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The main purpose of the study was to explore a reliable way to automatically handle
emergency cases, such as intracerebral hemorrhage (ICH). Therefore, an artificial
intelligence (AI) system, named, H-system, was designed to automatically recognize
medical text data of ICH patients and output the treatment plan. Furthermore, the
efficiency and reliability of the H-system were tested and analyzed. The H-system, which
is mainly based on a pretrained language model Bidirectional Encoder Representations
from Transformers (BERT) and an expert module for logical judgment of extracted
entities, was designed and founded by the neurosurgeon and AI experts together.
All emergency medical text data were from the neurosurgery emergency electronic
medical record database (N-eEMRD) of the First Affiliated Hospital of Chongqing Medical
University, Chongqing Emergency Medical Center, and Chongqing First People’s
Hospital, and the treatment plans of these ICH cases were divided into two types.
A total of 1,000 simulated ICH cases were randomly selected as training and validation
sets. After training and validating on simulated cases, real cases from three medical
centers were provided to test the efficiency of the H-system. Doctors with 1 and
5 years of working experience in neurosurgery (Doctor-1Y and Doctor-5Y) were included
to compare with H-system. Furthermore, the data of the H-system, for instance,
sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive
value (NPV), and the area under the receiver operating characteristics curve (AUC),
were calculated and compared with Doctor-1Y and Doctor-5Y. In the testing set, the
time H-system spent on ICH cases was significantly shorter than that of doctors
with Doctor-1Y and Doctor-5Y. In the testing set, the accuracy of the H-system’s
treatment plan was 88.55 (88.16–88.94)%, the specificity was 85.71 (84.99–86.43)%,
and the sensitivity was 91.83 (91.01–92.65)%. The AUC value of the H-system in the
testing set was 0.887 (0.884–0.891). Furthermore, the time H-system spent on ICH
cases was significantly shorter than that of doctors with Doctor-1Y and Doctor-5Y.
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The accuracy and AUC of the H-system were significantly higher than that of Doctor-
1Y. In addition, the accuracy of the H-system was more closed to that of Doctor-5Y.
The H-system designed in the study can automatically recognize and analyze medical
text data of patients with ICH and rapidly output accurate treatment plans with high
efficiency. It may provide a reliable and novel way to automatically and rapidly handle
emergency cases, such as ICH.

Keywords: stroke, intracerebral hemorrhage (ICH), natural language processing (NLP), artificial intelligence (AI),
neurosurgery emergency electrical medical record database (N-eEMRD)

INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH) is a kind of non-
traumatic hemorrhage in the brain parenchyma (Qureshi et al.,
2001). It is a common emergency in neurosurgery with high
morbidity, disability, and mortality (Broderick et al., 2007). With
an incidence rate of 12–15/10 million, ICH has traditionally
lagged behind ischemic stroke (Hemphill et al., 2015). In western
countries, ICH accounted for as high as about 15% of all strokes
and 10–30% of all hospitalized patients with stroke (Steiner
et al., 2014). In China, the situation is even worse due to the
huge population, and ICH accounted for about 18–47.6% of all
strokes in China, and the mortality in 30 days is up to 35–
52%, and only about 20% of patients were able to recover their
self-care ability after 6 months (Wu et al., 2019; Zhou et al.,
2019). Therefore, a timely and proper treatment, which bases
on an accurate analysis of the patient’s condition, is crucial and
may significantly influence the prognosis of patients with ICH
(Sangha and Gonzales, 2011; Al-Kawaz et al., 2020).

With the expansion of computational power and information
content in medical data, brilliant progress has been made in the
automatic interpretation of image and text data (Höller et al.,
2017; Afzal et al., 2018; Chilamkurthy et al., 2018; Beheshti et al.,
2020; Kim et al., 2020; Parthasarathy et al., 2020; Teng et al.,
2021). Recently, novel machine learning-based algorithms were
developed to segment and interpret the CT image of patients
with ICH, hoping to provide accurate and automated treatment
(Ironside et al., 2019, 2020; Nawabi et al., 2020; Zhou et al., 2020).
Although the interpretation of CT image provides objective
and vital information about the intracranial condition, other
clinical information, for instance, medical history and physical
examination, is also essential for the treatment of ICH (Brott
et al., 1986; Liao et al., 2015; Velupillai et al., 2018; Wang
et al., 2018; Sung et al., 2020; Zhou et al., 2020). However,
most algorithms focus on image interpretation, and medical text
interpretation attracts far less attention.

The aim of this study was to explore a reliable method
to rapidly analyze the medical text data of ICH patients and

Abbreviations: Doctor-1Y, doctors with 1 year of working experience in
neurosurgery; Doctor-5Y, doctors with 5 years of working experience in
neurosurgery; eEMR, emergency electrical medical record; N-eEMRD,
neurosurgery emergency electrical medical record database; AI, artificial
intelligence; ICH, spontaneous intracerebral hemorrhage; NLP, natural language
processing; AUC, area under the receiver operating characteristics curve; NPV,
negative predictive value; PPV, positive predictive value; ROC, receiver operating
characteristic curve.

make a treatment plan. To achieve this aim, we designed a
system to automatically analyze the medical text data of patients
with ICH (such as the medical history, physical examination,
and CT report) and provide a treatment plan. Furthermore,
agreement analysis for the treatment plan retrieved from the
algorithm and human doctors was also performed to evaluate the
effectiveness of the system.

MATERIALS AND METHODS

The study met ethical standards approved by the Ethical
Committees of the First Affiliated Hospital of Chongqing Medical
University. The cases used in this study consisted of simulated
cases and real ICH cases, both of which were from the
neurosurgery emergency electrical medical record database (N-
eEMRD) of the First Affiliated Hospital of Chongqing Medical
University. Each case from the N-eEMRD consists of basic
patient information, chief complaint, history of current and
past illness, physical examination, and head CT results. The
real ICH cases were collected from three medical centers,
i.e., First Affiliated Hospital of Chongqing Medical University,
Chongqing Emergency Medical Center, and Chongqing First
People’s Hospital, from January 2017 to May 2021, and the
inclusion criteria of cases were as follows: (1) patients diagnosed
with spontaneous cerebral hemorrhage in compliance with the
latest guideline of stroke (Hemphill et al., 2015; Cordonnier et al.,
2018; Wu et al., 2019) and (2) patients who were aged 10–
80 years old. Exclusion criteria were as follows: (1) patients with
incomplete medical history or physical examination and (2) no
head CT results.

Data Set and Demographic
Characteristics
The cases included in this study were all from N-eEMRD. Among
them, 1,000 simulated ICH cases were divided into a training
set (700 cases) and a validation set (300 cases). A total of 1,052
real ICH cases were collected from three medical centers, and 68
cases were excluded due to the inclusion and exclusion criteria.
Finally, 984 consecutive real ICH cases were recruited as testing
sets. The demographic characteristics of all cases are shown in
Table 1, and there were no differences in demographic variables
among the training set, validation set, and testing set. Values
were presented as mean ± standard deviation (SD) or number
(column percent) as appropriate.
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TABLE 1 | Baseline characteristics of the total study population.

Characteristic Training set
(n = 700)

Validation set
(n = 300)

Testing set
(n = 984)

p-Value

Age, years 66 ± 15.1 65 ± 14.9 64 ± 15.0 0.763

Female, % 396 (56.6) 176 (58.7) 551 (56.0) 0.758

Male, % 304 (43.4) 124 (41.3) 433 (44.0) 0.736

Weight, kg 61.5 ± 11.7 60.9 ± 12.1 62.1 ± 12.4 0.695

Height, cm 161 ± 14.5 159 ± 15.9 160 ± 15.3 0.786

Hypertension, % 476 (68.0) 219 (73.0) 699 (71.0) 0.758

Diabetes, % 189 (27.0) 84 (28.0) 267 (27.1) 0.774

For simulated ICH cases in the training and validation sets, the
treatment plans made by two professors with more than 20 years
of experience in neurosurgery were set as the gold standard.
While for real ICH cases of testing set, the original treatment plan
of the real ICH case was set as the gold standard. The treatment
plans were divided into two types: (1) Plan I, emergency surgery,
which meant the patient had an indication for emergency surgery
and needed immediate emergency surgery. (2) Plan II, non-
surgical treatment, there is no indication for emergency surgery,
but medication is needed. In addition, Plan II was further divided
into Plans IIA and IIB. Plan IIA meant the patients did not
have an indication for emergency surgery for the time being, but
their condition was not stable and they might need surgery if
their conditions deteriorated. Plan IIB meant the patient had no
indication for emergency surgery but required drug treatment,
and their condition was relatively stable.

All the treatment plans in this study were divided into
Plans I and II, Plan II was further divided into Plans IIA and
IIB. Therefore, not only the treatment plans provided by both
H-system and doctors but also the treatment plans which were
set as “golden standard” would be classified as Plans I, IIA, or
IIB according to the definition of the treatment plans. Then the
treatment plans provided by both H-system and doctors were
collected and subsequently compared with the “golden standard,”
calculating the data, such as sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and the
area under the receiver operating characteristics curve (AUC).

Preprocessing of Electronic Medical Text
Due to spelling errors, non-text symbols, and abbreviations,
narrative clinical medical records retrieved from N-eEMRD
require a series of text preprocessing by an experienced
neurosurgeon. First, the misspelled phrases were checked and
corrected. Second, with concerted efforts of the experienced
neurosurgeon and artificial intelligence (AI) experts, keywords
from the patient’s medical records have been identified and
labeled (Supplementary Appendix 1). For example, keywords of
medical history and physical examination included the Glasgow
Coma Scale (GCS) score, vital signs (such as heart rate, blood
pressure, and oxygen saturation value), consciousness grading,
pathological reflex, pupil reflection, and clinical symptoms
(headache, nausea, vomiting). Meanwhile, the keywords in the
standardized CT report included the location of bleeding, the
amount of bleeding, the shape and size of the ventricle, whether

the ventricle is cast, and the shift of the midline structure
(Supplementary Appendix 2; Chilamkurthy et al., 2018).

Development of the H-System
The emergency electrical medical record (eEMRs) of simulated
ICH cases were all obtained from the N-eEMRD and randomly
divided into training and verifying and testing sets (the ratio
is 6:2:2). The training set was used for model fitting, and the
validation set was used to validate the accuracy of the model
for tuning the parameters of the model, then the testing set was
used to evaluate the generalization ability of the model. The
H-system consisted of a pretrained language model Bidirectional
Encoder Representations from Transformers (BERT) for named
entity recognition (NER) (Zhou et al., 2004; Wang et al., 2019;
Gligic et al., 2020) and an expert module for logical judgment
of extracted entities according to the ICH clinical treatment
rules (Figure 1A). Both the logical judgment of extracted
entities and the ICH clinical treatment rules were discussed
and reached an agreement by the neurosurgeon and AI experts.
Moreover, the ICH clinical treatment rules conformed to the
latest guidelines for ICH (Figure 1B).

After the ICH patient’s eEMR was input into the system,
the medical text was automatically analyzed, and then clinical
treatment plans were the output. With the use of the same labels
as on the primary data set, the performance of the system was
assessed on the independent external-testing data sets for training
and verification.

Performance and Evaluation of the
H-System
The H-system was built based on BERT and then was trained
and validated by simulated ICH cases. The eEMRs of real ICH
cases were used as a testing set to evaluate the performance of
the H-system. Furthermore, the eEMRs of real ICH cases were
randomly selected and provided to H-system and doctors, both
of who made the treatment plans after the analysis of these
eEMRs. The doctors were divided into two groups, Doctor-5Y
and Doctor-1Y. The Doctor-5Y Group consisted of 3 doctors with
5 years of working experience in neurosurgery, while Doctor-
1Y consisted of 3 doctors with 1 year of working experience
in neurosurgery.

Comparison of Time and Accuracy in Dealing With a
Fixed Number of Cases
A total of 60 real cases, all of which were randomly selected from
N-eEMRD, were provided to both H-system and doctors. Then
the time that H-system and doctors spent on handling these cases
was recorded and analyzed. Furthermore, data of H-system and
doctors, for instance, sensitivity, specificity, PPV, NPV, and the
AUC, were calculated and compared, respectively, by setting the
original treatment plan of the real ICH case as a golden standard.

Comparison of the Number of Cases and Accuracy in
a Fixed Time
To further study the effectiveness of the H-system, the number
of cases handled by the H-system and doctors in 60 min were
recorded and compared. Furthermore, the differences between
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FIGURE 1 | (A) Flowchart of H-system. Medical texts were input into H-system and then analyzed. After that, the treatment plan was automatically output. BERT,
Bidirectional Encoder Representations from Transformers. (B) Found of neurosurgery emergency electronic medical record database (N-eEMRD). Simulated
intracerebral hemorrhage (ICH) cases were used for the development of H-system and internal validation with help of an experienced neurosurgeon and reference of
the guidelines, and real ICH cases were used for external validation and efficiency testing.

H-system and doctors in sensitivity, specificity, accuracy, PPV,
and NPV of treatment plans were also analyzed, respectively.

Statistical Analysis
The SPSS statistical software (Version 26.0 for Windows, IBM
Corp., Armonk, NY, United States) was performed for statistical
analysis in this study. Categorical variables were expressed

as absolute numbers and percentages, continuous variables as
mean ± SD or median (95% confidence interval [CI]). In the
validation and testing phase, the sensitivity, specificity, PPV,
NPV, and AUC were used to evaluate the performance of the
H-system. AUC measures the efficiency of different groups. Inter-
rater agreement was measured using Cohen’s κ value. Accuracy
was calculated to evaluate the performance of the H-system.
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The two-tailed p was considered to be statistically significant
when it is <0.05.

RESULTS

Efficiency of H-System
Overall Efficiency of H-System in a Testing Set
By comparing with the golden standard of simulated ICH cases,
the accuracy, specificity, and sensitivity of the H-system in the
validation set were 87.00 (86.18–87.82)%, 85.08 (82.86–87.29)%,
and 89.58 (86.61–92.55)%, and the AUC value was 0.874 (0.864–
0.883) (Figure 2A). Meanwhile, a total of 984 real ICH cases were
included as the testing set to assess the efficiency of the H-system.
The treatment plans automatically output by the H system
were compared with the original treatment plans of real ICH
cases, the accuracy of the H-system’s treatment plan was 88.55
(88.15–88.94)%, the specificity was 85.71 (84.99–86.43)%, and
the sensitivity was 91.83 (91.01–92.65)%. The AUC value of the
H-system in the testing set was 0.887 (0.884–0.891) (p < 0.001;
Table 2; Figure 2B), which means that the treatment output by
H-system was accurate and reliable.

TABLE 2 | Accuracy and AUC of H-system in the testing set.

Group Accuracy (%) (95% CI) AUC

H-system 88.55 (88.16–88.94) 0.887 (0.884–0.891)

Plan I 91.83 (91.01–92.65)

Plan II 85.71 (84.99–86.43)

Plan IIA 78.03 (76.14–79.92)

Plan IIB 89.15 (84.40–93.89)

Furthermore, the accuracy of Plan IIA’s output by the
H-system was 85.71 (84.99–86.43)%, which was significantly
lower than Plan I’s accuracy of 91.83 (91.01–92.65)% (p < 0.05)
and Plan IIB’s accuracy of 89.15 (84.40–93.89)%. The different
accuracy between Plan IIA and Plan I meant H-system made
more mistakes when outputting Plan IIA.

Comparison Between Doctors and H-System
To further study the efficiency of the H-system, the comparison
between doctors and H-system was performed in two aspects, the
total number of cases handled in a fixed time and the total time
spent on a fixed number of cases.

FIGURE 2 | Testing of H-system’s efficiency and reliability. (A) ROC of H-system in validation set. (B) ROC of H-system in testing set. (A and B meant that the
treatment output by H-system was accurate and reliable.) (C) The total time H-system, Doctor-1Y, and Doctor-5Y spent on 60 cases. (D) The mean time H-system,
Doctor-1Y, and Doctor-5Y spent on single case. (C and D indicated that the time of Doctor-1Y and Doctor-5Y spent on the fixed quantity cases was significantly
longer than H-system.) (E) Comparison of ROC for handling 60 cases among H-system, Doctor-1Y, and Doctor-5Y. The AUC of Doctor-1Y was significantly lower
than that of H-system. However, a high degree of agreement on treatment plan was found between Doctor-5Y and H-system. (F) Comparison of number of cases
handled by H-system, Doctor-1Y, and Doctor-5Y in 30 min. The figure means that the number of cases handled by H-system was significantly greater than that of
Doctor-1Y and Doctor-5Y in a fixed time. **** means there was a significant statistical difference (p < 0.001).
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TABLE 3 | Comparison of time for handling with 60 cases and single case among
H-system and doctors.

Group Time (60 cases) Time (single) p-Value

H-system 280.80 ± 3.82 s 4.68 ± 0.89 s . . .

Doctors

Doctor-1Y 19,494.67 ± 121.29 s 324.32 ± 38.44 s <0.001

Doctor-5Y 10,757.33 ± 94.54 s 181.14 ± 19.63 s <0.001

TABLE 4 | Comparison of efficiency for handling 60 cases among
H-system and doctors.

Group Sensitivity
(%) (95%

CI)

Specificity
(%) (95%

CI)

Accuracy
(%) (95%

CI)

AUC (95%
CI)

κ Value
(95% CI)

H-system 92.86
(83.99–
100.00)

84.38
(76.61–
92.14)

88.33
(84.20–
92.47)

0.886
(0.844–
0.928)

. . .

Doctors

Doctor–1Y 84.52
(79.40–
89.64)

75.00
(67.24–
82.77)

79.44
(77.05–
81.84)

0.798
(0.777–
0.819)

0.827
(0.785–
0.868)

Doctor-5Y 94.05
(88.93–
99.17)

86.46
(81.99–
90.93)

91.51
(87.94–
95.08)

0.895
(0.835–
0.955)

0.963
(0.938–
0.988)

Efficiency of Doctor and H-System on the Fixed Quantity
Cases
A total of 60 real ICH cases were randomly extracted
from the N-eEMRD. The mean time that H-system spent
on 60 cases was 280.80 ± 3.82 s, and the mean time
on a single case was 4.68 ± 0.89 s. For doctors, the
mean time Doctor-5Y and Doctor-1Y spent on 60 cases was
10,757.33 ± 94.54 and 19,494.67 ± 121.29 s, and the mean time
on a single case was 181.14 ± 19.63 and 324.32 ± 38.44 s,
respectively. As shown in Table 3, the time both Doctor-
5Y and Doctor-1Y spent is significantly longer as compared
with H-system (Figures 2C,D). Furthermore, the sensitivity,
specificity, accuracy, and AUC of H-system were 92.86 (83.99–
100.00)%, 84.38 (76.61–92.14)%, 88.33 (84.20–92.47)%, and
0.886 (0.0.844–0.928)%, respectively (Table 4). Furthermore,
Plan IIA’s accuracy of H-system, Doctor-1Y and Doctor-5Y
were 72.73 (50.15–95.31)%, 66.63 (40.40–92.87)%, and 78.79
(65.75–91.83)%, which were significantly lower than that of Plans
I and IIB. As shown in Table 4, the AUC of Doctor-1Y is
0.798 (0.777–0.819), which is significantly lower than that of
the H-system (p < 0.05) (Figure 2E). However, no significant
statistical difference in AUC was found between H-system and
Doctor-5Y (p = 0.225). Then the κ value between H-system and
Doctor-5Y was 0.963 (0.938–0.988) (p< 0.01; Table 4), indicating
a high degree of agreement on treatment plan was found between
H-system and Doctor-5Y.

Efficiency of Doctor and H-System in a Fixed Time
The number of cases handled by Doctor-1Y and Doctor-5Y in
60 min was compared with H-system, respectively. The mean
numbers of cases handled by the H-system were was 766, which
was not only significantly greater than that of Doctor-1Y (13

TABLE 5 | Comparison of cases, sensitivity, specificity, and accuracy in a fixed
time among H-system and doctors.

Group Sensitivity
(%) (95% CI)

Specificity
(%) (95% CI)

Accuracy
(%) (95% CI)

Cases p-Value

H-system 90.43
(89.58–
91.28)

84.91
(82.81–
87.01)

87.47
(86.63–
88.31)

766
(763–769)

. . .

Doctor

Doctor-1Y 84.92
(81.50–
88.34)

74.29
(62.00–
86.58)

79.61
(71.34–
87.87)

13 (11–15) <0.01

Doctor-5Y 93.94
(80.90–
100.00)

85.05
(74.24–
95.86)

89.15
(84.40–
93.89)

21 (18–25) <0.01

cases) but also significantly greater than that of Doctor-5Y (21
cases) (Figure 2F; p < 0.01).

Furthermore, the accuracy of the H-system was 87.47 (86.63–
88.31)%, and the specificity and sensitivity were 84.91 (82.81–
87.01)% and 90.43 (89.58–91.28)%. For Doctor-1Y, the accuracy
was 79.61 (71.34–87.87)%, and the specificity and sensitivity
were 74.29 (62.00–86.58)% and 84.92 (81.50–88.34)%, all of
which were significantly lower than that of H-system (p < 0.01).
However, for Doctor-5Y, the accuracy was 89.15 (84.40–93.89)%,
and the specificity and sensitivity were 85.05 (74.24–95.86)% and
93.94 (80.90–100.00)%, all of which were not significantly higher
than that of H-system (p > 0.05; Table 5).

DISCUSSION

In the present study, we designed the H-system to automatically
analyze the eEMR of patients with ICH and output the treatment
plan. Previously, some researchers have developed models for
automated detection of CT scans to assist radiologists (Chen
et al., 2021). Although the models showed high accuracy,
important clinical symptoms and signs were not included in these
studies (Krittanawong et al., 2017; Chilamkurthy et al., 2018;
Abedi et al., 2020; Nawabi et al., 2020; Gibicar et al., 2021).
To analyze the cases more comprehensively, the H-system can
not only recognize the CT reports but also analyze the clinical
manifestations. The H-system was founded based on BERT and
trained to identify and analyze the eEMR of ICH cases that
include medical history, physical examination, and CT report.

Efficiency of H-System
The accuracy of the H-system’s treatment plan in the testing set
was 88.55 (88.16–88.94)%, and the specificity and sensitivity were
85.71 (84.99–86.43)% and 91.83 (91.01–92.65)%. Furthermore,
Doctor-1Y and Doctor-5Y were included in this study to test the
efficiency of the H-system. For Doctor-1Y, the time spent on 60
cases was significantly longer than that of the H-system, but the
accuracy sensitivity, specificity, PPV, and NPV were significantly
lower than that of the H-system. For Doctor-5Y, the time spent
on 60 cases was also longer than that of the H-system, however,
as shown in Table 4, a strong correlation is found between
the H-system’s treatment plan and Doctor-5Y’s treatment plan,
κ = 0.963 (0.938–0.988). These results indicated that H-system
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could rapidly and automatically recognize the N-eEMR of
ICH and output an accurate treatment plan. Compared with
Doctor-1Y, the accuracy of the H-system was more closed to
that of Doctor-5Y.

To further test the efficiency of the H-system, the number
of cases and accuracy of the H-system and doctors in a fixed
time were also calculated and analyzed. For H-system, the mean
number of cases handled in 60 min was 766 (763–769), and
the accuracy was 87.47 (86.63–88.31)%. For Doctor-1Y and
Doctor-5Y, the mean numbers were 13 (11–15) and 21 (18–
25), and the accuracy was 79.61 (71.34–87.87)% and 89.15
(84.40–93.89)%. Obviously, the difference in efficiency between
doctors and H-system was huge and significant statistically. These
results suggested that H-system might provide a reliable way
to automatically recognize and analyze medical text data of
patients with ICH and output accurate treatment plans with high
efficiency. Interestingly, compared with H-system with Doctor-
5Y, the accuracy of the H-system was slightly lower, but there
was no significant statistical difference between the two groups
(p = 0.17).

Development of H-System
The H-system in the study included a pretrained language model
BERT for NER and an expert module for logical judgment of
extracted entities according to the ICH clinical treatment rules.
The expert module consists of output entities imported from the
BERT network. First, it matches keywords with their attributes by
words segmentation and regular expression in the entities. Then,
the expert module carries out weighted arithmetic according to
the logic table of the ICH clinical case. Finally, the results of
weighted arithmetic are expressed in the form of a weighted score.
Meanwhile, a database called N-eEMRD was built up to provide
eEMR of cases for training and testing the H-system in this
study. The N-eEMRD included eEMRs of simulated ICH cases,
which were used for the development and internal validation,
and real ICH cases, which were used for external validation and
efficiency testing. Although a total of 984 real ICH cases were
included in this study, these cases might not cover all possible
situations, and the quantity of some special ICH cases was not
enough for training the model. Therefore, we designed not only
common ICH cases but also rare ICH cases, making the simulated
cases have enough quantity and coverage. Similar to the eEMR
of real ICH cases, each eEMR of a simulated ICH case consisted
of the patient’s general information, medical history, physical
examination, and CT report (Supplementary Appendix 2). After
analysis of more than 900 real ICH cases and reference of the
guidelines in the last 10 years, we designed the clinical and CT
manifestations of simulated ICH cases. To exclude the irrational
cases, the rationality and logicality of each simulated eEMR
were checked by at least two experienced neurosurgeons. Then
two neurosurgeons with at least 20 years of working experience
analyzed each simulated eEMR and made a treatment plan, which
was set as the golden standard for this simulated case (Figure 1B).

It is known that making a proper treatment plan for a critical
emergency, such as ICH, is always complicated and challenging.
First, information that includes the patient’s general information,
medical history, physical examination, and supplementary
examination will be collected as detailed as possible in a few

minutes. After that, the doctor will comprehensively and carefully
analyze this complicated medical information and then make a
proper treatment plan immediately. As result, making a proper
treatment plan for the patient with ICH is not easy even
for a neurosurgeon. Algorithms, which automatically segment
and interpret CT images of patients with ICH, can provide
vital information about the intracranial conditions, such as the
location and volume of hematoma, mass effect, and shifting of
middle-line structure (Yang et al., 2018; Nawabi et al., 2020,
2021; Shi et al., 2020). All of these are vital to conduct diagnoses
and make proper treatments. However, other vital information,
such as the patient’s symptoms and signs, which are mainly
obtained from medical history and physical examination, is still
needed for a neurosurgeon to make a proper and rapid treatment
plan. Therefore, not only the CT results but also the medical
history and physical examinations are crucial to making an
appropriate treatment plan for patients with ICH. In the present
study, neurosurgeons and AI researchers worked together to
design the simulated ICH cases and labeled the keywords of
ICH eEMR. Furthermore, neurosurgeons designed the rules of
making a proper treatment plan and then discussed with AI
researchers the logic of the foundation of the model. As shown
in the results, the time H-system spent on a single case was only
4.68 ± 0.89 s, and the treatment plan output by H-system was
accurate, indicating H-system has the ability to handle a large
number of cases in a short time. More importantly, H-system is
not like a human who may make mistakes due to negative factors,
for instance, fatigue, stress, and mood fluctuations. However, in
view of the particularity of clinical medicine, we should be more
cautious about the application of AI in clinical events, especially
emergency events, such as ICH (Gilvary et al., 2019). For the
treatment plan of ICH, the most important things are not only
accuracy but also safety and reliability.

Related Study
Different from most AI systems, which focused on automatic
image interpretation, disease phenotyping, and disease prediction
(Prevedello et al., 2017; Bacchi et al., 2019; Brugnara et al.,
2020; Monteiro et al., 2020), the H-system in this study aimed
to automatically analyze the text data of eEMR and provide a
treatment plan. Based on BERT, key information was extracted
from the medical history, physical examination, and CT report.
Therefore, as compared with image interpretation, the H-system
could get more critical information from medical text records to
make an appropriate treatment plan.

In addition, the model of the H-system can also be used to
automatically analyze the medical text record of other diseases.
This means the model may be generalized to similar diseases in
other neurosurgery diseases. However, before that, the new BERT
model and new rules for the expert module need to be designed
and trained according to the different diseases.

Limitations
Although the H-system can automatically recognize and analyze
the medical record of ICH (such as medical history, physical
examination, and CT results) and output appropriate treatment
plans, we have to admit that there are still several limitations
in this study. First, the H-system is based on BERT, which still
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needs more testing for complex cases and complicated clinical
application (Lee et al., 2020; Li et al., 2020). Therefore, the
H-system would make mistakes when handling some complex
cases. We found that the accuracy of Plan IIA was significantly
lower than that of Plans I and IIB. After analyzing the eEMRs
and golden standard of cases in Plan IIA, we found they were
more complicated than other cases and might provide equivocal
information on some key points, which might be a challenge
even for neurosurgeons. This meant the model needed further
optimization and more training. Second, larger sample size is
still needed to further validate the model and algorithm of this
study. In addition, H-system in this study is designed to identify
the eEMR and make a treatment plan according to the eEMR
and should be performed in the emergency condition (usually in
the first 60 min of the emergency room). Therefore, like human
doctors, H-system may also miss some important information
that is lost or vacant in the eEMR, which is inevitable in an
emergency condition.

CONCLUSION

The H-system designed in the study automatically recognizes and
analyzes medical text data of ICH patients and rapidly output
accurate treatment plans with high efficiency. It may provide
a reliable and novel way to automatically and rapidly handle
emergency cases, such as ICH.
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