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The verbal fluency task, where participants name as many instances of a specific
semantic or phonemic category as possible in a certain time limit, is widely used to
probe language and memory retrieval functions in research and clinical settings. More
recently, interests in using longitudinal observations in verbal fluency to examine changes
over the lifespan have grown, in part due to the increasing availability of such datasets,
yet quantitative methods for comparing repeated measures of verbal fluency responses
remain scarce. As a result, existing studies tend to focus only on the number of unique
words produced and how this metric changes over time, overlooking changes in other
important features in the data, such as the identity of the words and the order in which
they are produced. Here, we provide an example of how the literature of recurrence
analysis, which aims to visualize and analyze non-linear time series, may present useful
visualization and analytical approaches for this problem. Drawing on this literature, we
introduce a novel metric (the “distance from diagonal,” or DfD) to quantify semantic
fluency data that incorporates analysis of the sequence order and changes between
two lists. As a demonstration, we apply these methods to a longitudinal dataset of
semantic fluency in people with Alzheimer’s disease and age-matched controls. We
show that DfD differs significantly between healthy controls and Alzheimer’s disease
patients, and that it complements common existing metrics in diagnostic prediction. Our
visualization method also allows incorporation of other less common metrics—including
the order that words are recalled, repetitions of words within a list, and out-of-category
intrusions. Additionally, we show that these plots can be used to visualize and compare
aggregate recall data at the group level. These methods can improve understanding of
verbal fluency deficits observed in various neuropsychiatric and neurological disorders.

Keywords: recurrence plots, recall data, data visualization, Alzheimer’s disease, verbal fluency

INTRODUCTION

Verbal fluency tasks, where participants are asked to produce as many instances of a specific
semantic or phonemic category as possible in a short period of time, are commonly used to test
a variety of cognitive and linguistic abilities, such as lexical knowledge, processing speed, verbal
working memory, and executive functions (Troyer et al., 1997; Rosen, 1980; Shao et al., 2014).
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In these tasks the experimental outputs consist of lists of
categorical variables or items (words) produced in a certain order,
an example of categorical time series data. Despite the multi-
faceted nature of such data that may reflect distinct cognitive
processes underlying task performance, in existing research
participant performance is often scored in a manner that focuses
on one particular characteristic of interest, most commonly the
number of words produced (Ardila and Bernal, 2006). Similarly,
while interest in comparing longitudinal observations of verbal
fluency in aging and disease has increased as fluency tasks are
commonly included in a battery of neuropsychological tasks
administered in clinic visits over years, quantifying change over
time is also frequently restricted to comparing the number of
words produced between the generated lists (i.e., comparing
the list lengths).

Quantifying only the total number of unique words generated
has known limitations, despite its clinical significance (Henry
et al., 2004; Cullen et al., 2007; Clark et al., 2009). It only captures
a thin slice of the information available in fluency responses.
Most prominently, it does not take into account changes in
the identity of the items (what words they are); it doesn’t
include alterations in the order items are produced, repeated
items, items from the wrong category, or the subcategories
items belong to. Therefore, changes in these features in verbal
fluency performance over time and how they may be related
to aging and disease development may have been under-
appreciated, despite a growing volume of literature documenting
differences in these features across populations in cross-sectional
data. For example, a recent study reports differences in the
correlation between the order of items recalled in a fluency
list and various semantic features in old vs. young adults (De
Marco et al.,, 2021). Repetitions of the same item within a list
have been correlated with Alzheimer’s disease (AD) (Pekkala
et al., 2008; McDowd et al., 2011) and frontotemporal dementia
(Rascovsky et al., 2007). Intrusion errors involving incorrect
words (e.g., “chair” within the semantic category “animals”)
are also not considered in the traditional score and have
been associated with AD (McDowd et al., 2011), semantic

aphasia (Rogers et al., 2015), and schizophrenia (Allen et al,
1993). Differences in the clustering of words into semantic and
phonemic categories have been associated with various disorders
including mild cognitive impairment (MCI) and AD (Mueller
et al, 2015; Pakhomov et al, 2016), as well as Huntington’s
Disease (HD) (Ho et al., 2002). While longitudinal analysis of
verbal fluency remains rare, changes in the repetition density
and in the semantic relatedness of words chosen in fluency lists
have been associated with AD and MCI (Pakhomov et al., 2016),
while changes in the number of words produced, the number of
repetitions, and phonemic clustering have been reported in HD
(Ho et al., 2002).

These additional methods of comparing changes in fluency
performance beyond the traditional length metric are not widely
used by clinicians, potentially because they are more difficult to
examine from raw responses than the number of items produced
(Table 1). A significant challenge when comparing changes
between lists is the multiple dimensions of dissimilarity that are
hard to quantify and visualize—beyond the number of items
produced, the order of words recalled and the words themselves
may be changing as well. Here we sought to overcome these
challenges by introducing a new way to visualize and quantify
fluency data that incorporates analysis of the sequence order
and changes between multiple lists. First, we describe a method
to visualize these changes both at the individual and at the
group levels, drawing from recurrence analysis methods. These
visualizations emphasize salient aspects of fluency data, including
changes in word ordering between lists, which have not been
commonly quantified in this data (Table 1). Expanding upon
this feature, we introduce a novel metric to quantify changes in
the order of items recalled in fluency lists, termed the “distance
from diagonal,” or DfD. The visualization and the metric derived
from it complement each other, in a similar way as a correlation
coeflicient quantifies the strength of the relationship between two
variables, while a scatterplot can demonstrate that relationship
as well as providing insight into the shape (linearity or non-
linearity) of the relationship and/or the presence of outliers
(Anscombe, 1973).

TABLE 1 | Clinically relevant features of semantic fluency data, and their incorporation into our visualization method.

Feature Example

Clinical relevance

Visualization

Length of sequence:
number of unique items

Cat, dog, pig, cow, dog, duck, zebra,
elephant, lion, shark, turtle (length = 10)
2019)

Shorter lists associated with aging, mild cognitive impairment
and AD (McDowd et al., 2011; Mueller et al., 2015; Taler et al.,

Number of unique items on
each axis

Changes in length Cat, dog, pig

Cat, dog, pig, cow, duck, zebra,
elephant, lion, shark, turtle

Decreases in length associated with normal aging (Taler et al.,
VS. 2019), development and progression of MCl and AD (Mueller
et al., 2015; Pakhomov et al., 2016), and Huntington’s disease
(Ho et al., 2002)

Changes in aspect ratio: if
sequences differ in length, the
plot is rectangular instead of
square

Repetitions Cat, dog, pig, cow, dog, duck, zebra, Associated with AD (Pekkala et al., 2008; McDowd et al., Points on the plot in the same

(perseverations) elephant, lion, shark, turtle 2011), and frontotemporal dementia (Rascovsky et al., 2007) row or column, further
highlighted by a green arrow

Intrusions Cat, dog, pig, cow, chair, duck, zebra, ~ Associated with AD (McDowd et al., 2011), and schizophrenia Point highlighted by a red “x”

(out-of-category items) elephant, lion, shark, turtle

(Allen et al., 1993)

Changes in order of Cat, dog, pig, cow, duck, zebra
items Vs,
Pig, dog, cat, cow, zebra, duck

Correlation between recall order of words and their semantic
features changes with age (De Marco et al., 2021); differences
in clustering and switching emerge with aging (Troyer et al.,

Proximity of points to the
diagonal (quantified by DfD
score)

1997), and with MCI or AD (Fagundo et al., 2008)
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We employ semantic fluency as a usage case for this
quantification and visualization method, and we show using
an empirical dataset that these methods highlight multiple
important features of semantic fluency performance, such as
changes in item ordering between sequences. We show that
the DfD metric quantifies changes in the order of items
between sequences, which is found to differ significantly between
healthy control and Alzheimer’s patients for semantic fluency.
Individual participant plots facilitate tracking the progression
of a participant’s performance over time on this task by easily
and interactively demonstrating changes between the sequences.
In addition, this visualization method can be extended to the
group level to demonstrate differences in the patterns of recall
sequences that are made by various groups (e.g., patients with AD
or healthy controls).

METHODS

Fluency Dataset and Participant

Characteristics

For fluency data, we used a published dataset of longitudinal
semantic fluency data from the University of California San
Diego Shiley-Marcos Alzheimers Disease Research Center
(UCSD ADRC) available at https://osf.io/jéqea/ (Zemla and
Austerweil, 2019). This dataset contains semantic fluency lists
for the category “animals” collected between 1985 and 2016
from 139 individuals (60% female). For this semantic fluency
task, participants were given 60 seconds to name animals aloud,
which were written down in real time by a researcher and
later transcribed.

Each participant was tested approximately once per year
during their involvement in the study and was given the fluency
test as part of a larger set of tasks (Zemla and Austerweil,
2019). There are 20 conditions represented in the sample, but
we restricted our analyses to participants considered healthy
control (HC) or Probable Alzheimer’s Disease (ProbAD). Clinical
diagnosis was based on the National Institute of Neurological
and Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) scale,
assessed at each visit. While age is not included in the transcribed
dataset, as reported previously the mean age at first visit
(used in these analyses) across all participants was 71.4 years
(Zemla and Austerweil, 2019).

Within the dataset, 97 participants were considered HC and 61
were considered ProbAD at the time of data collection, but these
groups are not mutually exclusive; 19 participants transitioned
from one group to another at some point between 1985 and
2016. There are 1,167 total fluency lists from these participants:
785 from HC participants, 282 from ProbAD participants, and
100 from participants with other diagnoses. Because pairs of lists
are required for the visualization, participants with fewer than
two lists were excluded. To ensure sample independence, for
statistical analysis only the first pair of lists for each participant
was used, and the 19 participants in both the HC and ProbAD
groups were also excluded. This resulted in a sample of 77 HC
and 40 ProbAD participants with two fluency lists each. Within

this group used for analyses, each participant had an average of
8 data timepoints (minimum of 2, maximum of 26), of which
only the first pair was used to minimize repetition effects on task
performance and ensure sample independence. This sample had
69 women (58.97%), consistent with the full dataset. As expected,
the groups differed by Mini-Mental State Exam (MMSE) score,
which was lower for the ProbAD group (M = 23.81, SD = 3.30)
compared to HC (M = 29.04, SD = 1.87), #(52.29) = 9.25,
p < 0.0001.

Statistical Testing

Group differences across metrics—DfD score; number of words
produced, ie., list length; proportion of items in a list
that are repeats; number of intrusions; and MMSE score—
were compared using t-tests implemented in Python using
Researchpy 0.1.9.

Logistic regression was used to determine the utility of
including the DfD score above and beyond other metrics.
Logistic regression was implemented using Statsmodels 0.12.2.
Logistic regression models included common metrics used
to quantify fluency (list length, repetitions, and intrusions),
as well as a measure of change of an established metric
(change in list length between two lists), and our DfD
score. All metrics were z-scored. All models included all
main effects and interaction terms between predictors (2-
way to n-way). Pairs of models with and without the DfD
score and its corresponding interactions were compared to
assess its added value. Metrics included in each model and
model comparisons are outlined in Table 2. Only models
that converged are described in the table—models with both
intrusions and repetitions were also run but did not converge.
All models were also run with sex as an additional factor,
but sex was not a significant predictor in any model and
the overall model comparison results remained the same as
indicated (Table 2).

Models were compared using the likelihood-ratio (LR) chi-
squared test. MMSE was not included in any models in order
to restrict comparison to methods of quantifying the semantic
fluency task specifically.

Interactive Notebook and Code
Availability
All coding, data cleaning, and data analysis was done
using Python 3.7.3 (NumPy 1.16.2,' pandas 0.24.2;
SciPy  1.6.2,° Researchpy 0.1.9,* Statsmodels 0.12.2,°
Matplotlib  3.0.3,° interactive plots made with Plotly
4.1.07).

Using Google Colaboratory, we created an interactive
notebook to demonstrate the visualization of these

'https://numpy.org/
Zhttps://pandas.pydata.org/
*https://scipy.org
*http://researchpy.readthedocs.io/
>https://statsmodels.org
Chttps://matplotlib.org/
“https://pypi.org/project/plotly/
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data, which can be accessed at the following link:
https://colab.research.google.com/drive/11uSkmbwWUZnGNzt
V1ulUWQxZ2VnhWnwX?usp=sharing. The code used for
analyses and to generate the figures in this manuscript can be
found on GitHub,® and can be executed at that link via Binder.’

RESULTS

Visualizing Changes in Semantic Fluency
Data Using Recurrence Plots

Recurrence plots are commonly used in bioinformatics to
compare nucleotide sequences (Gibbs and Mcintyre, 1970;
Huang and Zhang, 2004; Cabanettes and Klopp, 2018). They
have also been adapted for other fields, for example to
analyze real-valued time series (Yankov et al, 2005) and
large amounts of text or code (Church and Helfman, 1993).
Drawing from these examples, we have developed a plotting
method that allows visual and graphical comparison of semantic
fluency sequences. Similar to other categorical time series
data (such as nucleotide sequences), comparisons between
fluency sequences can be visualized using similarity matrices.
These plots are an attractive starting point for visualizing
recall data because they do not employ a symbol-by-symbol
representation and also do not require categories to have
an inherent ordering. They visually highlight relevant aspects
of recall data; one sequence of words can be plotted along
the x-axis and the other along the y-axis with matching
points shaded, allowing for visualization of changes between
sequences such as changes in ordering and missing or added
words (Figure 1).

As one of the main strengths of these plots, changes
in item ordering between sequences are highlighted. These
plots emphasize the changes in both the identity and order

Shttps://github.com/smaboudian/recurrence-analysis

of the words generated, and also conveniently represent
unidimensional metrics of semantic fluency performance (see
Table 1, ‘Visualization’ for a summary). The traditional fluency
metric (the number of words produced) can be compared
between the two sequences plotted based on the lengths
of the axes. Changes in the number of words produced
between the two sequences are demonstrated by changes in
the dimensions of the plot (Figure 2). These plots allow
for the comparison of fluency performance changes over
multiple years, aiding the ability to monitor performance on
the task over time.

In order to increase the relevance of the plots to analyzing
recall data, we have added some additional features to the
recurrence plots that are specific to this application. These
elements emphasize aspects of interest to fluency data, such as
repeated items or missing items between sequences (Figure 2).
These highlighted features are clinically relevant to the analysis of
semantic fluency data: differences in repetitions, out-of-category
items, and changes in the length of the sequences produced have
all been associated with AD (Table 1). Additional elements could
be tailored to other specific applications.

Furthermore, we have incorporated interactive features to
make the application more user-friendly, especially for clinical
practitioners (Figure 3). These interactive displays facilitate
navigating the plots and their features by providing tooltips
that describe sequence items and any special attributes.
These features can be accessed using the following Google
Colaboratory notebook: https://colab.research.google.com/drive/
11uSkmbwWUZnGNztV1ulUWQxZ2VnhWnwX?usp=sharing.

Quantifying Changes in Semantic
Fluency

With these recurrence plots, changes in item ordering between
sequences stand out. Drawing from these visualizations, we

*https://mybinder.org/ developed the following metric to quantify the difference in
A List 1 B List 1 c List 1
< 4] o [a] w < o0 (6] [a) w < =) (®] [a} w
2 2 e 2 e T ° ° ° T B T T B °
(<] [<} (<] o o o o o o o o o o =3 o
2 2 H = E 2 2 z H g B E E H H
word A word A - word A .
word C 1
word B - word C
word D -
o~ o~ ™~
& word C 1 @ word B - k]
- g -
word B .
word D word E -
word F
word E A word D - word G -
FIGURE 1 | Basic features of recurrence plots. Basic visualization principles for recurrence plots of recall data: one sequence of words is plotted along one axis and
another along the other axis; areas of similarity are shaded using dark blue points. In semantic fluency the two lists compared could be taken from two different time
points when the task was performed to track progress, whereas for list learning the lists would be the actual list compared to the participant’s recalled sequence.
Identical lists fill the diagonal (A), whereas lists that are increasingly different look more scattered (B,C).
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FIGURE 2 | Basic features of semantic fluency visualizations. (A) The first sequence (chronologically) is plotted on the x-axis and the second on the y-axis. Areas of
similarity are shaded in blue. ltems present in one sequence but forgotten in the other are indicated by orange points on the corresponding axis, i.e., orange points
on the x-axis indicate items present in the first (x-axis) list but missing from the second (y-axis) list. Repeated items are indicated by green arrows and green item
labels. For semantic fluency data specifically, invalid (out-of-category) items, also referred to as intrusions, are indicated by a red “x” and asterisk. Repetitions and
out-of-category items can occur as words present in both lists (blue points) or just in one list (orange), so these markers are overlaid on the appropriate color point.
(B) Changes in sequence length are easily visualized via the aspect ratios of the plots. Square plots correspond to no change, landscape-oriented rectangles (right)
correspond to the second sequence being shorter in length, and portrait-oriented rectangles (left) correspond to the second sequence being longer.

the ordering of words produced between sequences, termed the
“distance from diagonal,” or DfD:

DD = > myj* |i—j

{i.j}

>

where (i, j) are the indices of the array, and m;, ; = 1if the items
on the two axes match and m; ; = 0 otherwise. The DfD of
a pair of sequences is therefore 0 if the sequences are a perfect
match, and increases as the order of items is more scrambled.
Lower DfD scores indicate sequences are closer to a perfect match
with each other in the words produced and their ordering. For
our analyses, the DfD, like the traditional metric of list length, is

calculated using only the unique words produced (repetitions of
words are removed).

Using this new metric, we find that patients with Probable
AD (ProbAD) have a lower DfD score on average (M = 14.53,
SD = 11.36) than healthy controls (HC) (M = 43.53, SD = 27.99),
£(110.23) = 7.93, p < 0.0001. This finding demonstrates that
patients with ProbAD tend to have more similar lists over time,
since the DfD quantifies the similarity between a pair of lists (and
lower is more similar). This result may occur in ProbAD because
as their semantic networks shrink, patients with ProbAD tend to
output the same few familiar items, while healthy controls have
a larger, more intact network to choose from. This is consistent
with previous reports that words selected earlier in semantic
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FIGURE 3 | Interactive features of visualizations. The plots can be made interactive to facilitate usage. Hovering over a point shows the identity of the items that it
corresponds to as well as salient features, such as repeated or invalid items.

fluency lists tend to be those most frequently used in a given
language, which are also those most preserved in AD (Tang-Wai
and Graham, 2008; De Marco et al., 2021).

Next, we sought to examine if the DfD metric offers additional
diagnostic value, above and beyond existing metrics including list
length, repetitions, and intrusions. To this end, we first confirm
that, as previously reported (McDowd et al., 2011; Mueller et al.,
2015; Pakhomov et al., 2016), patients with ProbAD produce
fewer correct words on average (M = 12.54, SD = 3.67) than
HC (M = 19.55, SD = 3.35), £(73.06) = 10.09, p < 0.0001.
Since patients with AD have been found to repeat items more
within a list (Pekkala et al., 2008; McDowd et al., 2011), we also
calculated the proportion of items in a list that are repeated (i.e.,
the number of repetitions in a list divided by the length of the
list). We confirm that the average proportion of repetitions per
list is higher for ProbAD patients (M = 0.090, SD = 0.086) than
HC (M = 0.020, SD = 0.027), #(43.05) = —5.03, p < 0.0001.

The number of intrusions is also higher for the ProbAD group
(M = 0.40, SD = 0.71) than HC (M = 0.14, SD = 0.39),
t(51.43) = —2.13, p = 0.038.

We then combined the novel DfD metric and the existing
metrics in a series of logistic regression analyses to test if
and to what extent the DfD metric adds diagnostic value. In
these models we included existing metrics used to quantify
fluency (list length: the average length of a pair of lists,
repetitions: the average proportion of repetitions in the pair
of lists, and intrusions: the number of intrusions in the pair)
as well as our DfD score for the pair of lists. Consistent
with our hypothesis, models predicting diagnosis that included
the DfD score consistently outperformed models without it
(Table 2, models 1-4), although in one case this difference
does not reach significance (Table 2, models 3 and 4). In
an additional set of comparisons, we included the difference
between the lengths of the lists, to indicate if comparing
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TABLE 2 | Regression resullts.

DV: Diagnosis (HC or ProbAD)

v 1 2 3 4 5 6 7 8 9 10
Average list length v v v v v v
Length difference v v v v v v
Average proportion of repetitions v v v v v v
Number of intrusions v v v v
DfD score v v v v v
df 3 7 3 7 7 15 3 7 3 7
LL —31.833 —24.865 —28.141 —24.319 —30.148 —21.842 —56.554 —32.924 —71.794 —45.051
Model comparisons 1vs. 2 3vs. 4 5vs. 6 7vs. 8 9vs. 10
LR, df, p 13.936, 4, 7.644, 4, 16.612, 8, 47.260, 4, 53.486, 4,

p =0.0075 p=0.11 p=0.034 p=1.4x10"9 p=6.7x 10"

LL, log likelihood; LR, likelihood ratio. For each model, all main effects and interactions are included. Model comparisons are based on including/excluding the main effect
of and all interactions involving the DfD score.
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changes in ordering over time (DfD score) adds diagnostic
value even when considering changes in the classic list length
metric over time. In this case the models that included the
DfD score again consistently outperformed those that did not
(Table 2, models 5-10).

Visualizing Aggregate Comparisons of

Fluency Performance

This plotting method can also be applied at the group level
to summarize group differences in the patterns of recall data,
as quantified in the previous section. We demonstrate this
application by comparing sequences made by patients with
ProbAD or healthy control participants. Using the UCSD
ADRC dataset described above, we generated plots of every
chronologically adjacent pair of lists that belonged to the same
participant; we then generated a cumulative heatmap of these
plots by adding the similarity matrices together and scaling them
(by dividing by the total number of matrices or plots in each
group). We did so for all fluency sequences corresponding to
healthy controls (Figure 4A) and separately for all sequences
corresponding to ProbAD patients (Figure 4B).

This method allows for the visualization of general group
patterns, e.g., in healthy participants and participants with
ProbAD (Figures 4A,B). It also allows for more direct visual
group comparisons: subtracting the plot of participants with
ProbAD (Figure 4B) from the healthy controls plot (Figure 4A)
generates a heatmap demonstrating group differences, which
shows that responses for participants with ProbAD tend to be
shorter and closer to the diagonal (Figure 4C). These results
may assist users in better interpreting results from quantitative
analysis of the group (such as those described in “Quantifying
Changes in Semantic Fluency”), and corroborate the findings
above that patients with ProbAD produce fewer correct words
and have a lower DfD score on average, meaning their sequences
tend to be more similar in order.

DISCUSSION

We introduce a novel metric for quantifying changes in recall
data, the DfD, which emphasizes discrepancies in item ordering
between sequences. We also illustrate a new way to visualize this
kind of data that complements this metric, highlighting changes
in item ordering, list length, and item identity between sequences
that can be difficult to distinguish from raw responses or current
metrics alone. We demonstrate a specific application of these
methods to a type of recall data (semantic fluency data), and
highlight a clinical application in the form of visualizing and
quantifying changes in semantic fluency performance in Probable
AD. We show that quantifying changes via the DfD metric
provides additional diagnostic value beyond existing metrics.
Furthermore, we show that these plots can be used to visualize
and compare aggregate fluency performance (or other recall data)
between groups to highlight group-level changes.

While we focus on applying these methods to verbal fluency
tasks, studies of human memory and language make use of
a variety of paradigms designed to engage various aspects of

memory retrieval or language production: (i) cued recall tests,
such as verbal fluency tasks (e.g., Nelson and McEvoy, 1979);
(ii) free recall list-learning tests, where participants study a list
of items on each trial and then are prompted to recall the items in
any order (e.g., Cohen, 1963; d’Ydewalle, 1981; Nelson et al., 1982;
Sadeh et al., 2018); and (iii) serial recall list-learning tests, where
participants study a list of items and are asked to recall them
in order (e.g., Klein et al., 2005; Chubala et al., 2019). Because
of the common focus on comparing pairs of lists, the methods
outlined here can also be easily adapted to list-learning tasks
or other recall data and may provide additional insight into the
quantification of these tasks. For example, it may be beneficial
to quantify deviations in the ordering of recalled items from the
original learned list in serial recall list-learning tasks, which could
be accomplished with the DfD metric.

Given the challenges of visualizing categorical time series
data and the specific constraints of recall data (Weif3, 2008),
these recurrence plots are an appealing way to visualize
this type of data because they do not require a symbol-by-
symbol representation of each item or a natural ordering of
categories. They also demonstrate relevant aspects of recall
data and can be used to track changes in this data over
time. However, visualizing nominal categorical time series
data usually requires solutions tailored to a certain type of
data and to the goals of analysis (Weif3, 2018). Therefore,
these recurrence plots incorporate symbols and visualizations
specific to analyzing recall data and thus may not necessarily
be applicable to other kinds of categorical time series data
without modification. This visualization method also does
not provide very meaningful information for extremely short
sequences or, in the case of applications to semantic fluency
performance, for sequences that are extremely disorganized
or unintelligible (such as those that may be produced by
patients with aphasia).

As an additional limitation, one aspect of recall data in general
and semantic fluency data in particular that is not explicitly
captured by these quantifications or recurrence plots is the
semantic relationships between words. Clustering words into
semantic subcategories has been used to analyze semantic fluency
performance; differences in the number of subcategories and the
amount of switching between subcategories have been reported
between young and elderly healthy adults (Troyer et al., 1997),
and between healthy elderly adults and those with AD (Fagundo
et al,, 2008). Recurrence plots visualize sequence similarities,
but since they do not use any form of symbol-by-symbol
representation they do not visualize features of specific items
(beyond sequence similarity) or semantic relationships between
items. Future work incorporating a method of quantifying and
visualizing semantic clustering for fluency data could further
enhance its scope and practical appeal.

In terms of other avenues for future directions of this work,
the use of network analysis and graph theory to capture network
properties of human memory and recall is becoming increasingly
popular (Lerner et al., 2009; Bertola et al., 2014). These methods
can provide important insights into memory processes, but one
hurdle is that the performance of these models is difficult to
visualize. Similar methods to those described in this paper, such
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as the DfD metric and aggregate group-level recurrence
plots, can be used to compare the performance of
various network models by visualizing and quantifying
their outputs. The DfD metric described in this paper
is a straightforward quantification of the visual patterns
demonstrated in these recurrence plots, but is not the only way
to quantify patterns in this kind of data. Future work geared
toward developing additional metrics could have important
implications for improving the analysis of recall data and
graph theory models.

More precise quantification and visualization of recall data can
have other important scientific and clinical value. One clinical
application of these methods that we demonstrate is for analyzing
semantic fluency data in patients with AD. Certain features of
fluency performance, such as the amount of repetitions in the
list, increase with the severity of AD (Pekkala et al., 2008). It
would be interesting to analyze these plots and metrics in a
larger dataset with more patients who transition from being
healthy control to a probable AD diagnosis (or who develop
MCI and then probable AD) to see if these diagnostic transitions
can be predicted earlier using these visualizations and the DfD
metric than using the traditional fluency metric (the length of
the list) alone. If so, these methods could provide clinicians with
an additional way to track and visualize disease progression in
MCI and AD.

Beyond AD, fluency performance is also used to evaluate
other disorders. Semantic fluency scores correlate significantly
with MMSE scores, making fluency tests attractive for clinical
settings because they are short and easier to administer (Lopes
et al., 2009). Less time or fewer words between repetitions in
fluency suggests a retrieval error, as seen in aphasics, whereas
more time or words between repetitions suggests a working
memory deficit, as seen in patients with AD (Miozzo et al.,
2013). Patients with schizophrenia show deficits in memory,
attention, executive functioning, and psychomotor speed, and
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