice were
euthanized via transcardial perfusion with ice-cold 1x phosphate
buffered saline (1x PBS, 137 mM NacCl, 2.7 mM KCI 10 mM
NayHPOy, 1.8 mM KH,POy, pH 7.4, pH 7.2) for 10 min under
ketamine/xylazine (84/14 mg kg™ !) anesthesia.

Fundoscopy and Fluorescein

Angiography

To assess vascular damage in the retina, fundus imaging and
fluorescein angiography were performed using the Micron
III system (Phoenix Research Laboratories, Pleasanton, CA,
United States) as described (Koirala et al., 2013; Chakraborty
et al., 2020). Mice were anesthetized with ketamine/xylazine
(84, 7 mg kg™ 1)) and eyes were dilated with 1% cyclopentolate
eye drops (Family Medicine Pharmacy, University of Oklahoma
Health Sciences Center, Oklahoma City, OK, United States). One
drop of 2.5% Gonak (McKesson Medical Surgical, Richmond,
VA, United States) was applied to each eye. Bright field images
were collected, and then animals were injected intraperitoneally
with 100 nL of 1% (w/v) fluorescein sodium (Sigma-Aldrich, St.
Louis, MO, United States) for angiography. Angiogram images
were captured using a GFP filter. All fundus images were captured
using StreamPix software (Phoenix Research Labs, Bend, OR,
United States). We observed repeated patterns of constriction in
some retinal vessels, to semiquantitatively assess this phenotype,
the number of affected vessels in each image was counted by an
observer blinded to age and genotype.

Electroretinography

Electroretinography (ERG) measures the electrical responses of
various cell types in the retina, including the photoreceptors,
inner retinal cells (bipolar and amacrine cells), and the ganglion
cells, which are sensitive to hypoxia and structural damage to the
neural retina. To assess functional consequences of accelerated
microvascular aging associated with IGF-1 deficiency, full-field
ERG measurements were performed in the experimental mice
as described by Chakraborty et al. (2020). Following dark
adaptation, mice were anesthetized with ketamine/xylazine and
eyes were dilated using 1% cyclopentolate eye drops. ERGs were
recorded with the Diagnosys Espion E3 ERG system (Diagnosys
LLC, Lowell, MA, United States). Scotopic ERGs were recorded
with a strobe flash stimulus of 157 cd-s m~2 presented to the
dark-adapted mouse followed by light-adaptation for 5 min
at 29.03 cd m~2. Photopic responses were recorded from 25
averaged flashes at 77 cd-s m~2 for white light. Flicker ERGs were
recorded for 30 s in response to a 10 Hz flicker stimulus.

Neurovascular Coupling

Neurovascular coupling responses were tested in a subset of
2 year-old and young control mice (~3-6 months of age)
according to our previously reported protocol (Tarantini et al.,
2017a, 2018; Yabluchanskiy et al., 2020). Mice were anesthetized
with isoflurane (4% for induction and 1-2% for maintenance
during the surgery and measurements). A femoral artery
cannula was placed in each animal to monitor and maintain
blood pressure in the physiological range during the procedure
(between 90 and 110 mmHg). Mice were then endotracheally
intubated and ventilated (MousVent G500; Kent Scientific
Co., Torrington, CT, United States). Rectal temperature was
maintained at 37°C using a thermostatic heating pad (Kent
Scientific Co., Torrington, CT, United States). Mice were placed
in a stereotaxic frame (Leica Microsystems, Buffalo Grove, IL,
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United States) and a thinned-skull cranial window was prepared.
To prepare the thinned-skull window, the scalp and periosteum
were resected and the skull was thinned with a sterile scalpel
blade. Nitrocellulose lacquer was then applied to the surface of
the skull to allow for appropriate optics and light spreading.
A laser speckle imager (Perimed, Jarfilla, Sweden) was positioned
10 cm above the window. The change in CBF in response to
whisker stimulation was measured by stimulating the whiskers on
one side of the mouse for 30 s intervals and measuring the change
in CBF of the contralateral whisker barrel cortex. The change in
CBF is expressed as the percent increase from the baseline.

Enzyme-Linked Immunosorbent Assay

Blood was collected via puncture of the submandibular vein
with a sterile lancet or 25G needle. The whole blood sample
was allowed to coagulate for 20 min at room temperature
and was then centrifuged at 2,500 x g for 20 min at 4°C.
Serum was collected and stored at -80°C until use. IGF-
1 concentration in the serum samples was measured by
enzyme-linked immunosorbent assay (ELISA) (R&D Systems,
Minneapolis, MN, United States) as previously reported (Toth
etal, 2014). An IGF-1 control sample was included on each plate.
Serum IGF-1 levels were reported in ng mL™!.

Immunofluorescence

Whole eyes were collected from transcardially perfused mice and
fixed in EM grade 4% paraformaldehyde (PFA) for 4 h at 4°C.
Eyes were paraffin-embedded and sectioned at 6 pm thickness
onto glass slides. After deparaffinization, slides underwent
antigen retrieval in a solution of 10 mM citrate buffer (pH 6.0)
for 20 min in a vegetable steamer and were then allowed to
cool for 20 min at room temperature. Slides were then pre-
treated with 1% sodium borohydride for 90 s, followed by three
water washes and three 1x PBS washes. Blocking was performed
in a blocking solution containing 5% BSA, 1% fish gelatin, 2%
donkey serum, and 0.5% Triton in 1x PBS for 1 h at room
temperature, followed by incubation in antibody overnight at

4°C in a humidity chamber (antibodies are listed in Table 1).
The slides were then washed four times in 1x PBS for 10 min,
incubated in secondary antibodies at a concentration of 1:500
for 1-2 h at room temperature, washed four additional times
in 1x PBS, and then mounted with Prolong Diamond with
4’6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific,
Waltham, MA, United States) and coverslipped. An Olympus
BX62 microscope with a 20x air, 40x air, or 100x oil objective
(Olympus Life Science, Waltham, MA, United States) was used
for fluorescent imaging. To semiquantitatively assess the presence
of GFAP labeling of gliosis, each image was scored by an observer
blinded to age and genotype. Scores were assigned as follows:
0: no gliosis (GFAP labeling in endfeet only), 1: mild gliosis
(very little sign of GFAP penetrating into other retinal layers),
2: moderate/intermittent gliosis, 3: elevated gliosis, 4: very high
levels of gliosis.

Histological Analysis of Bleeds

Brains and eyes were collected from transcardially perfused
mice (described above) and fixed in 4% paraformaldehyde
for 48 or 4 h, respectively, at 4°C. Brains and eyes were
stored in PBS at 4°C until they were embedded in paraffin.
Serial coronal brain sections were cut at 8 pwm thickness,
yielding approximately 1,000 sections per brain. Every twelfth
slide from each brain was stained with 3,3-diaminobenzidine
(DAB) (Vector Laboratories/Maravai LifeSciences, San Diego,
CA, United States) to reveal hemorrhages, and counterstained
with Gill's No. 1 hematoxylin (Millipore Sigma, St. Louis,
MO, United States) to show brain structure. DAB reacts with
endogenous peroxidases in red blood cells generating a dark
brown product that allows for easy and precise detection of
extravasated blood in the brain parenchyma. All stained sections
were imaged at 10x (for brains) or 20x (for retinas) using the
VS120-L100-W Virtual Slide Microscope (Olympus Life Science,
Waltham, MA, United States). Images were then analyzed by
an observer blinded to genotype, group, and age. Image] 1.52p
(NIH, Bethesda, MD, United States) software was used to

TABLE 1 | Antibodies.

Antigen Species Use Source References
4-HNE Rbt-PC IF Alpha Diagnostics, cat# HNE11-S Liou and Storz, 2015
Endomucin Rat-MC IF Millipore Sigma, cat# MAB2624, clone V.5C7 RRID:AB_10807039
GFAP Ms-MC IF Millipore Sigma, cat# G3893-100UL Wang et al., 2006
a-SMA Ms-MC IF Millipore Sigma, cat# 113200 clone 1A4, RRID:AB_477010 Jackson-Weaver et al., 2020
Desmin Ms-MC IF ThermoFisher, Cat# MS-376-S1 RRID:AB_61166 Boscolo Sesillo et al., 2019
Igf1R Rbt-MC IF Abcam, cat# ab182408 Liuetal., 2018
Cone Arrestin (Arrd)  Rbt-PC IF Cheryl Craft, University of Southern California LUMIj-mCAR, RRID:AB_2314753  Brown et al., 2010; Chakraborty et al., 2010
Calbindin Ckn-PC IF Synaptic Systems, Inc. Cat#214 006, RRID:AB_2619903 Rojek et al., 2019
Sv2 Ms-MC IF Developmental Studies Hybridoma Bank, Pang et al., 2018
Rhodopsin Ms-MC IF Clone 1D4 generously shared by Muayyad Al-Ubaidi at the University of Kakakhel et al., 2020
Houston. Can be purchased from Santa Cruz Biotechnology, cat# sc-57432,
RRID:AB_785511
VGLUTA GP-PC IF Millipore Sigma, AB5905, AB_2301751
M-opsin Rbt-PC IF Novus Biologicals Cat# 110-74730 (opsini),

Rbt-PC, rabbit polyclonal; Rat-MC, rat monoclonal; Ms-MC, mouse monoclonal; Ckn-PC, chicken polyclonal; GP-PC, guinea pig polyclonal.
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quantify and measure the size of hemorrhages. Images were color
deconvolved and thresholded uniformly; then, the pixel intensity
integrated density was measured on the selected bleed area using
a protocol and Image] macro described in (Nyual-Téth et al,
2020). Identified hemorrhages were then mapped to specific brain
regions by comparing images to the Allen Mouse Brain Atlas.?
A similar workflow was followed for identifying microbleeds in
eyes. Eyes were serially sectioned at 6 wm thickness, yielding
approximately 200 sections per eye. Every sixth section was
stained with hematoxylin and DAB. A brain section adjacent to
one with a bleed was included in each batch of retinal staining to
serve as a positive control for the DAB. However, no microbleeds
were identified in the eye sections so bleeds could not be counted,
measured, or mapped to regions of the eye.

Morphometry

Central retinal sections (through the optic nerve) were stained
with hematoxylin and eosin (H&E), and then imaged at 20x
on a VS120-L100-W Virtual Slide Microscope. Spidergrams
were generated by measuring outer nuclear layer (ONL), outer
plexiform layer (OPL), and inner nuclear layer (INL) thickness
at defined distances from the optic nerve head. Values were
captured from three sections per eye, by an observer blinded to
age and genotype and at least three eyes per genotype/age/group
were measured. Thickness measurements were made using
Adobe Photoshop CS6.

Statistical Analysis

Statistical analyses were performed using Graphpad Prism
version 9.2.0. Differences between groups were analyzed by
two-tailed unpaired t-tests (to compare two groups), one-way
ANOVA with Tukey’s post hoc comparison (to compare more
than two groups), or two-way ANOVA with Tukey’s post hoc
comparison (in cases where there were two different variables).
Differences between survival curves were assessed by Log-rank
(Mantel-Cox) test. When data were not normally distributed, the
Mann-Whitney test was used.

RESULTS

Insulin-Like Growth Factor 1 Deficiency
Exacerbates the Development of
Hypertension-Induced Cerebral

Microhemorrhages

To study the effects of IGF-1 deficiency on the development of
vascular pathologies in the central nervous system, we used a
mouse line in which exon 4 of the IGF-1 gene is floxed (Igflf/f).
We knocked down circulating IGF-1 levels in young adult mice
(4 months of age) by injection of an AAV carrying a liver-specific
promoter driving Cre recombinase expression [TBG-Cre-AAVS,
here referred to as IGF-1 KD (“knockdown”)]. Control animals
(also Igflf /fY received AAVS8-TBG-eGFP at 4 months of age
(here referred to as control). The liver is the primary source

Zhttps://mouse.brain-map.org/static/atlas

of paracrine IGF-1 (Ungvari and Csiszar, 2012; Blum et al.,
2018), and knocking down IGF-1 production in hepatocytes
causes a significant decrease in serum levels of IGF-1. Using
ELISAs on serum harvested at 1 year of age, we confirmed
that this AAV-mediated approach results in almost complete
elimination of circulating IGF-1 levels in our knockdown animals
(Figure 1A). We elicited CMHs at 1 year of age by inducing
hypertension using a well-established paradigm (Toth et al,
2015b; Tarantini et al., 2017c) wherein Ang II is delivered
via osmotic mini-pump and L-NAME is delivered in drinking
water (Figure 1B). Normotensive control mice did not receive
Ang II or L-NAME. To track the onset of neurological signs
of CMHs, mice underwent daily neurological scoring which
involved assessment of six different criteria on an 18-point
scale. As expected, hypertensive IGF-1 KD mice experienced
an earlier onset of neurological signs of CMHs (defined as a
drop in neurological score from 18 to 17 or below) compared
to control animals (Figures 1C,D). No normotensive animals
(either IGF-1 KD or control) exhibited a change in neurological
score. Tissues were collected when mice exhibited a neurological
score of 15 or lower (or at 28 days after insertion of the mini-
pumps). Consistent with their earlier onset of neurological signs
of CMHs, hypertensive IGF-1 KD mice were removed from the
study and euthanized at a significantly earlier time than control
mice due to severe neurological decline (Figure 1E). CMHs
were identified histologically by DAB staining (reddish brown
color, Figure 1G) which reacts with endogenous peroxidases in
red blood cells. We calculated the mean number of bleeds per
brain section and found that hypertensive IGF-1 KD exhibited
significantly more bleeds per section than hypertensive control
animals (Figures 1E,G).

To further characterize CMHs, we measured the area of all
identified bleeds. The cumulative size distribution of all detected
bleeds is plotted in Figure 2B. IGF-1 deficient hypertensive mice
had a greater number of bleeds of all sizes than hypertensive
control mice but the overall size of bleeds in IGF-1 KD was
significantly smaller than in controls (Figures 2A,B). Each
identified bleed was mapped to its brain region using the online
Allen Mouse Brain Atlas (last accessed 10/01/2021).> Each bleed
was given a broad identifying region (shown in Figure 2C)
as well as a specific brain region. In the hypertensive IGF-1
knockdown animals, the largest fraction of CMHs occurred in
the cortex (42%), although CMHs were detected throughout the
brain (examples shown in Figures 2D-J, black arrows indicate
especially small or hard to see bleeds). In control animals the
largest fraction of CMHs occurred in the brainstem and white
matter (33 and 25%, respectively), though very few bleeds were
detected in control brains overall. Some of the CMHs that
occurred can be traced back to an adjacent arteriole or capillary
in the brain (Figures 2D-J, red arrowheads indicate vessels).
These findings demonstrate that hypertensive IGF-1 knockdown
animals have an earlier onset and increased number of CMHs in
the brain compared to hypertensive control animals, confirming
that IGF-1 deficiency exacerbates microvascular fragility in the
mouse brain, mimicking the aging phenotype.

3https://mouse.brain-map.org/
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FIGURE 1 | Insulin-like growth factor 1 (IGF-1) deficiency exacerbates the development of hypertension-induced CMH at 1 year of age. (A-G) /gf1"/" mice were
treated with TBG-Cre-AAV8 (IGF-1 KD) or TBG-GFP-AAVS8 (control) at 4 months of age. At 1 year of age, hypertension was induced with Ang Il and L-NAME. (A) At
1 year of age, serum ELISAs showed decreased circulating IGF-1 in IGF-1 KD mice (****P < 0.0001, by two-way ANOVA with Tukey’s multiple comparisons
correction). (B) Systolic blood pressures were significantly increased in mice receiving Ang Il + L-NAME treatment versus untreated mice, regardless of genotype
(****P < 0.0001, by two-way ANOVA with Tukey’s multiple comparisons correction). (C,D) Hypertensive IGF-1 deficient (IGF-1 KD) mice exhibit neurological signs of
CMH earlier than control hypertensive animals. Survival curves plot the day on which neurological score dropped below 18, day O is the day the Ang Il delivery
started [**P < 0.01, by Log-rank (Mantel-Cox) test (C) and *P < 0.05, by unpaired t-test, (D)]. (E) Hypertensive IGF-1 KD mice were removed from the study and
sacrificed when neurological score dropped to 15 or lower [**P < 0.01, by Log-rank (Mantel-Cox) test]. (F,G) Bleeds were visualized by staining with DAB,
reddish-brown. (F) Bleeds were counted in every twelfth section throughout of serially sectioned brains. The number of bleeds per section was averaged across all
counted slides for a given mouse. Plotted is mean number of bleeds per section, each symbol reflects one mouse (N = 3 mice per group). Shown are mean + SD
(*P < 0.05, by unpaired t-test). (G) shows representative example bleeds. Scale bar, 100 wm, original magnification 10x.

Animals With Cerebral Bleeds Do Not
Exhibit Signs of Retinal Bleeds

To assess whether mice in which CMHs developed in the
brain also exhibited bleeds in the retina, we serially sectioned
eyes collected from the same I1-year-old IGF-1 knockdown
and control hypertensive and normotensive animals used
for the experiments presented in Figures 1, 2. Every 6th
retinal section was stained with DAB to detect extravasated
red blood cells (RBCs) and counterstained with hematoxylin.
Our focus in these studies was identifying bleeds originating
from the retinal vasculature. While the choroidal vasculature
also supplies nutrients and oxygen to the retina, choroidal
vessels are anatomically different from retinal and brain vessels
(for example, choriocapillaris vessels are fenestrated and do
not participate in the blood-retina barrier). In addition, the
pigmented nature of the mouse choroid masks any DAB staining.
The DAB stained retinal sections were scored by multiple blinded
observers for the presence of any sign of bleed in the retina.
However, no evidence of bleeds was detected in any retinal
section examined in any region of the retina from any of the
groups (example images are shown in Figures 3A,B). To confirm
that this was not a staining artifact, brain sections adjacent to
those in which cerebral bleeds had previously been detected
were included in each retinal staining experiment as positive

controls (Figure 3C). To verify that the retina carries receptors
for IGF-1, we performed immunofluorescence labeling for IGF-
1 receptor (red, Figures 3D,E). IGF-1 receptor is localized
throughout the retina, and is particularly enriched in the retinal
pigment epithelium (RPE) layer, in the two synaptic layers
(inner and outer plexiform layers), and in blood vessels (white
arrows). The labeling pattern for IGF-1 receptor is similar
in IGF-1 KD and control retinas and in hypertensive and
normotensive retinas (Figure 3D). IGF-1 receptor labeling in the
brain with pronounced vascular labeling (white arrows) is shown
in Figure 3E. These findings suggest that the retina is not as
susceptible as the brain to the development of CMHs.

Circulating Insulin-Like Growth Factor 1
Deficiency Does Not Lead to Retinal

Degeneration

As part of our general evaluation of the effects of circulating
IGF-1 KD in the retina, we also undertook morphometric
measurements to assess retinal degeneration (representative
images shown in Figures 4A,B). One-year-old IGF-1
knockdown mice (regardless of whether they were hypertensive
or normotensive) did not exhibit thinning of the ONL
(photoreceptors, Figure 4C), INL (retinal interneurons,
Figure 4E), or OPL (the layer where photoreceptor terminals

Frontiers in Aging Neuroscience | www.frontiersin.org 6

March 2022 | Volume 14 | Article 788296


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Miller et al.

IGF-1 Deficiency in the Retina

D Cerebellu
: g B

atter
SR e

IGF-1 KD + Ang Il

> Il 8.3% Cerebellum

A Relative Distribution of Bleed Area B All Bleeds
%k Kk
1000000
52 1001
3 o 100000+
5 =
E o 10000
g e
& 507 <
P - 1000
2 ]
= ' 2
s ; — IGF-1KD & 1004
4 e --- Control
0 T T T T N 10—
101 102 10® 104 105  10¢ &
2 N &
Area, pm \C’Q ®
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form synapses with bipolar and horizontal cells, Figure 4D)
compared to age-matched controls and young (3 month
old) controls.

We next undertook a series of experiments designed to
evaluate whether circulating IGF-1 deficiency had any general
effects on the retina in aged mice (~2 years of age). Similar
to the case at 1 year of age, we observed no signs of retinal
degeneration in IGF-1 KD or age-matched controls compared
to young control mice (young control group replotted from
Figure 4 for ease of comparison) (Figures 5A-D). Incipient
photoreceptor degeneration is often preceded by mislocalization
of photoreceptor outer segment proteins such as rod and cone

opsins, however, we observed no signs of this in 1 or 2-year-old
IGF-1 KD animals (or age-matched controls, Supplementary
Figure 1). Because retinal function does not correlate directly
with retinal degeneration, and it has been well established that
there is significant age-related loss of retinal function without
significant structural degeneration (Li et al., 2001; Gresh et al,,
2003; Samuel et al., 2011; Ferdous et al., 2021), we also conducted
scotopic and photopic electroretinography on 2-year-old animals
to assess rod and cone function. As expected, 2-year old
mice (both IGF-1 knockdown and control) exhibited significant
reductions in both dark adapted (rods, Figure 5F) and light-
adapted (cones, Figures 5G,H) responses compared to young
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(3-month-old) controls. These findings are consistent with prior
studies in C57BL/6 showing significant age-related loss in rod and
cone function with little or no photoreceptor degeneration (Li
et al,, 2001; Gresh et al., 2003; Samuel et al., 2011; Ferdous et al,,
2021). IGF-1 KD mice were partially protected from age-related
decreases in rod and cone function compared to control mice
(Figures 5F-H), exhibiting scotopic a- and b- wave amplitudes
and photopic b-wave amplitudes that were slightly higher than
those in age-matched controls.

These data were in contrast to findings in the brain, wherein
circulating IGF-1 deficiency led to signs of neuronal dysfunction
such as gait defects and cognitive decline as a result of impaired
neurovascular coupling when assessed at 1 year of age (Toth
et al.,, 2014; Tarantini et al., 2017¢c). Thus, we asked whether
neurovascular coupling in the brain was also impaired in IGF-
1 KD animals at 2 years of age. Measurements of CBF changes
in the somatosensory cortex in response to whisker stimulation
were performed on aged 2-year-old IGF-1 KD animals, age-
matched controls, and young (3-6 month) controls. Both groups
of 2-year-old mice exhibited significantly reduced neurovascular
coupling compared to young mice (Figure 5E). IGF-1 KD mice

had mean values slightly less than age-matched controls, however
the difference did not achieve statistical significance. These data
are consistent with the view that genetic IGF-1 deficiency at
younger ages promotes accelerated cerebromicrovascular aging,
which mimics the effects of age-related decline in circulating
IGF-1 manifested at later ages in wild type mice.

Global IGF-1 knockout retinas exhibit loss of synapses
in the OPL. To evaluate whether there are retinal synaptic
defects in mice with adult-onset circulating IGF-1 deficiency,
we labeled retinas from IGF-1 KD and control animals for
VGLUT1 (photoreceptor and bipolar cell terminals) and SV2 (all
presynaptic terminals, Figure 6A, magenta). Aged (2-year-old)
IGF-1 KD and WT control animals exhibited a thinner layer of
photoreceptor terminals in the OPL compared to young control
mice, a phenotype that was more pronounced in the peripheral
retina than in the central retina (Figure 6A). The OPL contains
a mix of rod spherules and cone pedicles, but the terminals we
observed in the 2-year-old animals exhibited morphological signs
of cone pedicles. To verify this, we co-labeled retinal sections with
the cone marker cone arrestin (CARR, yellow, Figure 6B) and
SV2 (magenta, Figure 6B). In young control mice, cone terminals
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(white terminals are co-labeled with SV2/VGLUTI1, and white
arrows) and rod terminals (magenta label only, arrowheads
highlight examples) are present, but the majority of terminals
in aged retinas are co-labeled for CARR and SV2 indicating
they originate from cones. To help evaluate whether second-
order neurons were present at these synapses, we co-labeled
retinal sections for SV2 (magenta, Figure 6C) and the horizontal
cell marker calbindin (yellow, Figure 6C). Examination of high
magnification images showed that horizontal cell process were
properly present in 2 year old IGF-1 KD and control mice
(Figure 6C bottom, arrows). We performed similar analyses
on 1-year-old IGF-1 KD and control animals (Supplementary

Figure 2) but found no abnormalities. Combined, these data
suggest that circulating IGF-1 deficiency does not exacerbate
age-related defects in retinal structure or function.

Circulating Insulin-Like Growth Factor 1
Deficiency Leads to Signs of Vascular
Abnormalities and Gliosis in the Retina

To further analyze retinal phenotypes associated with circulating
IGF-1 deficiency, we performed in vivo fluorescein angiography
on both IGF-1 KD and control mice (all normotensive)
at 1 and 2 years of age. On fluorescein angiograms, we
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frequently observed patterns of repeated vascular constriction,
referred to as “sausage on a string” phenotype (Jacobsen
et al, 2002) in one or more retinal vessels in IGF-1 KD
mice (Figures 7A,B, arrows). At 1 year of age, 5/6 IGF-
1 KD, and only 2/5 age-matched controls exhibited this

phenotype. This phenomenon persisted at 2 years of age:
7/12 IGF-1 KD mice had the severe constriction phenotype
while only 1/5 age matched controls had the phenotype
(Figure 7B). Young control animals did not exhibit this
phenotype (Figure 7C).
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spherules (SV2 positive, CARR negative). (C) Arrows highlight horizontal cell projections in the outer plexiform layer. Scale bars: 20 wm, original magnification 40x
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We proceeded to evaluate other signs of stress in the retina.  filament protein normally restricted to the endfeet of Miiller glial
We used immunofluorescence to evaluate the expression of cells (Figures 8A-D). Increased expression of GFAP leads to
retinal glial fibrillary acidic protein (GFAP), an intermediate staining along the Miiller cell body toward the outer layers of
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the retina, and is a marker of gliosis and retinal stress. At 1 year
of age, we observed some minor signs of glial cell activation in
IGF-1 KD retinas (Figure 8A, arrowheads). This phenomenon
was more pronounced at 2 years of age, wherein significantly
increased GFAP labeling was frequently observed in IGF-1 KD
retinas compared to age-matched control retinas (Figure 8B).
We next scored GFAP-labeled retinas on a scale of 0-4 (0 = no
gliosis, 4 = severe gliosis) (Figure 8D). At 1 year of age, gliosis
was minor or not detected in all groups. At 2 years of age, there
is a high degree of eye-to-eye variability, but even so, IGF-1
KD eyes had a higher median gliosis score than age-matched
controls, and 3/9 IGF-1 KD eyes exhibited a high degree of
gliosis (score 3 or higher) compared to 0/7 control eyes. To
ask whether this gliosis was accompanied by increased oxidative
stress, we labeled retinas with a marker of lipid peroxidative
stress, 4-hydroxynonenal (4-HNE). However, 4-HNE expression
was similar in IGF-1 KD and control mice at 1 and 2 years of age
(Figures 8E,G), though staining was modestly increased in aged
retinas compared to young controls (Figure 8F). These findings
indicate that circulating IGF-1 deficiency leads to abnormalities
in the retinal vasculature and retinal gliosis.

DISCUSSION

Here we confirm that the effects of adult-onset circulating IGF-1
deficiency phenocopy important aspects of cerebrovascular aging
(Toth et al., 2015b; Tarantini et al., 2017c) and demonstrate
that increased susceptibility to CMHs in IGF-1 deficient mice
is associated with imaging signs of vascular defects in the
retina. There has been significant research interest in using
the eye to model or predict disease in the brain, and several
neurodegenerative or cerebrovascular diseases have measurable

ocular manifestations (Czako et al., 2020; Istvan et al., 2021).
Previous human studies also provide prima facie evidence
that retinal microvascular changes (microaneurysms and retinal
hemorrhage) together with other imaging and histological signs
[Miller cell gliosis, retinal nerve fiber layer (RNFL) thinning]
predict a higher risk of subsequent stroke in humans (Wonget al.,
2001a,b; London et al., 2013; Zhao et al., 2020).

Cerebral microhemorrhages are common in the aging human
population and predict cognitive decline (Poels et al., 2012;
Akoudad et al, 2016) as well as subsequent ischemic and
hemorrhagic stroke (Poels et al., 2011). There is strong evidence
that circulating IGF-1 deficiency is causally linked to the genesis
of CMHs and larger intracerebral hemorrhages (Tarantini et al.,
2017c). However, in spite of the shared anatomical origins and
important functional and structural similarities between the
retinal and cerebral microvasculature (Tata et al., 2015), we found
that IGF-1 deficiency did not exacerbate hypertension-induced
microbleeds in the retina.

Retinal hemorrhages can occur as part of a wide variety of
retinal diseases and conditions, including diabetic retinopathy
(Crabtree and Chang, 2021; Jena and Tripathy, 2021), age-related
macular degeneration (Avery et al., 1996; Oh et al., 2009; Poels
et al., 2012), head trauma in infants (D’Aloisio et al., 2020),
and many others, but there is no systematic evidence for age-
related retinal microhemorrhages paralleling those seen in the
brain. It is not clear whether this is a physiological difference
between the retina and the brain or a function of available
tools and/or patient populations. How retinal hemorrhages are
labeled in human studies may also contribute to a lack of
clarity regarding the clinical presence of retinal hemorrhages
in aging. A broad spectrum of retinal microvascular changes
including retinal hemorrhages, microaneurysms, cotton wool
spots, macular edema, other exudates and optic disc swelling
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FIGURE 8 | Insulin-like growth factor 1 (IGF-1) deficient mice exhibit signs of reactive gliosis in the retina. (A-D) Retinal sections from 1- and 2-year-old IGF-1 KD
were labeled for glial fibrillary acidic protein (GFAP) expression (green) and counterstained with DAPI (blue). Arrows highlight incipient Muller cell activation. (D) Muller
cell activation (upregulation of GFAP, with penetration of labeling outside endfeet) was scored by a blinded observer on a 4-point scale (4 = severe gliosis, O = no
gliosis). N = 3-9 eyes/group. (E-G) Oxidative stress was evaluated by labeling retinal sections with 4-HNE (red), a marker of lipid oxidative stress, and counterstained
with DAPI (blue). N = 3-5 eyes/group. Scale bars: 100 wm. Original magnification, 20x. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.

are often all grouped under the category of “retinopathy”
(Wong et al, 2001b), and it can be challenging to refine
individual microvascular manifestations. One of the few studies
to specifically evaluate retinal microhemorrhages evaluated
patients with cerebral amyloid angiopathy (CAA), a form
of vascular dementia in which CMHs are common, found
that CAA patients exhibited increased prevalence of retinal
microhemorrhages compared to controls, and that there was
a correlation between the presence of retinal microbleeds and
cerebral bleeds (Alber et al., 2021). Further evaluation into the
presence of retinal microhemorrhages in aging, and the extent to

which these correlate with age-related CMH would be of great
future interest.

There is an emerging body of literature suggesting that
retinal microvascular rarefaction, typically measured by a
decrease in retinal fractal dimension (a representation of
microvascular network complexity) is associated with aging,
cerebral microbleeds, cerebral small vessel disease, and the
development of cognitive impairment (Hilal et al., 2014; Ong
et al., 2014; Chua et al, 2020), although not all studies have
confirmed these associations (O’Neill et al, 2021). We did
not perform retinal microvascular imaging here, but we did
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evaluate larger retinal vessels via fundus angiography. Aged
IGF-1 deficient animals exhibited worsened patterns of vessel
narrowing than control animals. This pattern is similar to the
previously described “sausage-on-a-string” phenotype (so named
because the constricted vessels resemble a chain of sausage
links) and is thought to show regions of vascular instability
(Jacobsen et al.,, 2002). Our “sausage-on-a-string” vessels also
bear a resemblance to arteriovenous nicking and focal arteriolar
narrowing, defects affecting larger retinal vessel in patients.
There is clear evidence that cardiovascular risk factors such as
hypertension are associated with changes in retinal microvessels
(retinopathy) as well as these larger vessel changes [reviewed
in Wong et al. (2001b)]. Combined, our findings suggest that
while retinal microhemorrhages are not a part of the hypertensive
response in mice with circulating IGF-1 deficiency, other vascular
degenerative changes do occur in the retina, and are consistent
with the presence of known cerebrovascular defects in IGF-1
knockdown models.

Insulin-like growth factor 1 in the retina in general has been
widely evaluated, and as in the brain, the role of IGF-1 as either
a protective pro-survival factor or a pro-inflammatory factor
depends on the disease context. IGF-1 is an important pro-
survival signal for photoreceptors and protects photoreceptors
from apoptosis in the context of retinitis pigmentosa (RP)
(Arroba et al., 2009; Arroba et al., 2018). IGF-1 is also known to
be proangiogenic in eye pathologies associated with angiogenesis
such as proliferative diabetic retinopathy (PDR) and wet age-
related macular degeneration (AMD) (Arroba et al, 2018). In
animal models, the findings have been similarly complicated.
Similar to our findings from the circulating IGF-1 knockdown,
global IGF-1 knockout animals exhibit signs of increased age-
associated Miiller cell gliosis in the retina but no overt retinal
degeneration (Rodriguez-de la Rosa et al., 2012; Arroba et al,,
2016). However, global IGF-1 knockout mice also exhibited
significant decreases in rod and cone ERG function by 1 year
of age. This is in contrast to our findings demonstrating that
adult-onset circulating IGF-1 deficiency led not to declines in
ERG function compared to control animals, but rather to a slight
retardation of age-related loss of cone and rod function. One
possible explanation for this counterintuitive effect is that cells
resident to the retina may produce IGF-1 to compensate for
any changes caused by circulating deficiency. IGF-1 is produced
locally in the retina by multiple cell types including cones (Cao
et al,, 2001; Zygar et al.,, 2005; Lofqvist et al., 2009), and may
therefore play a key role protecting the retina from circulating
IGF-1 deficiency. Support for differential roles for circulating
vs. locally-produced IGF-1 in the retina comes from studies
utilizing transgenic mice that chronically overexpress IGF-1 in
the retina (without increase in circulating IGF-1). Mice with
chronic overexpression of intraocular IGF-1 exhibited significant
impairments in the blood retinal barrier and loss of tight-
junctional integrity, while mice with elevated circulating IGF-
1 did not exhibit these phenotypes (Haurigot et al, 2009).
However, these intraocular IGF-1 overexpressers also exhibited
retinal degeneration, gliosis, and decreases in rod and cone
function (Ruberte et al.,, 2004; Villacampa et al., 2013) similar
to the global IGF-1 knockdowns, indicating that the role of

IGF-1 in the retina is complex and levels are finely tuned. An
additional layer of complexity arises from the fact that both the
transgenic overexpression model and the global knockout model
have modified IGF-1 levels from birth. Given the key role of IGF-
1 in development, such early-onset models may not be the most
relevant when studying age-related pathologies associated with
IGF-1.

In conclusion, our work highlights the importance of IGF-
1 in the maintenance of cerebrovascular and retinal stability
and validates adult-onset circulating IGF-1 deficiency as an
accelerated aging model. Critically, our findings also show that
while the eye can serve as a model for the central nervous system,
it does not always mimic every vascular pathology seen in the
brain. The role of IGF-1 is complex in both the retina and the
brain, but it clearly serves as a vasoprotective factor in both
tissues, and further work to understand ways that retinal vascular
changes can be used as biomarkers for cerebrovascular changes is
urgently needed.
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