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Longitudinal MRI studies are of increasing importance to document the time course
of neurodegenerative diseases as well as neuroprotective effects of a drug candidate
in clinical trials. However, manual longitudinal image assessments are time consuming
and conventional assessment routines often deliver unsatisfying study outcomes. Here,
we propose a profound analysis pipeline that consists of the following coordinated
steps: (1) an automated and highly precise image processing stream including voxel
and surface based morphometry using latest highly detailed brain atlases such as the
HCP MMP 1.0 atlas with 360 cortical ROIs; (2) a profound statistical assessment using a
multiplicative model of annual percent change (APC); and (3) a multiple testing correction
adopted from genome-wide association studies that is optimally suited for longitudinal
neuroimaging studies. We tested this analysis pipeline with 25 Alzheimer’s disease
patients against 25 age-matched cognitively normal subjects with a baseline and a
1-year follow-up conventional MRI scan from the ADNI-3 study. Even in this small cohort,
we were able to report 22 significant measurements after multiple testing correction
from SBM (including cortical volume, area and thickness) complementing only three
statistically significant volume changes (left/right hippocampus and left amygdala) found
by VBM. A 1-year decrease in brain morphometry coincided with an increasing clinical
disability and cognitive decline in patients measured by MMSE, CDR GLOBAL, FAQ
TOTAL and NPI TOTAL scores. This work shows that highly precise image assessments,
APC computation and an adequate multiple testing correction can produce a significant
study outcome even for small study sizes. With this, automated MRI processing is now
available and reliable for routine use and clinical trials.

Keywords: longitudinal surface based morphometry, longitudinal voxel based morphometry, SBM, VBM, HCP
MMP 1.0, dementia, clinical trials, neurodegeneration

INTRODUCTION

Cross-sectional studies have shown that cognitive decline at different stages of the Alzheimer’s
disease (AD) correlate with gray matter loss (Van de Mortel et al., 2021; Wu et al.,
2021). At late stages of AD, a widespread reduction in brain volume was consistently
found in the hippocampus, temporal pole, medial- and inferior temporal cortex, precuneus,
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parietal lobe and cerebellum (Chapleau et al., 2016; Dicks et al.,
2019; Kang et al., 2019; Kunst et al., 2019). A particular interest,
has been in the basal forebrain showing baseline differences in
volume and its fiber projections between healthy aged adults
and AD subjects (Teipel et al., 2011). Changes in brain volume
and fiber projection were predictive for AD progression. Still,
little is known about the dynamics of the neurodegenerative
process and which brain areas are affected strongest by AD
and differ most from typical aging (Schmitz and Nathan
Spreng, 2016; Schmitz et al., 2018) or other forms of dementia
(Landin-Romero et al., 2017).

Longitudinal MRI studies are a reliable way to detect brain
changes at different neurodegenerative disease stages (Hua
et al., 2008; Leow et al., 2009; Morra et al., 2009; Cho
et al., 2013). Still, longitudinal MRI studies are relatively rare.
Large between-study heterogeneity of designs and methods,
differences in sample characteristics and the generally larger
inter-individual variability in samples of older adults make it
difficult to extract general trends. To overcome those limitations,
longitudinal MRI studies require enhanced neuroimaging
pipelines (Iannopollo and Garcia, 2021) and adequate statistical
approaches. A very recent two-study comparison design
longitudinal MRI study was able to show that it is possible to
extract generalizable effects of brain atrophy in healthy aging
people (Jockwitz et al., 2021).

Another source of inconsistency in longitudinal studies are
varying observation intervals between baseline and follow-up
assessments, which, if left uncorrected, may increase inter-
individual variability. Annual percent change (APC) is a
mathematical approach widely used to describe growth (Malthus,
1798; Schaechter et al., 1962) and degeneration processes
(Aylward et al., 2018) but also brain morphometry changes in
longitudinal studies (Dubois et al., 2015; Cavedo et al., 2017).
Using a multiplicative approach for APC (Jockwitz et al., 2021)
assuming a uniform brain morphometry change over a limited
period of time, individual differences in observation intervals can
be safely corrected.

The aim of the present study was to develop a highly
precise and fully automated longitudinal morphometry pipeline
that is able to detect statistically significant changes between
AD patients and cognitively normal (CN) aged individuals
and to safely distinguish AD from CN groups by advanced
neuroimaging features. For this, we used longitudinal datasets
with high image quality data from ADNI3 study (Weiner
et al., 2017). We applied longitudinal ROI and voxel based
morphometry (VBM) of subcortical regions and cortical
subfields, such as hippocampus, amygdala and brain-stem, and
complemented it by longitudinal surface based morphometry
(SBM) of the cortex. For SBM, we used the latest and highest
resolving surface-based brain atlas, the HCP MMP 1.0 atlas
(Glasser et al., 2016) with 360 cortical ROIs.

Both methods together lead to a highly precise parcellation
of the entire brain. However, the high number of group
comparisons for all ROIs required for multiple testing
correction of the statistical significance. Standard approaches
as Bonferroni (Dunn, 1961) or even Benjamini–Hochberg

(Benjamini and Hochberg, 1995) are often too pessimistic
resulting in an erasure of significant effects or require
unrealistically huge sample sizes. Here, we adopted a multiple
testing correction approach from genome studies (Storey and
Tibshirani, 2003) and showed its particular suitability for
longitudinal MRI studies with high number of ROIs.

Applying the above-described imaging workflow together
with the appropriate statistical group analysis revealed only three
significantly differently changing ROIs by VBM analysis in AD
vs. CN subjects but 22 ROI features measured by SBM. We
further compared morphometric alterations in AD patients and
CN subjects with cognitive testing results and found a correlation
between regional atrophy and cognitive decline.

Using most precise measuring of changes in 360 cortical
ROIs in high image quality data, a safe correction of individual
longitudinal observation intervals and an appropriate multiple
testing correction enabled us to show significant differences in
brain morphometry changes correlating with cognitive decline
and to clearly distinguish between AD patients and CN controls
even with relatively small sample sizes.

MATERIALS AND METHODS

Subjects
We included 25 AD patients and 25 cognitively normal (CN)
aged subjects from the ADNI3 study (Weiner et al., 2017)
for whom two high quality MRI scans, a baseline scan and a
1-year follow-up, were available. AD subject ages were of the
range 56.6–91.2 years and CN subjects ages of 65.4–87.1 years.
CN subjects were (a) free of memory complaints, (b) showed
normal memory function in the Logical Memory II subscale
from the Wechsler Memory Scale, (c) had a Mini-Mental State
Examination (MMSE) score at or above 24, and (d) had
a clinical dementia rating (CDR) of 0. The classification of
AD was based on: (a) memory complaints, (b) abnormal
memory function in the Wechsler test, (c) a MMSE score at
or below 24, and (d) a CDR of 0.5 or greater (see ADNI
General Procedure Manual, 2008, p.271). T1-weighted MR
images were used to perform morphometry analyses (Table 1 and
Supplementary Table 1).

Image Quality Assurance
Systematic and manual quality assurance procedure was applied
in two stages: At stage one, a after the raw image conversion
from DICOM to Nifti format, all structural images were visually
inspected comparing with image quality measures calculated
by CAT12 toolbox (Dahnke et al., 2013). At stage two,
after segmentation by CAT12, all modulated normalized gray
matter longitudinal segments were verified for inter-subject
homogeneity. Subjects’ homogeneity test score falling out two
standard deviations of the group mean were considered as
outliers. In this study, there were two subjects, one from each

1http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-
manual.pdf
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TABLE 1 | Demographic table.

Screening Year 1

AD CN AD CN

Age 74.6 ± 7.8 71.0 ± 4.6 75.6 ± 7.8 72.0 ± 4.6

Sex (Male/Female) 16/9 11/14 16/9 11/14

MMSE 22.76 ± 2.74 28.70 ± 3.10 21.13 ± 4.61 28.04 ± 4.56

CDR GLOBAL 0.82 ± 0.24 0.14 ± 0.42 1.14 ± 0.52 0.12 ± 0.42

FAQ TOTAL 15.00 ± 6.18 1.33 ± 5.09 17.43 ± 8.12 1.83 ± 5.94

NPI TOTAL 10.20 ± 10.15 1.12 ± 2.03 13.33 ± 13.09 2.63 ± 4.75

All values (apart from sex) for screening visit and year 1 visit for Alzheimer’s disease
patients (AD) and cognitively normal subjects (CN) are given as group averages
and standard deviation. For sex, the number of males and females is given,
respectively. Individual values and APOE genotypes where available are listed in
Supplementary Table 1.

group, that had to be excluded from the final statistical analyses
for this reason.

Image Processing
Longitudinal imaging data sets were automatically (pre-
)processed with the morphometry pipeline (Figure 1) executed
by NICARATM NeuroImaging-based Connectome Assessment
in Research and Application (NICARA vers. 1.1, Biomax
Informatics AG, Planegg, Germany2) and all results were
managed and assessed by the help of NICARA. Morphometry
pipelines were developed based on open-source imaging
processing and analysis software and tools, such as the
Computational Anatomy Toolbox (CAT12.7-r17423) ran under
Statistical Parametric Mapping, Version 12 (SPM124), and
Freesurfer 7.05.

Cortical gray matter thinning as the gold-standard to
detect aging and neurodegenerative diseases progression was
computed longitudinally by NICARA morphometry longitudinal
pipeline executing both CAT12 and Freesurfer7. Voxel based
morphometry (VBM) and surface based morphometry (SBM)
analysis methods were adopted to perform atlas ROI-based
segmentation and parcellation. VBM could identify longitudinal
volume changes at global and local brain region level. At the
global level, the whole brain volume of gray matter (GM), white
matter (WM) and cortical-spinal fluid (CSF) was segmented
by CAT12 and estimated the total inter-cranial volume (TIV)
was estimated. After the whole brain segmentation, modulated
GM images were normalized to the MNI standard space with
DARTEL algorithm (Ashburner, 2007) and were resampled to
1.5× 1.5× 1.5 mm3 by default CAT12 setting.

At the local brain region level, SBM used 360 ROIs defined
by HCP MMP 1.0 atlas (Glasser et al., 2016) in subject’s
native space by inversing the parameters of modulated GM
normalization by CAT12. VBM of subcortical and specific
brain region subfields was processed by Freesurfer7 recon-all
longitudinal stream (Reuter et al., 2012; Iglesias et al., 2016). This

2https://nicara.eu
3http://www.neuro.uni-jena.de/cat/
4http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
5https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki

approach combining with CAT12 VBM resulted in 19 subcortical
ROIs by the Harvard-Oxford atlas (Frazier et al., 2005; Desikan
et al., 2006; Makris et al., 2006; Goldstein et al., 2007) and
64 ROIs by hippocampal subfields (Iglesias et al., 2015b)
and nuclei of the amygdala (Saygin et al., 2017), 5 ROIs by
brain stem (Iglesias et al., 2015a) in one process. Brainstem
subregions were computed based on longitudinal parcellated
images by Freesurfer7 since there is no longitudinal pipeline
for this model yet.

Correction for Variations in Individual
Longitudinal Observation Intervals
We corrected for deviations from the expected longitudinal
observation interval of 1 year by using annual percent change
(APC) as a measure for longitudinal changes in voxel and surface
based measures. The APC was calculated from the actually
observed measurements x1 and x2 and timepoints t1 and t2,
respectively, by the following equation:

APC =

((
x2

x1

) n
t2−t1
− 1

)
· 100 %

This correction is necessary as not all study subjects returned
for a second image acquisition exactly after n = 365 days. The
annual percent change is described by a multiplicative growth
and decay process that leads to the following statistical model.

Statistical Model for Longitudinal
Change in Brain Morphometry
Longitudinal imaging studies generate pairs of (or sets of more)
strictly positive measurements x1, x2, of the same quantity
at different time points t1, t2, such as, e.g., volumes, areas,
thickness, etc. To obtain a comparable measure of change
of such a variable across different spatiotemporal scales, we
have to normalize with respect to starting value x1 and time
difference t2 − t1.

The normalization with respect to x1 is straight forward and
leads to the definition of a relative change:

RC =
x2 − x1

x1
(1)

This definition implicitly states that two observed relative
change values are always equally severe irrespective of the
baseline measurement x1, which is a reasonable assumption
for neurodegeneration. We further assume that the relative
differences per time unit are constant. This simplification is often
used to model biological degeneration and growth processes
(Schaechter et al., 1962; Bar-On et al., 2002; Aylward et al., 2018)
and leads to the following exponential growth/decay model

x (t) = x0
(
1 + q

)t (2)

with x(t) being the evolving quantities over time, and q the
growth rate for one unit of t.

For our purpose we are interested in expected annual changes
given our measurements x1 and x2, so by evaluating equation (2)
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FIGURE 1 | The flowchart of NICARA morphometry longitudinal pipeline processes making use of FreeSurfer, CAT12 toolbox and NICARA.

for x (t1) = x1, x (t2) = x2 and calculating the ratio of x (t2)
and x (t1) we obtain

x2

x1
=

x (t2)
x(t1)

=
x0
(
1 + q

)t2
x0
(
1 + q

)t1 = (
1 + q

)t2−t1 (3)

Or equivalently

q =
(
x2

x1

) 1
t2−t1
− 1 (4)

In order to arrive at the annual percentage change (APC)
formula, we have to replace the unit of time by the actual
longitudinal time interval of the study n—in case of annual
percent change by 1 year.

APC =

((
x2

x1

) n
t2−t1
− 1

)
· 100 % (5)

As t1 and t2 are measured in days, we need to set n to
365 days for APC.

Note, that some previous longitudinal studies used a linear
model to evolve, e.g., brain volume changes over time by
x (t) = x1 + P · x1 · t, with P = x2−x1

x1(t2−t1) . However, simply
dividing by the time difference to normalize varying observation
intervals implies that the (scaled) absolute difference of x1 and x2
will be the same for all time intervals of the same length t2 − t1,
which, of course, is not true and can lead, for example, to negative
values of x (t) if x2 < x1. In this case, we would have P < 0
and by choosing larger t values, x(t) shrinks indefinitely, which is
impossible for strictly positive quantities such as brain volume!

Multiple Testing Correction
When testing many variables for statistically significant
differences between two (or more) groups, it becomes very likely
to find variables with low p-values, even when there is no real
difference between the groups, but just random fluctuations
in the variables. To account for this effect there are several
techniques to correct for multiple tests. Approaches controlling
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the family wise error rate (FWER)—such as the Bonferroni
correction (Dunn, 1961)—are very conservative. They allow
practically no type I errors (false positives), while type II errors
(false negatives) are extremely common. Naturally, this class
of approaches is not suitable for applications with hundreds or
thousands of tests, especially if the number of subjects in each
group is limited.

The multiple testing correction of Benjamini and Hochberg
(1995) introduced a new concept: Instead of the FWER they
control and thereby introduce an upper bound of the false
discovery rate (FDR), which is the rate of false positives in the
set of all variables, which have been declared as significant. For
analyses with a large number of tests, this is a much better
approach than FWER control procedures, but still might be too
conservative especially for neuroimaging studies with many ROI
assessments that are tested for significance.

The approach of Storey and Tibshirani (2003) can under
certain conditions increase the statistical power of a multiple
testing correction by using the information that p-values of true
null hypotheses are uniformly distributed on the unit interval,
while p-values of false null hypotheses are concentrated near 0.
Conditions for the Storey and Tibshirani approach to actually
increase statistical power, are

1) A large number of individual tests,
2) p-values are approximately uniformly distributed near 1,
3) p-value distribution has a maximum near 0.

If these conditions are fulfilled, the p-value distribution can
be used to estimate the rate π0 of true null hypotheses over all
tests and in turn the FDR. This estimate is closer to the actual
FDR than the upper bound obtained by the Benjamini–Hochberg
procedure. For this study, an FDR of α = 0.05 resulted in more
ROI assessments remaining significant after Storey-Tibshirani
multiple testing correction compared to the Benjamini-Hochberg
approach. If the above conditions are not (all) fulfilled, both
multiple testing corrections are comparably pessimistic.

RESULTS

Longitudinal Voxel Based Morphometry
Detected Increased Hippocampus and
Amygdala Decay
We used longitudinal VBM to detect changes in brain volume
over a period of 1 year of 19 subcortical ROIs according
to the Harvard-Oxford atlas and of 68 ROIs of subfields
of the hippocampus/amygdala and brainstem according to
corresponding FreeSurfer subfield atlases. All changes are given
in APC averaged over all subjects of the respective group. The
longitudinal VBM statistical assessment between AD group and
CN group revealed ten significant ROIs at individual testing level
(Figures 2A,B). Three ROIs remained significant after multiple
testing correction with Benjamini–Hochberg approach namely
left and right hippocampus and left amygdala (Table 2). For
the longitudinal VBM group comparison the Storey-Tibshirani
approach was equally pessimistic as the Benjamini–Hochberg

multiple testing correction because the preconditions of the
Storey-Tibshirani method for the distribution of individual
p-values were not fulfilled (Supplementary Figure 1).

Considering the distribution of the average APC values of all
ROIs for AD and CN group, not just the significant ones, showed
two different, approximately Gaussian distributions with the AD
group distribution slightly shifted to the left indicating overall
smaller APC values for AD group than for CN group (Figure 2C).
However, the overlap between AD and CN distributions are
pretty high. That is why we complemented longitudinal VBM by
longitudinal SBM.

Longitudinal Surface Based
Morphometry Showed Detailed
Differences Between Alzheimer’s
Disease and Cognitively Normal
We performed longitudinal SBM to detect changes over 1 year
of 360 brain regions according to the HCP MMP 1.0 atlas
(Supplementary Table 2; Glasser et al., 2016). All ROI-based
results were given in APC. Statistical group comparisons between
AD patients and CN controls were done for cortical volume, area,
thickness, gyrification and depth as computed by SBM.

Temporal Cortex Showed Accelerated
Decay in Volume, Area and Thickness in
Alzheimer’s Disease
At individual testing level, 117 ROI-based longitudinal
SBM cortical volume group comparisons were significant
(Figures 3A,B). After multiple testing correction, still 15 ROIs
showed a significantly stronger decay in AD group compared
to controls (Table 3). Significant ROIs were located in the
temporal lobe, at the lateral and basal surface of the occipital
lobe, temporo-parieto-occipital junction.

Group averages of cortical area were statistically different at
individual testing level in 67 ROIs and showed a stronger decay
in AD group compared to CN group (Figures 3C,D). Five out
of 67 ROIs remained significant after multiple testing correction.
Those were located in the temporal cortex, superior and frontal
gyrus, anterior cingulate cortex and lateral surface of occipital
cortex (Table 3).

Cortical thickness returned 50 ROIs in simple univariate
statistics changing significantly between AD and CN group
(Figure 4). After multiple testing correction, two ROIs in the
temporal and frontal cortex remained significant (Table 3).

Inconsistent Findings for Cortical
Gyrification and Depth Changes
The most heterogeneous picture of longitudinal differences
between AD and CN group was seen in cortical gyrification
and cortical depth. There were 21 ROIs showing a statistically
significant stronger decrease in gyrification in AD vs CN
group and at the same time 11 ROIs showing the opposite
effect in simple univariate testing (Figures 5A,B). Additionally,
we found 35 ROIs that decreased significantly stronger in
cortical depth for AD group than for CN group but also 9

Frontiers in Aging Neuroscience | www.frontiersin.org 5 June 2022 | Volume 14 | Article 832828

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-832828 June 7, 2022 Time: 11:14 # 6

Rechberger et al. Longitudinal Brain Morphometry in AD

FIGURE 2 | Significant differences at individual testing level of annual percent changes measured by longitudinal Voxel Based Morphometry. (A) Horizontal bar plot of
significant differences in group averaged volume changes (longitudinal VBM) between AD and CN groups. Bars to the left indicate a stronger decrease in APC values
in AD group than in CN group. (B) 3D lattice graph of ROIs with significant differences in APC values corresponding to panel (A). Each circle is located at the center
of mass of the corresponding ROI in MNI152 coordinate space. Color code indicates extend and sign of APC group differences whereas the diameter indicates
absolute effect size. Brain hull was derived from a T1-weighted MR image in MNI152 standard space. (C) Overlaid histograms of the AD and CN group showing the
group averaged APC values of all ROIs (including those with significant and non-significant differences).

TABLE 2 | Significant results from VBM after multiple testing correction.

ROI Anatomical Classification* Mean AD STDV AD MeanCN STDV CN p Multiple Testing Correction

p_adjBH q

Volume L_Hippocampus Medial temporal lobe −4.40 3.60 −0.32 2.19 0.0000 0.0004 0.0012

R_Hippocampus Medial temporal lobe −3.87 3.94 0.43 3.94 0.0003 0.0054 0.0146

L_Amygdala Medial temporal lobe −7.36 6.13 −1.37 6.61 0.0017 0.0182 0.0494

For VBM volume, significant results from simple univariate t-test statistics (column p-value) remained statistically significant for left and right hippocampus and left amygdala
after multiple testing correction with either Storey-Tibshirani (column q-value) or Benjamini–Hochberg (column p-adjBH-value). In this case, Storey-Tibshirani approach for
multiple testing correction did not result in more significant ROIs than Benjamini–Hochberg approach. See main text for description. *Baker et al. (2018).
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FIGURE 3 | Significant differences at individual testing level of annual percent changes in cortical volume and area (longitudinal SBM). (A) Horizontal bar plot of
differences in group averaged cortical volume changes measured by SBM between AD and CN groups. Bars to the left indicate a relatively stronger decrease in APC
values in AD group than in CN group. (B) 3D lattice graph of ROIs with significant differences in cortical volume changes shown in APC differences corresponding to
panel (A). Each circle is located at the center of mass of the corresponding ROI in MNI152 coordinate space. Color code indicates extend and sign of APC group
differences whereas the diameter indicates absolute effect size. Brain hull was derived from a T1-weighted MR image in MNI152 standard space. (C) Horizontal bar
plot of differences in group averaged cortical area changes measured by longitudinal SBM between AD and CN groups. Bars to the left indicate a relatively stronger
decrease in APC values in AD group than in CN group. (D) 3D lattice graph of ROIs with significant differences in area changes shown in APC differences
corresponding to panel (C).
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TABLE 3 | Significant results from SBM after multiple testing correction.

ROI Anatomical Classification* Mean
AD

STDV
AD

Mean
CN

STDV
CN

p Multiple Testing Correction

p_adjBH q

Volume L_VVC Basal surface of occipital lobe −4.50 3.68 2.02 4.88 0.0000 0.0045 0.0028

L_PH Lateral surface of occipital lobe −2.98 3.37 1.76 3.48 0.0000 0.0104 0.0065

R_TGd Temporal gyrus areas −5.38 3.95 −0.83 3.46 0.0001 0.0264 0.0165

R_PFm Inferior parietal lobule and TPOJ areas −1.99 1.86 −0.05 1.32 0.0001 0.0264 0.0165

L_TGd Temporal gyrus areas −5.90 5.35 0.12 4.68 0.0001 0.0264 0.0165

L_PF Inferior parietal lobule and TPOJ areas −2.93 2.30 −0.49 1.80 0.0001 0.0275 0.0172

L_TF Temporal areas −3.82 3.83 0.30 3.27 0.0002 0.0325 0.0203

L_TE1p Temporal areas −3.73 3.89 −0.13 2.16 0.0002 0.0330 0.0206

L_A4 Temporal hypotenuse regions of insula and opercular cortex −3.90 3.05 −0.83 2.53 0.0003 0.0460 0.0287

L_FST Lateral surface of occipital lobe −2.44 3.00 1.55 4.21 0.0003 0.0460 0.0287

L_TE1a Temporal areas −4.91 4.31 −0.20 4.35 0.0004 0.0460 0.0287

L_PeEc Medial temporal areas −6.50 4.99 −1.25 4.80 0.0004 0.0498 0.0311

R_TE2a Temporal areas −2.78 2.49 0.97 4.35 0.0005 0.0520 0.0325

R_EC Medial temporal areas −8.84 9.59 0.42 8.60 0.0008 0.0642 0.0401

L_FFC Basal surface of occipital lobe −1.89 2.99 1.11 2.93 0.0008 0.0642 0.0401

Area R_EC Medial temporal areas −5.44 5.93 2.14 6.70 0.0001 0.0264 0.0165

L_9a Lateral superior frontal gyrus regions −2.10 2.59 0.75 2.40 0.0002 0.0330 0.0206

L_PH Lateral surface of occipital lobe −2.10 2.61 0.02 1.22 0.0006 0.0573 0.0357

R_33pr Anterior cingulate gyrus −2.72 2.62 −0.06 2.57 0.0007 0.0642 0.0401

L_IFJa Inferior frontal gyrus regions −1.77 1.57 0.28 2.39 0.0008 0.0642 0.0401

Thickness R_s6-8 Superior frontal sulcus and middle frontal gyrus regions −2.86 2.75 0.05 2.04 0.0001 0.0264 0.0165

L_TE2p Temporal areas −2.06 2.68 1.11 3.27 0.0005 0.0520 0.0325

For SBM cortical volume, area and thickness, significant results from simple univariate t-test statistics (column p-value) remained statistically significant after multiple
testing correction with either Storey-Tibshirani (column q-value) or Benjamini–Hochberg (column p-adjBH-value). See main text for description. *Baker et al. (2018).

ROIs showing the opposite effect (Figures 5C,D). None of the
observed statistical significances for cortical gyrification and
depth remained significant after multiple testing correction.

Clear Group Differences of Annual
Percent Change Distribution of Cortical
Volume, Area and Thickness
Plotting the histogram for the APC values of AD and CN groups
separately for all 360 ROIs (irrespective of statistical significance)
revealed a clear group separation. Histograms of AD groups were
clearly shifted to left compared to CN group for cortical volume,
cortical area and cortical thickness as measured by longitudinal
SBM (Figures 6A–C). By contrast, the histograms of AD and CN
group for cortical gyrification and depth APC values did much
more overlap and were not clearly separable (Figures 6D,E).

Longitudinal Surface Based
Morphometry Optimally Suitable for
Storey-Tibshirani Multiple Testing
Correction
We applied the Storey-Tibshirani method (Storey and Tibshirani,
2003) for multiple testing correction because the distribution
of individual p-values perfectly meets the requirements with a
large set of individual p-values, a peak of the p-value distribution
at low values and a flat plateau for high p-values close to 1

(Supplementary Figure 2). Consequently, this method delivered
a more appropriate approximation of FDR than Benjamini–
Hochberg approach and more ROIs remained significant after
multiple testing correction (Table 3).

Cognitive Decline
A worsening of cognitive performance was seen in the majority
of AD patients over a time course of 1 year but not in age
matched CN subjects. We saw a pronounced decrease in Mini-
Mental-State Exam (MMSE; Folstein et al., 1975) in most AD
patients but only a small or no decrease in most CN subjects. For
Clinical Dementia Rating global score (CDR global; Berg et al.,
1988), Functional Activities Questionnaire total score (FAQ total;
Pfeffer et al., 1982) and Neuropsychiatric Inventory total score
(NPI total; Cummings et al., 1994) we found an increase in the
respective scores in patients (Figure 7). The variance of those test
results is typically quite high across patients and was greatest for
NPI total scores.

We further correlated the change in cognitive scores with
measured changes in cortical morphology. For this, we calculated
Spearman rank correlations between changes in the four
cognitive scores and APC values for volume (VBM, SBM),
cortical thickness and area (SBM) for all ROIs. Although
correlations are not very strong, we find a clear pattern for
ROIs with a significant decay in volume (Table 4): APCs
of VBM-derived volume and SBM-derived feature changes
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FIGURE 4 | Significant differences at individual testing level of annual percent changes in cortical thickness. (A) Horizontal bar plot of differences in group averaged
cortical thickness changes (longitudinal SBM) between AD and CN groups. Bars to the left indicate a relatively stronger decrease in APC values in AD group than in
CN group. (B) 3D lattice graph of ROIs with significant differences in volume changes shown in APC differences corresponding to panel (A). Each circle is located at
the center of mass of the corresponding ROI in MNI152 coordinate space. Color code indicates group extend and sign of APC differences whereas the diameter
indicates absolute effect size. Brain hull was derived from a T1-weighted MR image in MNI152 standard space.

(Volume, Area, Thickness) were positively correlated to MMSE
and negatively to CDR global, FAQ total and NPI total. In other
words, the loss in brain morphology correlates with a worsening
of cognitive scores in AD patients. Importantly, this effect does
not extend to the entirety of ROIs with non-significant APCs. In
other words, if APCs are significant, they correlate in the correct
direction in almost all cases. If they are not significant there is a
mix of positive and negative correlations.

DISCUSSION

In this paper we reported stronger longitudinal brain
morphometry loss corresponding to an accelerated cognitive
decline in AD patients over 1 year of time compared to matched
CN subjects. AD patients showed a stronger decrease in cortical
volume, area and thickness over the course of 1 year measured by
SBM. Longitudinal SBM assessments complemented longitudinal
VBM measurements and increased the number of significant ROI
comparisons including temporal areas, anterior cingulate areas
and frontal regions—whereas longitudinal VBM only detected
significant longitudinal changes in hippocampus and amygdala.
Moreover, the distribution of local regional changes as reported
by SBM allowed for a clear separation between the two groups.
Our results are in line with previous studies demonstrating
that SBM can strengthen longitudinal assessments in aging and
neurodegeneration studies (Tustison et al., 2019).

Toward a Gold-Standard for Longitudinal
MRI-Based Morphometry Assessments
Our current approach is the first longitudinal morphometry
assessment that combines high resolution imaging (from ADNI3
study; Weiner et al., 2017) and a high-resolved brain atlas
(HCP_MMP_1.0; Glasser et al., 2016) with a mathematical
sound multiplicative annual percent change model and an
adequate multiple testing correction adopted from genome-wide
association studies (Storey and Tibshirani, 2003). Combining
all these methodological aspects was required to arrive at a
statistical significance level that would be required for clinical
trials. Previous approaches often fall short in actually detecting
significant longitudinal morphometry differences because any
of the afore-mentioned steps left uncontrolled may cause
inaccuracies preventing significance.

High-Resolution Image Assessments
Require High Image Quality
We have only chosen subjects from ADNI-3 study because it
is the largest multi-site, multi-vendor study to leverage several
advanced MRI methods (Weiner et al., 2017). Providing high-
resolution medial temporal lobe (MTL) subregion imaging
offers quantification of changes in hippocampal subfields and
parahippocampal gyrus subregions, which are the location of
the earliest stages of tau pathology (Pluta et al., 2012; Mueller
et al., 2013; de Flores et al., 2015; Yushkevich et al., 2015). All
ADNI-3 scans were acquired at 3T. High image quality is essential
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FIGURE 5 | Significant differences at individual testing level of annual percent changes in cortical gyrification and depth. (A) Horizontal bar plot of differences in
group averaged cortical gyrification changes (longitudinal SBM) between AD and CN groups. Bars to the left indicate a relatively stronger decrease in APC values in
AD group than in CN group. (B) 3D lattice graph of ROIs with significant differences in cortical gyrification changes corresponding to panel (A). Each circle is located
at the center of mass of the corresponding ROI in MNI152 coordinate space. Color code indicates group extend and sign of APC differences whereas the diameter
indicates absolute effect size. Brain hull was derived from a T1-weighted MR image in MNI152 standard space. (C) Horizontal bar plot of differences in group
averaged cortical depth changes measured by longitudinal SBM between AD and CN groups. Bars to the left indicate a relatively stronger decrease in APC values in
AD group than in CN group. (D) 3D lattice graph of ROIs with significant differences in cortical depth changes (difference in APC) corresponding to panel (C).

for performing high-resolution image assessments. Especially for
surface reconstructions needed for SBM, high image quality is
needed to exactly determine gray and white matter borders.

Moreover, with the HCP MMP 1.0 brain atlas (Glasser et al.,
2016) we applied one of the latest multimodal brain atlases which
generates a robust neuroanatomical map of human neocortical
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FIGURE 6 | Overlaid histograms of the AD and CN group averaged APC values. Each histogram shows the group averaged APC values from longitudinal SBM of all
ROIs (including those with significant and non-significant differences) from the respective group. (A) Changes in cortical volume measured by longitudinal SBM.
(B) Changes in cortical area measured by longitudinal SBM. (C) Changes in cortical thickness measured by longitudinal SBM. (D) Changes in cortical gyrification
measured by longitudinal SBM. (E) Changes in cortical depth measured by longitudinal SBM.

areas in any individual. Highly reproducible and generalizable
cortical parcellation of the cortex becomes possible through
state-of-the-art methods of data acquisition, preprocessing, and
analysis designed to compensate for individual variability and
thereby minimize blurring of images. The situation is analogous
to astronomy in which ground-based telescopes produced
relatively blurry images of the sky before the advent of adaptive
optics and space telescopes (Glasser et al., 2016).

Annual Percent Change as a Measure for
Longitudinal Effects
In spite of high image acquisition and assessment quality,
varying observation intervals in longitudinal studies can though
be a considerable source of unavoidable inconsistencies and
increasing variances: Although the study design aims at
re-assessing subjects after, e.g., 12 months, in reality study

participants return for a second visit not exactly after 12 months
and differences in longitudinal observation intervals can often
differ quite substantially and need to be corrected for statistical
evaluation. Considering the APC has proven as a suitable
way (Jockwitz et al., 2021, Front Human Neurosci) to correct
differences in longitudinal observation intervals within a certain
range. By using the APC, we assumed a quasi-continuous
brain change in the time difference between the planned
and the observed interval. Obviously, this assumption is not
necessarily fulfilled if this difference becomes too large for the
individual subject and the subject might need to be excluded
from the longitudinal assessment. If the study uses a different
follow-up design, e.g., of 180 days instead of 365, the formula
needs to be adapted accordingly in order to normalize to
180 days. We may draw the reader’s attention to the fact that
continuous percentage changes as assumed for the APC behave
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FIGURE 7 | Cognitive decline. (A) AD Patients’ decrease in cognitive abilities
is indicated by a decreasing MMSE score (blue) and increasing CDR global
(orange), FAQ total (gray) and NPI total scores (yellow). (B) CN subjects show
scores around 30 for MMSE and close to zero for CDR global, FAQ total and
NPI total as expected. Box plots with median (horizontal lines) percentiles
(boxes), standard deviations (error bars) and outliers (dots).

multiplicatorily. This mathematical property leads to the correct
APC formula above while additive equations for APC would be a
mathematically incorrect over-simplification leading to an under
or over-correction of the influence of the different observed
longitudinal intervals.

The Need for an Appropriate Multiple
Testing Correction
Multiple tests especially pose a challenge in brain morphometry
assessments because studies typically have a comparably low
sample size, often only moderate effect sizes but at the
same time a high number of statistical tests due to a large
number of ROIs. This situation very often leaves no statistical
significances after multiple testing correction. Paradoxically, the
more fine-grained the assessment becomes by higher number
of ROIs, the more pessimistic multiple testing correction will
be. Fortunately, the high number of comparisons can be
used for a very precise fitting of the p-value distribution and
the Storey-Tibshirani approach for multiple testing correction

(Storey and Tibshirani, 2003) becomes most powerful resulting
in more significant comparisons. Moreover, by taking the
distribution of p-values into account, the false discovery rate
becomes controllable. In our case, we may conclude that with a
false discovery rate of 5% only one out of 22 ROI features could
be erroneously assumed to be statistically different although
it is in fact not.

Temporal Cortex Shows Strongest
Morphometry Decay in Alzheimer’s
Disease Patients
Even though there is a ubiquitous and quite consistent trend of
brain morphometry loss in wide parts of the cortex, the temporal
lobe expressed the most significant effects even after multiple
testing correction. Our findings are well in line with previous
literature showing that the medial temporal lobe degenerates
strongest in AD patients compared to typically aging subjects
(Jack et al., 1998; Chauveau et al., 2021). Here, we documented
temporal tissue loss by more precise surface based morphometry
and at a higher resolution of 360 cortical areas, which has
become possible due to increased imaging quality in ADNI3
compared to previous ADNI studies (Jack et al., 2008) and
further developed software-aided image assessments. In line with
a previous study, we found temporal areas to be differently
affected by cortical thickness loss and cortical surface area loss
(Iannopollo and Garcia, 2021). High precision evaluation of
temporal lobe atrophy is of particular importance as temporal
cortex thinning is associated with episodic memory impairments
(Das et al., 2016) and even depression (Fujishima et al., 2014)
while temporal volume loss was found in healthy aging subjects
(Fjell et al., 2009) and may be a potential early indicator of
an increased risk for developing AD later in life. At least, an
increased temporal volume loss in MCI patients was discussed
as a predictor for the conversion from MCI to AD (Jack et al.,
1999).

Visual Cortex Mostly Spared From
Neurodegeneration in Alzheimer’s
Disease Patients
We saw that the visual cortex was mostly spared from
neurodegeneration as almost no ROIs of the visual cortex
in AD group showed significant differences in longitudinal
changes compared to CN controls. Some statistically significant
effects were seen in higher multimodal areas of the occipital
lobe for example in the parieto-occipital sulcus or at the
temporo-parietal-occipital junction (TPOJ). The brain region
at the TPOJ has been discussed in the context of highest
cognitive functions including integration of external and body
information (Abu-Akel and Shamay-Tsoory, 2011), making
moral decisions (Blanke and Arzy, 2005) and theory of mind
(Saxe and Kanwisher, 2003) and is well known to be affected
by AD (Coughlan et al., 2018). By contrast, the visual cortex
is affected relatively late in the course of the disease (Albers
et al., 2015 but see also Wu et al., 2020). Therefore, our
longitudinal results are in line with current knowledge about
brain atrophy in AD.
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TABLE 4 | Correlation between morphometric and cognitive changes.

ROI Measure Q cor w/ MMSE cor w/ CDR global cor w/ FAQ total cor w/ NPI total

L_Hippocampus Volume 0.0004 0.16 −0.34 −0.27 −0.25 VBM

R_Hippocampus Volume 0.0054 0.10 −0.29 −0.27 −0.03

L_Amygdala Volume 0.0182 0.39 −0.22 −0.46 −0.18

L_VVC Volume 0.0028 0.07 −0.30 −0.25 −0.04 SBM

L_PH Volume 0.0065 0.11 −0.16 −0.31 −0.27

R_TGd Volume 0.0165 0.32 −0.45 −0.24 −0.10

R_PFm Volume 0.0165 0.49 −0.36 −0.20 0.04

L_TGd Volume 0.0165 0.44 −0.36 −0.12 −0.10

L_PF Volume 0.0172 0.25 −0.40 −0.36 −0.31

L_TF Volume 0.0203 0.09 −0.44 −0.44 −0.17

L_TE1p Volume 0.0206 0.17 −0.27 −0.26 −0.13

L_A4 Volume 0.0287 0.28 −0.52 −0.26 −0.20

L_FST Volume 0.0287 0.13 −0.19 −0.46 −0.21

L_TE1a Volume 0.0287 0.39 −0.22 −0.43 −0.20

L_PeEc Volume 0.0311 0.21 −0.42 −0.38 −0.09

R_TE2a Volume 0.0325 0.40 −0.42 −0.27 0.16

R_EC Volume 0.0401 0.24 −0.18 −0.09 −0.09

L_FFC Volume 0.0401 0.03 −0.31 −0.37 −0.08

R_EC Area 0.0165 0.29 −0.37 −0.25 −0.12

L_9a Area 0.0206 0.25 −0.16 −0.09 −0.07

L_PH Area 0.0357 0.05 −0.04 −0.02 0.07

R_33pr Area 0.0401 0.11 −0.22 −0.16 −0.10

L_IFJa Area 0.0401 0.07 −0.12 −0.17 −0.13

R_s6-8 Thickness 0.0165 0.17 −0.25 −0.16 −0.16

L_TE2p Thickness 0.0325 −0.01 −0.19 −0.32 −0.08

Each line reports correlations between one ROI from either VBM or SBM and cognitive scores MMSE, CDR global, FAQ total, NPI total. Q values indicate significance
levels for morphometry group comparisons and are copied from Tables 2, 3.

Limitations of Imaging Results
Even with highest image processing routines uncertainties
remain. For example, we see a stronger decay in hippocampal
tail volume in CN subjects compared to AD patients that cannot
be fully explained. However, from post-mortem studies a greater
variability in hippocampal tail volume is well known (Adler et al.,
2018). Caused by the bending of the tail, a greater variability is
observed in the appearance of the hippocampal tail in the coronal
plane. When sectioning the tail in the direction of the tail bend,
the tail has a body-like structure in all subjects. This information
could potentially explain variations of in vivo segmentations of
the tail, which is generally omitted from segmentation protocols
due to perceived anatomical complexity (Adler et al., 2018).

Brain morphometry decay and scores indicating cognitive
decline are correlated as expected. However, due to limited
sensitivity and test re-test reliability of cognitive scores,
correlations cannot be expected to be higher. At least, the signs
of the correlations are as expected for significantly stronger
decreasing ROIs in AD patients but are not consistent for non-
significant ROIs. This overall finding strengthens the outcome of
the present work that accelerated regional decay can be attributed
to AD relevant clinical observations but larger group sizes would
be required to obtain stronger correlations.

In face of optimal image processing and statistical assessment,
the relatively low numbers of AD vs. matched CN participants
that were included in this study, still remain a challenge.

ADNI participants discontinuing follow-up assessments and
inconsistent image quality, mostly brought about by head
movements, could not fully be corrected in all originally
available subjects eventually leading to such a small group
size. A consistent high MR image quality in a clinical setting
would improve neuroimaging research quality at the initial
stage, and ultimately better the therapeutical outcome to the
individual patient.

CONCLUSION

We could show that even with low study size, reliable longitudinal
group effects could be obtained for a high number of cortical
ROIs when high MR imaging quality, most advanced image
segmentation and surface based morphometry is used in
combination with correct APC values and appropriate statistical
testing. Our compelling approach not only paves the way for
developing earlier biomarkers for AD, the high number of ROIs
and also the enhanced separability between the two groups
by SBM may also be suitable to detect longitudinal changes
in response to pharmacological treatment more accurately.
The complete workflow from image processing for feature
extraction to statistical assessments can be fully automated
in NICARA, which makes the approach particularly attractive
for larger cohorts.
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Supplementary Figure 1 | Histogram of p-values from individual t-test for
longitudinal VBM. The distribution of p-values from longitudinal VBM peaked for
small p-values but did not show a plateau for larger p-values. With this, not all
requirements for Storey-Tibshirani multiple testing correction method (Storey and
Tibshirani, 2003) were fulfilled. Hence, Storey-Tibshirani correction was
comparably pessimistic as Benjamini and Hochberg (1995) multiple
testing correction.

Supplementary Figure 2 | Histogram of p-values from individual t-test for
longitudinal SBM. The distribution of p-values from longitudinal VBM peaked for
small p-values and showed a plateau for larger p-values. Moreover, the 360
individual p-values from individual tests allowed for a small bin size for an accurate
resembling of the distribution. With this, all preconditions for Storey-Tibshirani
approach (2003) are fulfilled and more ROI comparisons remain significant after
multiple testing correction.

Supplementary Table 1 | Demographic tabular listing with APOE genotypes. For
each subject, the table lists two rows, one per session (Screening and Year 1),
with columns Age Range, Age, Sex, Diagnosis, MMSE scores, APOE A1 and A2,
CDR GLOBAL score, FAQ TOTAL score, NPI TOTAL. Values for ABETA40,
ABETA42, PTAU and TAU are available for some subjects but overall largely
incomplete and are therefore excluded from any statistical assessment.

Supplementary Table 2 | 360 Regions of Interests as defined by the HCP MMP
1.0 atlas. Each row contains the abbreviation and full name for each ROI as well
as hemisphere and a part of information derived from neurosurgical literature
(Baker et al., 2018).
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