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Accelerated brain aging had been widely reported in patients with schizophrenia (SZ).
However, brain aging trajectories in SZ patients have not been well-documented using
three-modal magnetic resonance imaging (MRI) data. In this study, 138 schizophrenia
patients and 205 normal controls aged 20–60 were included and multimodal MRI
data were acquired for each individual, including structural MRI, resting state-functional
MRI and diffusion tensor imaging. The brain age of each participant was estimated
by features extracted from multimodal MRI data using linear multiple regression. The
correlation between the brain age gap and chronological age in SZ patients was best
fitted by a positive quadratic curve with a peak chronological age of 47.33 years. We
used the peak to divide the subjects into a youth group and a middle age group. In the
normal controls, brain age matched chronological age well for both the youth and middle
age groups, but this was not the case for schizophrenia patients. More importantly,
schizophrenia patients exhibited increased brain age in the youth group but not in the
middle age group. In this study, we aimed to investigate brain aging trajectories in
SZ patients using multimodal MRI data and revealed an aberrant brain age trajectory
in young schizophrenia patients, providing new insights into the pathophysiological
mechanisms of schizophrenia.

Keywords: schizophrenia, accelerated brain aging, brain age gap, multimodal magnetic resonance imaging,
machine learning

Frontiers in Aging Neuroscience | www.frontiersin.org 1 March 2022 | Volume 14 | Article 823502

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.823502
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2022.823502
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.823502&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/articles/10.3389/fnagi.2022.823502/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-823502 March 3, 2022 Time: 17:8 # 2

Huang et al. Brain Age in Schizophrenia Patients

INTRODUCTION

Schizophrenia (SZ) is one of the costliest mental disorders in
terms of human suffering and societal expenditure, with a 1%
lifetime risk, chronicity, severity, and an impaired quality of
life (van Os and Kapur, 2009; Cocchi et al., 2011; Charlson
et al., 2018). Regretfully, etiology of the disease is unknown.
Recent studies have found structural abnormalities in SZ patients,
including decreased fractional anisotropy, gray matter volume
(GMV) and hippocampal volume (Ellison-Wright and Bullmore,
2009; Bois et al., 2016; Wu et al., 2018; Duan et al., 2021), but brain
volume changes are not constant throughout the course of the
illness (van Haren et al., 2008). Functional magnetic resonance
imaging (MRI) studies have shown similar abnormalities in the
brains of SZ patients, such as a decrease in the amplitude of
low-frequency fluctuations (Huang et al., 2010), an increase
in functional connectivity within the default mode network
(He et al., 2013), and changes in network homogeneity (Guo
et al., 2014). Importantly, structural and functional abnormalities
result in different brain aging trajectories (Mitelman et al.,
2009; Mandl et al., 2010). Several recent studies have revealed
that some of the changes observed in SZ patients are similar
to those seen in physiological aging (Douaud et al., 2009;
Nenadic et al., 2012).

During the normal aging process, brain changes include
highly coordinated and sequenced events characterized by
both progressive (myelination) and regressive (synaptic
pruning) processes (Silk and Wood, 2011). Healthy brain
aging demonstrates a specific pattern, in which cortical GMV
decreases curvilinearly, cortical white matter volume (WMV)
remains constant, and cortical cerebrospinal fluid increases
(Pfefferbaum et al., 1994). Therefore, brain age (BA) could
be estimated by analyzing brain structure, function, and
connectivity features over time (Dosenbach et al., 2010).
Recently, machine learning methods for BA estimation modeling
were introduced, in which individual neuroimage features were
used for model training (Huang et al., 2017; Lewis et al., 2018;
Bashyam et al., 2020), and the model can provide potential
brain aging biomarkers (Kondo et al., 2015; Qin et al., 2015;
Valizadeh et al., 2017).

Individuals with the same chronological age (CA) might
experience different trajectories of brain aging. Such differences
might result in a mismatch between the CA and the BA. Previous
studies have shown that this mismatch occurs simultaneously
with brain changes (Cole et al., 2015, 2018a). Importantly,
this kind of mismatch has been observed in neuropsychiatric
disorders (Koutsouleris et al., 2014; Nenadic et al., 2017;
Kaufmann et al., 2019; He et al., 2020), and the degree of
deviation from the CA might help in the detection of clinical
outcomes (Franke et al., 2010; Wang et al., 2019). Cole et al. found
that the brain age gap (BAG) between the BA and the CA of
elderly individuals was associated with a higher risk of mental
or physical problems, as well as premature death (Cole et al.,
2018b, 2019). Boyle et al. revealed that the BAG was related to
specific cognitive functions (Boyle et al., 2021). However, the BA
trajectory in SZ patients based on three-modal MRI data has not
been well-documented.

In this study, we used the Brainnetome Atlas (BNA)1 (Fan
et al., 2016) and the white matter parcellation map (WMPM)
(Mori et al., 2008) to build feature vectors from multimodal MRI
data, including structural MRI (sMRI), resting state-functional
MRI (rs-fMRI) and diffusion tensor imaging (DTI) data. The
value of the BAG was computed and provided an indication
of deviation from normal aging trajectories. We estimated the
BA and assessed specific patterns of brain aging trajectories in
both the SZ and normal control (NC) groups. Based on previous
evidence (van Haren et al., 2008; Mitelman et al., 2009; Mandl
et al., 2010; Nenadic et al., 2012), we hypothesized that brain age
in SZ patients might be increased and that the degree of brain
aging might differ between age groups.

MATERIALS AND METHODS

Participants
In this study, we recruited 363 subjects, including 154 SZ patients
and 209 NCs, and collected their sMRI, rs-fMRI, and DTI data.
SZ patients met the diagnostic criteria for the fourth edition of
the Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV). SZ patients were recruited from the Affiliated Brain Hospital
of Guangzhou Medical University, Guangzhou. All subjects were
fully informed of the details of the experiment. They signed an
informed consent before undergoing the clinical trial and MRI.
This study was carried out in compliance with the Declaration of
Helsinki and approved by the Ethics Committee of the Affiliated
Brain Hospital of Guangzhou Medical University.

Magnetic Resonance Imaging
Acquisition
MRI data were acquired using a Philips 3T MR system
(Philips, Achieva, Netherlands) located at the Affiliated Brain
Hospital of Guangzhou Medical University. To ensure data
quality, all MRI data were scanned using scanning protocols
designed by experienced experts, and the instrument was
operated by an imaging technologist. The participants were
instructed to keep their eyes closed, relax but not sleep, and
move as little as possible. For each subject, rs-fMRI data were
collected using an echo-planar imaging (EPI) sequence (64∗64
scan matrix with 3.4∗3.4∗4 mm3 spatial resolution, repetition
time = 2,000 ms, echo time = 30 ms, field of view = 220∗220
mm2, flip angle = 90◦, number of layers = 36, and layer
thickness = 4 mm, total time = 486 s). The sMRI data were
obtained using a sagittal three-dimensional gradient-echo T1-
weighted sequence (256∗256∗188 matrix with 1∗1∗1 mm3 spatial
resolution, repetition time = 8.2 ms, echo time = 3.7 ms, flip
angle = 7◦, and layer thickness = 1 mm). The DTI data were
acquired by applying a single-shot EPI-based sequence (spatial
resolution = 2∗2∗3 mm3, field of view = 256∗256 mm2, repetition
time = 6,000 ms, echo time = 70 ms, flip angle = 90◦, number of
layers = 50, and layer thickness = 3 mm, 33 nonlinear diffusion
weighting directions with b = 1,000 s/mm2, and one direction
without diffusion weighting).

1http://atlas.brainnetome.org/
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Image Preprocessing
The preprocessing steps of multimodal MRI data were same
to those in our previous studies (Wu et al., 2018; Kong et al.,
2021; Zang et al., 2021). More details were described in the
Supplementary Material. After the correction of head motion, 20
subjects (16 SZ patients and 4 NCs) with excessive head motion
(2 mm or 2◦) were excluded. Therefore, 138 SZ patients and 205
NCs were included in the analysis (Table 1).

Structural Magnetic Resonance Imaging
The SPM122 packages were used to preprocess the sMRI data.
The whole brain was parcellated by the BNA containing 210
cortical and 36 subcortical regions. The GMV and WMV values
of 246 brain regions were calculated.

Resting-State Functional Magnetic Resonance
Imaging
The SPM12 and DPARSF3 packages (Yan and Zang, 2010)
were used to preprocess the rs-fMRI data. The amplitude
of low frequency fluctuation (ALFF), regional homogeneity
(ReHo), and degree centrality (DC) values of 246 brain
regions were computed.

Diffusion Tensor Imaging
Diffusion tensor imaging data were preprocessed using the
PANDA toolbox (Cui et al., 2013). The values of fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),
and radial diffusivity (RD) of 50 white matter regions defined by
the WMPM were calculated.

Age Estimation Analysis
Feature Selection
In the current study, 2 sMRI indices (i.e., GMV and WMV), 3
rs-fMRI indices (i.e., ALFF, ReHo, and DC) of 246 brain regions,
as well as 4 DTI indices (i.e., FA, MD, AD and RD) of 50 brain
regions were extracted for each subject. As a result, a feature

2http://www.fil.ion.ucl.ac.uk/spm/
3http://rfmri.org/DPARSF

TABLE 1 | Participant demographics.

NC group SZ group p value

Gender 110/95 95/43 < 0.05a

Education years 12.84 ± 2.83 10.74 ± 3.29 < 0.05b

Age (years) 32.51 ± 8.37 33.75 ± 7.23 0.15b

PANSS positive
symptom scale score

– 23.26 ± 5.16 –

PANSS negative
symptom scale score

– 22.60 ± 7.47 –

PANSS general
psychopathology scale
score

– 40.03 ± 9.55 –

PANSS, positive and negative syndrome scale.
ap value was obtained by a chi-square test.
bp value was obtained by a two-sample t-test.

vector with 1,430 dimensions was obtained for each subject. The
vectors were normalized by the following formula:

Z = (x−u)/s

where u and s are the mean and standard deviation of the training
subjects’ features, respectively.

The model is likely to overfit when the number of features is
much larger than the number of samples (Erickson et al., 2017).
Thus, the feature selection procedure might be useful and critical
for improving prediction accuracy. To obtain the age-related
features, least absolute shrinkage and selection operator with
cross-validation (LASSOCV) (Tibshirani, 1996) was performed.
The LASSOCV sets most features to zeros and retains correlated
ones by using L1-norm, which results in a very sparse features
matrix and reduce dimensions of features.

Brain Age Estimation
Multiple linear regression (MLR) is a standard statistical
technique for predicting the criterion or the independent variable
by linearly combining several variables. MLR does not have
algorithm-specific parameters. The measure of MLR is the
mean absolute error (MAE), Pearson correlation, coefficient of
determination and root mean squared error (rMSE). Notably,
MLR has been successfully used in neuroimaging studies to assess
age (Valizadeh et al., 2017) and other scores (Rosenberg et al.,
2016; Shen et al., 2017). BA was estimated in NCs using leave-
one-out cross-validation (LOOCV) (Figure 1). Furthermore,
to investigate MLR prediction accuracy with different modal
features, we repeated the above processes using different modal
features. Data from SZ patients were used for testing based on
the model of MLR trained by all NC subjects. The BA numeric
value may indicate the degree of brain aging. The mean BAG of
the NC group should consequently be or close to zero.

Statistical Analysis
Two-sample t-tests were used for the statistical analysis of
between-group differences in age and education years. A chi-
square test was used for the statistical analysis of gender
differences. We employed linear regression to remove the effects
of gender on features (Kondo et al., 2015). A permutation test
was applied to estimate the statistical significance of the MAE
results like classification (Golland and Fischl, 2003). In our
analysis, we randomly permuted the age labels of the training
data 1,000 times and performed all regression processes with each
set of permuted labels. Quadratic and linear models were used
to fit the BAG and the CA in the SZ group, with the positive
quadratic model performing better (Supplementary Figure 1),
similar result was acquired by BA estimation based on sMRI
and DTI (Supplementary Figure 3). Thus, the CA of the peak
of the positive quadratic curve was used to divide the subjects
into a youth group and a middle age group. The Pearson
correlation analysis between BA and CA in NC group was used
to estimate model prediction accuracy, while correlation analyses
between BAG and CA in SZ group were used to identify the
relation between BAG and CA. We defined subjects with age
less than the peak of the quadratic curve as the youth group,
others as the middle age group. Because the brain structure
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FIGURE 1 | Methodological sketch.

and function of SZ patients differed from those of NCs (Mori
et al., 2007; Bose et al., 2009), differences in the BA and the
CA were investigated by two-sample t-tests in the SZ and
NC groups, the BAG between the SZ and NC groups was
compared in the youth and middle age groups. Prior to statistical
analyses, the BA was corrected with the following formula
(de Lange and Cole, 2020):

offset = α × CA+ β

corrected BA = BA− offset

Where the offset = BA-CA, the coefficient α and β represent
the slope and intercept.

RESULTS

Characterization of Age-Related
Features
Eighty-seven of the 1,430 features were more relevant to age
and were used for the BA estimation in the NC group after
LASSOCV (alpha = 0.3). The sMRI, rs-fMRI, and DTI data
accounted respectively for 50, 24, and 13 features in the final
feature set, respectively. After ranking the weights of all features
in the MLR, the 20 best descriptors were as follows: the values of
11 brain regions in the BNA (the orbital gyrus, fusiform gyrus,
striatum, precentral gyrus, superior frontal gyrus, postcentral
gyrus, parahippocampal gyrus, middle temporal gyrus, insular

gyrus, inferior parietal lobule and inferior frontal gyrus); and the
values of 6 brain regions in the WMPM (fornix, posterior limb of
internal capsule, superior corona radiata, superior longitudinal
fasciculus, splenium of corpus callosum and external capsule)
(see Table 2 and Figure 2).

Correlation Between Brain Age and
Chronological Age in the Youth and
Middle Age Groups in Normal Controls
and Schizophrenia Patients
The MLR in the NC group had the best accuracy based on
different model MRI combinations (Supplementary Table 1), in
which the Pearson correlation, MAE, coefficient of determination
and rMSE of the MLR were 0.88, 3.24 years, 0.77 and 4.14 years
respectively (uncorrected) and significant in the permutation test.
In the SZ group, the best model used to fit the BAG and CA
was the positive quadratic regression, in which the peak CA
was 47.33 years (Figure 3 and Supplementary Figure 1). The
peak was then used to divide the subjects into the youth (age
range: 22–46 years, NC: 183, SZ: 128) and middle age (age range:
47–60 years, NC: 22, SZ: 10) groups. Before two-sample t-tests
performed, BA was corrected (see in Supplementary Figure 2
and Supplementary Table 3). In the youth SZ group, the BA
values were significantly higher than the CA values. In the middle
age SZ group, the BA and CA values were not significantly
different. When the same analysis was performed on the NC
group, no significant differences were found in the youth group
or in the middle age group. Accordingly, the BAG of the youth
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TABLE 2 | Brain regions with high weights in BA estimation.

Feature Weight Atlas Region

MD −6.517 WMPM Fornix (column and body of fornix)

FA −4.094 WMPM Fornix (column and body of fornix)

GMV −1.522 BNA Subcortical nuclei/Striatum (L)

MD −1.448 WMPM Posterior limb of internal capsule (R)

GMV −1.398 BNA Parietal lobe/Postcentral gyrus (R)

ReHo −1.193 BNA Temporal lobe/Parahippocampal gyrus (R)

FA −1.115 WMPM Splenium of corpus callosum

FA −1.091 WMPM Superior longitudinal fasciculus (L)

ReHo −1.055 BNA Temporal lobe/Middle temporal gyrus (R)

FA −0.889 WMPM Superior corona radiata (L)

AD 3.857 WMPM Fornix (column and body of fornix)

WMV 1.133 BNA Frontal lobe/Orbital gyrus (L)

ALFF 0.922 BNA Insular lobe/Insular gyrus (L)

WMV 0.849 BNA Temporal lobe/Fusiform gyrus (L)

DC 0.845 BNA Parietal lobe/Inferior parietal lobule (L)

WMV 0.838 BNA Frontal lobe/Inferior frontal gyrus (L)

MD 0.821 WMPM External capsule (L)

WMV 0.705 BNA Frontal lobe/Orbital gyrus (L)

WMV 0.705 BNA Frontal lobe/Precentral gyrus (L)

WMV 0.635 BNA Frontal lobe/Superior frontal gyrus (R)

L is left and R is right.

SZ group was significantly higher than that of the youth NC
group. However, the BAG of the middle age SZ group was also
higher than that of the middle age NC group, despite the fact
that the difference was not statistically significant (Figure 4). The
results were similar in BA estimation based on sMRI and DTI
(Supplementary Figure 4). This finding might be associated with
the atypical brain structure and function observed in SZ patients.

DISCUSSION

To the best of our knowledge, this was the first study to use three-
modal MRI data to analyze brain aging trajectories in SZ patients.
A positive quadratic trajectory of the BAG with the CA was found
in the SZ group. SZ patients showed significantly higher BA than
CA in the youth group, implying that youth SZ patients have
increased brain age.

Methodology Consideration
Recent studies have predicted the BA based on unimodal
neuroimaging and biological information, but few have
combined three-modal MRI features (Dosenbach et al., 2010;
Brown et al., 2012; Lewis et al., 2018). In the current study,
we combined sMRI, rs-fMRI and DTI to estimate the BA.
Combined multimodal MRI features are of crucial importance
because they can identify different patterns of alterations in
the microstructure and macrostructure of the brain (Cherubini
et al., 2016). de Lange et al. showed that combining features from
multimodal MRI data (T1-weighted MRI, DTI, and rs-fMRI)
yielded better age prediction performance than using unimodal
features (de Lange et al., 2020). The combination of T1-weighted
and T2-weighted image features also yielded better prediction

performance than unimodal features (Rokicki et al., 2021).
Similarly, our results showed that combining multimodal MRI
data can achieve sensitive detection of aberrant patterns in brain
aging (Supplementary Table 1).

In addition, the LASSOCV was applied to selected features
which were more relevant to age (Zhang and Huang,
2008). The MLR model allowed for fast computation and
straightforward interpretation of feature weights. Due to number
of subjects limitation, LOOCV was used to estimate model
prediction accuracy.

Brain Age Trajectories in Youth
Schizophrenia Patients
In the SZ group, we found that the correlation between the BAG
and the CA was best fitted by a positive quadratic curve. On
the left side of the positive quadratic curve, the BAG decreased
with CA. We speculated that the BA and CA trajectories became
more convergent in young SZ patients. This result was consistent
with previous findings of age-related abnormalities in the brain,
showing that the brains of SZ patients undergo a recovery
process to realign the brain to that of a NC (Bose et al.,
2009; Voineskos et al., 2010). Moreover, Schnack et al. found
that the acceleration of brain aging in SZ patients decreased
from 2.5 years/year to a normal rate approximately 5 years
after illness onset, which could be attributed to the medication
effect (Schnack et al., 2016). Recent studies have shown that the
medication effect has a nonlinear relationship with antipsychotic
treatment dosage (Rhindress et al., 2017) and is related to the
mean dynamic network interaction index of SZ patients (Wang
et al., 2021). White matter trajectories are also changed in SZ
patients. Disturbances during maturation would be reflected
by different ascending slopes and a shift in peak white matter
maturation (Cetin-Karayumak et al., 2020), implying that the
white matter trajectories of SZ patients and NCs intersect (Bose
et al., 2009; Wright et al., 2014; de Moura et al., 2018). Our results
were consistent with previous findings that showed changing
difference between the CA and the BA in SZ patients and
further suggested that such abnormalities might differ at different
ages. Therefore, we divided the participants into youth and
middle age groups using the peak CA and found a trajectory of
increased brain age in youth SZ patients. Specifically, the BA was
significantly higher than the CA in youth SZ patients, whereas the
BA and CA showed no significant difference in the middle age SZ
patients. Similarly, Voineskos et al. found that young SZ patients
had a significantly lower FA than young NCs, but no differences
were found when the older groups were compared (Voineskos
et al., 2010). van Haren et al. showed that excessive volume loss
in SZ patients did not occur to the same degree throughout the
course of the illness, and it was most prominent during the first
two decades (van Haren et al., 2008).

Important Features for Brain Age
Estimation Based on the Brainnetome
Atlas
Our results suggested that subcortical nuclei, the frontal lobe
and the temporal lobe all play important roles in BA estimation.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2022 | Volume 14 | Article 823502

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-823502 March 3, 2022 Time: 17:8 # 6

Huang et al. Brain Age in Schizophrenia Patients

FIGURE 2 | The signed importance of brain regions for BA predictions in the MLP model. (A) Brain areas with positive weights based on the BNA. Red: orbital
gyrus/frontal lobe; brown: insular gyrus/insula lobe; yellow: fusiform gyrus/temporal lobe; green: parietal lobule/inferior parietal lobe; dark red: inferior frontal
gyrus/frontal lobe; cyan: orbital gyrus/frontal lobe; blue: precentral gyrus/frontal lobe; purple: superior frontal gyrus/frontal lobe. (B) Brain areas with negative weights
based on the BNA. Red: striatum/subcortical nuclei; brown: postcentral gyrus/parietal lobe; yellow: parahippocampal gyrus/temporal lobe; green: middle temporal
gyrus/temporal lobe. (C) Brain areas with positive weights based on the WMPM. Red: fornix; brown: external capsule. (D) Brain areas with negative weights based
on the WMPM. Red: fornix; brown: posterior limb of internal capsule; yellow: splenium of corpus callosum; green: superior longitudinal fasciculus; dark red: superior
corona radiata.

Subcortical structures are responsible for exerting cognitive,
affective, and social functions in humans (Koshiyama et al.,
2018). Our results showed that key subcortical structure was the
striatum, which play important roles in decision-making (Goulet-
Kennedy et al., 2016). Previous studies have indicated that aging
causes significant changes in intrinsic functional connectivity in
the striatum (Porter et al., 2015). Abnormalities in the striatum
may be related to various neuropsychiatric disorders, including
SZ, bipolar disorder, and attention deficit hyperactivity disorder
(Emond et al., 2009; Karcher et al., 2019).

The frontal lobe is thought to manage incoming information
and select appropriate actions based on one’s goals in a
particular context (Rosch and Mostofsky, 2019). The orbital and
precentral gyri in the frontal lobe were also important for BA
estimation and which are associated with emotional expression
and motor behaviors (Dixon et al., 2017; Zhou et al., 2020).
Accumulating evidence suggests that the orbital and precentral
gyri may be abnormal in neuropsychiatric diseases such as
somatic depression, bipolar disorder, autism spectrum disorder
and SZ (Stanfield et al., 2009; Nebel et al., 2014; Zarei, 2018;
Yan et al., 2019).

The main functions of the temporal lobe are to process
auditory information and encode of memory (Hamberger et al.,
2003; Dickerson et al., 2004). The fusiform and parahippocampal
gyri in the temporal lobe with high weight are responsible for

processing visual information and memory (Luck et al., 2010;
Weiner and Zilles, 2016). Fusiform abnormality has been linked
to SZ (McKenna et al., 2019). Atrophy of the parahippocampal
gyrus has also been implicated as an early indicator of Alzheimer’s
disease (Echavarri et al., 2011).

Important Features for Brain Age
Estimation Based on the White Matter
Parcellation Map
Different brain regions are linked by white matter fibers,
and different white matter fibers are associated with various
behaviors. The splenium of corpus callosum and external capsule,
which are linking different brain regions, played major roles
in BA estimation model. The functions of splenium of corpus
callosum and external capsule are linking primary and secondary
visual areas and serving as a route for cholinergic fibers from basal
forebrain to the cerebral cortex (Knyazeva, 2013; Nolze-Charron
et al., 2020), respectively. These fibers would change during the
course of normal aging (Nolze-Charron et al., 2020; Delvenne
et al., 2021). Abnormalities of the fibers were found in SZ (Francis
et al., 2011; Joo et al., 2021).

The superior longitudinal fasciculus, posterior limb of the
internal capsule, superior corona radiata and fornix, which are
associated with the language, motor and memory (Jang, 2009;
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FIGURE 3 | Performance of the BA estimation model. (A) The correlation between the CA and the BA in the NC group. (B) The results of permutation tests of the BA
estimation model. (C) The correlation between the BAG and the CA in the SZ group.

Bernal and Altman, 2010; Adnan et al., 2013), were all given
high weight in the BA estimation model. A recent study found
that some of these brain regions are age-related and showed
lower FA values in SZ patients than in NCs (Yoshimura and
Kurashige, 2000; Peters et al., 2010; Kochunov et al., 2016;
Tesli et al., 2021). Accumulating evidence suggests that the
brain regions are affected in psychiatric disorders, such as SZ,
bipolar disorder and Alzheimer’s disease (Koshiyama et al., 2020;
Linke et al., 2020).

Contribution of Simultaneous Multimodal
Magnetic Resonance Imaging Data
Our findings demonstrated that both some brain regions
have critical contributions to BA estimation. The use of
multimodal neuroimages results in a more sensitive model
that captures alterations in brain structure and function
(Cherubini et al., 2016). The results for the BAG in SZ
youth group could explain altered brain functions such as
decision-making as well as changes in visual, language, motor,
memory, and emotional expression. Thus, future studies using
multimodal neuroimaging are necessary for broadening our
understanding of brain aging.

Limitations
The findings of this study should be considered in light of some
limitations. First, the sample size was relatively small, especially
in the middle age group. The lack of significant results between
NC and SZ in the middle age group could be explained by a
small group sample size. We utilized the data of the NC group
to train the model and discover age-related brain regions that
provided useful information on normal aging patterns rather
than an independent NC dataset. Future work should train
predictive models using data from a large number of NCs and
test the models using an independent dataset. Second, we did
not consider factors such as the years of illness and medication.
Third, a longitudinal study can be used to validate the aberrant
trajectories in SZ patients.

CONCLUSION

We found a positive quadratic trajectory between the BAG
and the CA in SZ patients. BA was significantly higher than
CA only in the youth SZ group but not significantly in the
middle age group. These results suggested that discrepancies
between BA and CA might be attributed to abnormal brain aging
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FIGURE 4 | Relationships between the BA and the CA and differences in the BAG in youth and middle age for the SZ and NC groups. (A) In the NC group,
differences between BA and CA in the youth and middle age groups. (B) In the SZ group, differences between BA and CA in the youth and middle age groups.
(C) Differences in BAG between SZ and NC groups in youth and middle age.

trajectories in SZ patients and demonstrated that SZ patients
exhibit varying degrees of increased brain age at different age
ranges. Furthermore, we suggest that the BA predicted by three-
modal MRI data support more comprehensive biomarker for
understanding abnormal brain aging patterns in SZ patients.
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