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Aging is the most prominent risk factor for cognitive decline, yet behavioral
symptomology and underlying neurobiology can vary between individuals. Certain
individuals exhibit significant age-related cognitive impairments, while others maintain
intact cognitive functioning with only minimal decline. Recent developments in genomic,
proteomic, and functional imaging approaches have provided insights into the molecular
and cellular substrates of cognitive decline in age-related neuropathologies. Despite
the emergence of novel tools, accurately and reliably predicting longitudinal cognitive
trajectories and improving functional outcomes for the elderly remains a major
challenge. One promising approach has been the use of exosomes, a subgroup of
extracellular vesicles that regulate intercellular communication and are easily accessible
compared to other approaches. In the current review, we highlight recent findings
which illustrate how the analysis of exosomes can improve our understanding of the
underlying neurobiological mechanisms that contribute to cognitive variation in aging.
Specifically, we focus on exosome-mediated regulation of miRNAs, neuroinflammation,
and aggregate-prone proteins. In addition, we discuss how exosomes might be
used to enhance individual patient outcomes by serving as reliable biomarkers of
cognitive decline and as nanocarriers to deliver therapeutic agents to the brain in
neurodegenerative conditions.

Keywords: exosomes, aging, cognition, biomarkers, therapeutics

INTRODUCTION

Age-related cognitive decline remains a prominent public health concern, with Alzheimer’s Disease
(AD) accounting for the majority of dementia diagnoses (i.e., 60–80%) (Alzheimer’s Association,
2020). Despite the recent approval of an anti-amyloid biologic (i.e., aducanumab), it poses
significant risks for side effects (e.g., microhemorrhages, edema), can be cost prohibitive due to
the lack of insurance coverage and has not yet been shown to reliably mitigate cognitive decline
(Alexander et al., 2021; Anderson et al., 2021; Knopman et al., 2021; Salloway et al., 2022). As
alternative approved pharmacotherapies (i.e., AChE inhibitors and an NMDAR antagonist) can
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only ameliorate symptomology temporarily, there remains no
treatment capable of preventing or curing AD and its associated
cognitive decline (Bullain and Doody, 2020).

Aging is the most prominent risk factor for cognitive decline,
but behavioral symptomology and underlying neurobiology
can vary between individuals. Indeed, some individuals exhibit
significant cognitive impairments in comparison to age-matched
controls, while others maintain intact cognitive functioning
or display only minimal decline (Wilson et al., 2002; Hayden
et al., 2011). Although elderly individuals with poor cognitive
performance are at a higher risk of developing age-related
dementia including AD (Albert et al., 2001), examinations
from comprehensive clinical samples indicate such age-related
cognitive variation can occur independently from pathological
manifestations (i.e., cognitive deficits without neuropathological
hallmarks and vice versa) (Katzman et al., 1988; Morris et al.,
1996; Balasubramanian et al., 2012; Negash et al., 2013; Kawas
et al., 2015; Aiello Bowles et al., 2019). Furthermore, after
accounting for known pathological measures, approximately
half of the estimated variation in cognitive decline remains
unexplained (Boyle et al., 2013, 2021). In fact, postmortem
analyses now suggest the behavioral symptomology leading
to dementia diagnosis is often accompanied by a mixture of
neuropathological hallmarks (Schneider et al., 2007; Rahimi and
Kovacs, 2014; James et al., 2016; White et al., 2016). While
these results exemplify the need for a better understanding of
the biological mechanisms that contribute to differing cognitive
trajectories in aging, they also suggest opportunities to improve
diagnostic indicators for cognitive decline associated with age-
related neurodegenerative disorders.

Several approaches have proved valuable for improving
diagnostics and developing novel therapeutics. For one, the
implementation of novel PET ligands over the past decade for
Aβ and Tau is now recognized as an important component in
recently adopted AD criteria (Jack et al., 2016). However, the
detection of abnormal protein aggregates via PET has several
limitations, including its predictability with regard to behavioral
symptomology over time (Jack et al., 2019). Furthermore, these
methods are primarily utilized for screening participants or
assessing endpoints in clinical trials, in part due to prohibitive
costs not covered by insurance as well as a lack of standardized
thresholds to differentiate between dementia stages (Mitka, 2013;
Rice and Bisdas, 2017; Weigand et al., 2020). Along with PET
imaging, genomic interrogations of large clinical cohorts have
further substantiated the increased risk for cognitive decline
among individuals with common (e.g., APOE, APP, PSEN1
etc.) as well as rare (e.g., TREM2, MS4A, SORL1 etc.) genetic
variants (Lanoiselée et al., 2017; Deming et al., 2019; Yamazaki
et al., 2019; Holstege et al., 2020). However, the application
of these findings to improve patient outcomes requires further
elucidation (Van Cauwenberghe et al., 2016; Patron et al., 2019;
Novikova et al., 2021). In addition, the advent of advanced
proteomic platforms has improved diagnostic capacity compared
to clinical assessment, particularly for CSF and blood derived
samples; however, these can sometimes rely on a limited set of
molecular targets measured from a single time point and may
not necessarily relay information regarding the causal, biological

mechanisms that facilitate variation in cognitive functioning
(Janelidze et al., 2020; Palmqvist et al., 2020; Thijssen et al.,
2020). While these approaches can help identify individuals
at risk for cognitive deficits in aging, one approach that is
increasingly recognized to gain insights into the neurobiological
mechanisms of cognitive decline while potentially improving
individual outcomes is the analysis of extracellular vesicles,
namely exosomes.

In the current review, we will highlight recent findings
which illustrate how the analysis of exosomes can improve
our knowledge of varying mechanisms underlying age-related
cognitive decline. In addition, we will discuss how exosomes
might be used to enhance individual patient outcomes by serving
as reliable biomarkers and therapeutic agents for age-related
neurodegenerative disorders.

EXOSOMES

Exosomes are membranous lipid compartments (∼50–150 nm)
whose primary function is to translocate biological substrates
(e.g., proteins, lipids, nucleic acids) between cells (Tkach
and Thery, 2016; van Niel et al., 2018). Exosome biogenesis
begins at the plasma membrane with the formation of early-
sorting endosomes (ESEs). ESEs are formed when plasma
membrane invagination encloses cell-surface proteins and other
proximal molecules in the extracellular environment. These may
combine with existing ESEs, while the Golgi and ER can also
contribute to their contents (Hessvik and Llorente, 2018; van
Niel et al., 2018; Mathieu et al., 2019). ESEs can eventually
develop into late-sorting endosomes (LSEs), whose further
inward invagination generates multivesicular bodies (MVBs)
that contain intraluminal vesicles (ILVs). From here, MVBs can
either fuse with lysosomes or autophagosomes for degradation,
or fuse with the plasma membrane for extracellular release of
ILVs, which become de facto exosomes upon exiting the cell
(Gurunathan et al., 2019). While the exact processes governing
their intercellular transport remain debated, exosomes can be
internalized through several distinct mechanisms, including
clathrin-dependent endocytosis and phagocytosis, which results
in the release of exosomal contents in recipient cells (Mulcahy
et al., 2014). Of note, the current article will primarily focus on
exosomes, rather than on extracellular vesicles (EVs), which is
a general term used to describe different subtypes of vesicles
based on their size, content, and function, including exosomes,
microvesicles (MVEs), and apoptotic bodies. For example,
although exosomes are routinely classified alongside MVEs, their
biogenesis is thought to utilize distinct cellular mechanisms
(i.e., outward budding and fission of the plasma membrane)
(Tricarico et al., 2017). Regarding nomenclature, the current
review will utilize the terminology of exosome throughout, since
the literature cited herein uses the term exosome or small EV
when referring to the same type of vesicle; however, guidelines
suggest that the later term is the appropriate generic term
(Théry et al., 2018).

Exosome production, release and uptake is thought be
conserved across cell types, including cells of the central nervous
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system (CNS) (i.e., neurons, astrocytes, oligodendrocytes,
microglia etc.) (Potolicchio et al., 2005; Fauré et al., 2006;
Krämer-Albers et al., 2007; Goetzl et al., 2018b). Renewed
interest in this class of extracellular vesicles, coupled with
technological advances, has resulted in a variety of biochemical
techniques to facilitate exosome analysis, including high-
sensitivity commercially available assays at a relatively low cost
(Patel et al., 2019). Depending on the inherent properties of the
sample (e.g., in vitro supernatant vs. clinical plasma/serum),
processing generally involves isolation (e.g., ultracentrifugation,
size exclusion chromatography, immunoaffinity, polymer
precipitation etc.) and characterization (e.g., nanoparticle
tracking, resistive pulse sensing, atomic force microscopy
etc.) followed by biological interpretation of exosomal
quantity and contents utilizing complementary biochemical
techniques (e.g., high-throughput sequencing, proteomic
arrays etc.) (Gurunathan et al., 2019). Given that differing
cell types incorporate varying molecular components during
endosomal sorting and exosome release, investigators can
utilize this heterogeneity as molecular signatures to determine
their cellular origin. Thus, exosomes released by neurons,
astrocytes, oligodendrocytes, microglia, endothelial cells and
pericytes can be differentiated according to antibody-based
purification utilizing L1CAM (L1 cell adhesion molecule),
GLAST (Glutamate aspartate transporter), PLP1 (Proteolipid
protein 1), TMEM119 (Transmembrane protein 119), CD31
(cluster of differentiation 31) and PDGFRβ (platelet-derived
growth factor receptor beta), respectively (Frühbeis et al., 2020;
Kumar et al., 2020). The capacity to identify a given exosome’s
parent cell is particularly valuable given that peripheral exosomes
can penetrate the blood-brain-barrier (BBB), while brain derived
exosomes can be readily detected in systemic samples (Alvarez-
Erviti et al., 2011; Banks et al., 2020; Kumar et al., 2021). It should
be noted that a recent investigation suggested L1CAM may not
be an appropriate marker to identify neuronal specific exosomes
(Norman et al., 2021); however, the interpretation of such data
as well as the reliability of these findings remain contested,
including contrary evidence of L1CAM positive vesicles enriched
for neuronal proteins (e.g., BDNF, neuronal enolase) (Mustapic
et al., 2017; Suire et al., 2017).

Attempts have been made to categorize exosomes according
to their net advantages or disadvantages for CNS homeostasis,
yet such a dichotomous distinction may be misleading. For
instance, accumulating evidence illustrates exosomes facilitate
symbiotic dynamism between neurons and oligodendrocytes,
whereby activity dependent synaptic transmission triggers
exosomal secretion from oligodendrocytes that contain essential
myelin components (e.g., myelin basic protein [MBP], myelin
oligodendrocyte glycoprotein [MOG] etc.); subsequently,
internalization of these exosomes amongst proximal neurons
enhances cellular viability (Domingues et al., 2020). Conversely,
data suggest exosomes can serve as pathological conduits,
capable of spreading aggregate-prone polypeptides between cells
in a prion-like manner, including Aβ oligomers and pTau (Sardar
Sinha et al., 2018; Polanco et al., 2021). However, exosome
biology is itself an evolutionary conserved process intertwined
with a myriad of other fundamental cellular mechanisms,

ranging from gene expression to lysosomal autophagy (Kalluri
and LeBleu, 2020). Therefore, these extracellular vesicles
could presumably represent causal pathogenic processes
leading to cognitive decline, compensatory responses to confer
neuroprotection or a common outcome from upstream cellular
mechanisms (i.e., epiphenomenon). As exosomes likely serve
varying functions under differing physiological conditions, the
following sections defer from categorizing exosomes according
to their net advantages or disadvantages for CNS homeostasis
and instead highlight recent advances in our understanding for
the role of exosomes in age-related cognitive decline.

INSIGHTS FOR NEUROBIOLOGICAL
MECHANISMS OF COGNITIVE DECLINE

MicroRNAs
A large quantity of exosome research has focused on their
capacity to incorporate and transport microRNAs (miRNAs).
These short (18–25 base pairs in length; 22 avg.) non-
coding RNAs function as post-transcriptional regulators of
gene expression by binding to complementary pairing sites
on mRNA (e.g., 3′ UTR, 5′ UTR, coding sequences etc.)
across various locations within a cell, including the nucleus,
cytoplasm and subcellular compartments, such as stress granules
(O’Brien et al., 2018). Such binding subsequently influences
expression of the targeted mRNAs, most notably by triggering
their degradation and silencing the expression of transcripts
which would otherwise be translated (Huntzinger and Izaurralde,
2011; Ipsaro and Joshua-Tor, 2015). Through these mechanisms,
miRNAs maintain the capacity to influence a plethora of
downstream processes that are dependent on gene expression,
ranging from energy utilization to cellular growth. For example,
miR-193b binds to the 3′ UTR of Amyloid Precursor Protein
(APP) mRNA and represses its ensuing protein expression;
interestingly, this miRNA also maintains significantly lower
exosomal concentrations among AD patients, suggesting its low
levels may exacerbate the generation of Aβ (Liu et al., 2014; Yang
et al., 2018). Although additional studies are required to fully
elucidate the functional implications of miRNAs, their ubiquitous
expression across varying physiological conditions coupled with
their incorporation into exosomes has made them an attractive
target for examining the underlying mechanisms of age-related
cognitive decline.

Several studies have characterized systemic exosomal miRNAs
among elderly individuals to identify potential downstream
biological pathways that might facilitate late life cognitive
dysfunction. Utilizing plasma-derived samples enriched with
exosomes from healthy aged participants, one recent study
analyzed miRNAs via multiplex sequencing and correlated
their levels with performance on the Montreal Cognitive
Assessment (MoCA). While a large set of miRNAs showed
significant positive correlations with age, another set maintained
significant negative correlations with cognitive performance,
including those miRNAs selectively expressed in the brain. In
turn, functional annotation of miRNAs associated with poor
performance revealed several biological pathways, including
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neurotrophin signaling, whose miRNA-mediated regulation may
be important mediators of cognitive decline (Rani et al.,
2017). Furthermore, machine learning approaches indicated
expression levels of such miRNAs could predict several
other cognitive outcomes, including fluid, crystallized and
overall cognition (Gullett et al., 2020). Reanalysis of the
same data set using weighted gene co-expression network
analyses (WGCNA) coupled with functional enrichment revealed
modules of miRNAs whose regulation of cancer-related signaling
pathways may also account for MoCA performance among
elderly participants (Ye et al., 2020). Such results complement
another study which compared exosome enriched CSF samples
from cognitively intact elderly individuals to those diagnosed
with AD. Here, AD individuals exhibited elevated exosome
concentrations of miRNAs previously implicated in cognitive
decline (i.e., miR-9-5p and miR-598). Given that complementary
in silico analysis linked these miRNAs to stress response and
neurotrophic signaling pathways, findings suggested miRNA
mediated regulation of these biological processes may increase
risk for cognitive decline (Riancho et al., 2017). Interestingly,
exosomal miRNA regulation of such specific pathways (i.e.,
neurotrophic signaling, cancer-related signaling and stress
response) has been reported in other investigations, suggesting
these processes might constitute common biological mechanisms
that are associated with late life cognitive dysfunction (Gui et al.,
2015; McKeever et al., 2018; Gámez-Valero et al., 2019; Dong
et al., 2021).

To gain more reliable insights into the neurobiological
mechanisms of cognitive decline, additional investigations
have interrogated the role of miRNAs from brain derived
exosomes. After isolating neural exosomes from AD plasma
samples, researchers recently identified a set of significantly
upregulated (i.e., miR-23a-3p, miR-223-3p, and miR-190a-5p)
and downregulated (i.e., miR-100-3p) miRNAs which were
predicted to regulate several homeostasis pathways in the CNS,
including steroid biosynthesis and mTOR signaling (Serpente
et al., 2020). In another recent investigation, neural exosomes
isolated from plasma samples revealed two miRNAs (i.e., miR-
132 and miR-212) whose degree of downregulation was capable
of distinguishing AD stages (i.e., AD vs. MCI vs. Control).
Although investigators here inferred the biological relevance
of these miRNAs, potential regulation of specific downstream
processes was not examined (Cha et al., 2019).

Preclinical investigations have also characterized exosomal
miRNAs to identify potential biological pathways that might
facilitate cognitive decline. Utilizing exosomes harvested from
hippocampal stem cell cultures, a group of researchers identified
a set of miRNAs (i.e., miR-17, miR-322, and miR-485) whose
in vivo delivery via exosomes was capable of ameliorating
memory deficits in rodents (i.e., Novel Object Recognition)
otherwise induced by intracerebral application of Aβ oligomers;
furthermore, researchers inferred these benefits may be attributed
to the increased synaptic phosphorylation of calmodulin-
dependent kinase II (Micci et al., 2019). Similar results have been
noted among in vitro studies, whereby the transfer of miRNAs
via exosomes from healthy stem cells can induce significantly
improved viability in recipient neural cells by modulating

alternative intracellular signaling cascades (e.g., PTEN/PI3K/Akt
pathway) (Wei et al., 2020; Cong et al., 2021).

To expand our understanding for the role of exosomal
miRNAs in mediating the underlying mechanisms of cognitive
decline, several lines of inquiry require elucidation, some
of which are addressed below. For one, we currently lack
a comprehensive understanding of the mechanisms within
recipient cells that are modulated by exosomal miRNAs.
Previous evidence suggests miRNAs released by exosomes
remain functional in their recipient cells, capable of directly
downregulating the expression of target transcripts, similar to
endogenous effects in parent cells (Umezu et al., 2013; Zhou
et al., 2014). Interestingly, exosomal miRNA can also influence
mechanisms in recipient cells other than gene expression, such
as serving as ligands for Toll-Like Receptors in intracellular
endosomes and triggering their activation (Fabbri et al., 2012).
Given that prior studies have disproportionately relied on cellular
models of peripheral origin, it would be beneficial to discern the
precise cellular mechanisms altered by exosomal miRNAs as well
as assess if such effects differ depending on CNS cell type. Related
to this gap in knowledge, observations indicate the ratio of a
given miRNA copy to the number of exosomes is substantially
below one, with an average of one per 121 exosomes (Chevillet
et al., 2014). This suggests additional investigations should more
accurately quantify the association between exosomal miRNA
content and ensuing functional alterations in CNS cells, such
as effects of a single miRNA from one exosome and synergistic
effects of multiple miRNAs from different exosomes. Along with
miRNAs, accumulating data indicate exosomes can translocate
other types of non-coding RNAs, including long non-coding
RNAs (lncRNAs), ribosomal RNAs and circular RNAs (Huang
et al., 2013; Li et al., 2015). By examining how these other
exosomal non-coding RNAs interact with miRNAs to exert
variation in CNS processes, investigators will likely gain a greater
understanding of the neurobiological mechanisms contributing
to cognitive decline in late life.

Neuroinflammation
A mild state of chronic neuroinflammation in the absence of
overt infection referred to as sterile inflammation, or inflamm-
aging, is a common feature of normal aging. Higher levels of
neuroinflammation are a risk factor for age-related cognitive
decline and the accumulation of neuropathological hallmarks
(Wyss-Coray and Rogers, 2012; Franceschi and Campisi, 2014;
Ransohoff, 2016). Neuroinflammation can be quantified through
a diverse set of variables, including levels of inflammatory
messengers (e.g., cytokine, chemokines, prostaglandins) and
phenotypic characteristics of CNS cells which mediate immune
processes (e.g., microglia, astrocytes) (Glass et al., 2010). In the
event of infection or injury, optimal neuroinflammation can
promote neuroprotective effects, yet its dysregulation from a
variety of factors in aging (e.g., increased iron load, accumulation
of lipid droplets, oxidative stress etc.) can result in an aberrant,
pro-inflammatory state (Wong, 2013; Ransohoff, 2016; Rea et al.,
2018). In turn, this can induce deleterious consequences for
homeostatic processes in CNS cells and contribute to an increased
risk for cognitive decline and neurodegeneration. Investigations
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utilizing a variety of techniques (e.g., genomic, neuroimaging
etc.) across experimental designs (i.e., clinical and preclinical)
support the association between increased neuroinflammation
and late life cognitive dysfunction (He et al., 2007; Cribbs et al.,
2012; Kreisl et al., 2013; Elmore et al., 2018; Duggan and Parikh,
2021).

The modulation of neuroinflammatory processes by exosomes
has been increasingly scrutinized in the context of several
conditions, including neurodegenerative diseases and traumatic
brain injury (Gupta and Pulliam, 2014; Thomi et al., 2019;
Kumar et al., 2021). A recent interrogation elegantly addressed
this mechanism by isolating astrocyte and neuronal exosomes
from plasma samples of AD patients and examining their
subsequent in vitro effects on several neuronal populations,
including rat cortical neurons as well as human iPSC-derived
neurons. Compared to age-matched and cognitively sound
participants, brain derived exosomes from AD individuals
triggered a robust activation of the complement cascade (i.e., an
immune response pathway for host defense against infections),
which ultimately resulted in the disruption of plasma membrane
integrity as well as elevated neurotoxicity (Nogueras-Ortiz et al.,
2020). Such findings were consistent with results from another
study, which illustrated increased concentrations of multiple
complement cascade proteins in astrocyte derived exosomes from
AD individuals, including C1q and C4b (Goetzl et al., 2018b).

The role of exosomes in mediating neuroinflammatory
mechanisms underlying cognitive decline has disproportionally
relied on preclinical models, particularly transgenic animals.
In APP/PS1 double transgenic mice, recent investigations
have shown the administration of exosomes from healthy,
bone marrow derived mesenchymal stem cells can normalize
neuroinflammation across the cortex and hippocampus [i.e.,
decrease pro-inflammatory cytokines (TNF-α, IL-1β, and
IL-6); increase anti-inflammatory cytokines (IL-10, IL-4, and
IL-13)]; in turn, this is associated with the mitigation of
pathological peptides (i.e., Aβ concentrations, plaque deposition)
and the preservation memory capacities (i.e., Morris Water
Maze). Interestingly, such beneficial effects on cognition and
neuroinflammation were comparable when exosomes were
specifically targeted to the brain or administered systemically,
highlighting the capacity of these EVs to exert their effects
across the BBB (Cui et al., 2018, 2019). Follow-up studies
have expounded on these findings by illustrating the exosomal
moderation of neuroinflammatory processes and ensuing
benefits to cognitive performance may be attributed to effects on
microglia specifically (i.e., the resident macrophage of the CNS)
(Ding et al., 2018; Li et al., 2020; Zhang et al., 2021).

To enhance our understanding of exosomal-mediated
neuroinflammation and associated risk for cognitive decline,
several lines of evidence require further interrogation. Most
prominently, further studies are needed to characterize the
contents of exosomes which are responsible for alterations in
CNS inflammation. Along with pathogens (e.g., bacteria, viruses),
a variety of molecules can induce immune responses in the brain,
including reactive oxygen species (ROS), purine metabolites
(e.g., urate crystals), calcium-binding proteins and lipotoxic
ceramides (Ransohoff and Perry, 2009; Chen and Nunez, 2010;

Goldberg and Dixit, 2015). In addition to screening for
exosomal contents, investigations should distinguish how
these molecules delivered to the intracellular environment
differentially trigger inflammatory responses compared to their
previously characterized effects, many of which have been
assessed at the extracellular surface (e.g., cytokines binding to
receptors). Evidence also indicates inflammation emanating
from the periphery can increase the risk for late life cognitive
impairments, either by lowering the threshold for activation in
the CNS or exacerbating ongoing neuroinflammation (Holmes
et al., 2009; Cunningham, 2013; Widmann and Heneka, 2014;
Barter et al., 2021). Indeed, data suggest exosomes can be integral
to this process: epithelial cells at the choroid plexus increase
production of exosomes containing proinflammatory miRNAs
in response to increased systemic inflammation (Balusu et al.,
2016). Given that exosomes themselves can also exert their effects
across the BBB, further studies should assess how peripheral
inflammatory states facilitate variation in neuroinflammation via
exosomes and increase the likelihood for cognitive deterioration
in elderly individuals.

Aggregate-Prone Proteins
Evidence indicating the association between aggregate-prone
proteins (i.e., Aβ, pTau) and age-related cognitive decline is
abundant, with increasing data suggesting their spread between
CNS cells can be facilitated through exosomes (Wang et al.,
2017; Sardar Sinha et al., 2018). It should be reiterated that
cognitive decline can occur independent from measures of
neuropathology, while behavioral symptomology is often
accompanied by a mixture of neuropathological hallmarks
(White et al., 2016; Aiello Bowles et al., 2019). Although
debate persists regarding whether these polypeptides are
pathogenic, neuroprotective or epiphenomena of upstream
mechanisms, it is thought their abnormal abundance and
ensuing aggregation (i.e., due to increased production and/or
decreased degradation) can perturb homeostatic processes in
CNS cells, facilitate neuronal malfunctioning and contribute
to the manifestation of behavioral symptomology (Espay
et al., 2019; Mathieu et al., 2020). Rather than discuss the
causal relevance of these proteins, the subsequent section
instead focuses on evidence of their transport within
exosomes and implications for the biological underpinnings of
cognitive decline.

Several investigations have leveraged aggregate-prone proteins
in exosomes to predict individual variation in cognitive decline as
well as their capacity to mediate its underlying neurobiological
mechanisms. In one study with a 3 year follow up period,
levels of Aβ1-42, pTau-181 and pTau-S396 in neuronal exosomes
isolated from blood samples could differentiate AD patients from
controls, as well as those patients with MCI who remained
cognitively stable from those who illustrated progressively
declining MMSE scores. Furthermore, intracerebral injection of
such exosomes into healthy adult mice induced a significant
accumulation of pTau in CA1 pyramidal neurons, compared
to those exosomes from stable MCI participants (Winston
et al., 2016). For Aβ1-42 specifically, data indicate its levels in
neuronal exosomes offers similar capacity to predict deterioration
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in cognitive performance; among participants diagnosed with
MCI according to a battery of tests (e.g., MMSE, MoCA,
ADAS-cog, AVLT), individuals who illustrated higher exosomal
Aβ1-42 levels maintain an 11.1- and 8.5-fold increased risk
for significant cognitive deterioration at 2 and 3 year follow-
up assessments, respectively, compared to MCI participants
who remained cognitively stable (Zhao et al., 2020). Similar
capacity to predict longitudinal cognitive performance has been
noted for neuronal exosome concentrations of total Tau and
pTau (Nam et al., 2020). Furthermore, in vitro and in vivo
investigations have demonstrated Aβ as well as Tau in brain
derived exosomes can readily compromise neuronal viability
and induce cell death (Winston et al., 2019; Elsherbini et al.,
2020a,b; Ruan et al., 2020). Together, these data suggest exosomal
concentrations of aggregate-prone peptides can induce aberrant
biological consequences in CNS cells (e.g., protein aggregation,
apoptosis etc.) and may constitute an important mechanism
leading to increased risk for cognitive impairments in aging.

Although exosomal transfer of aggregate-prone peptides may
be an important mechanism underlying cognitive decline, several
related processes require further investigation. Notably, data have
yet to elucidate how exosomal propagation of other aggregate-
prone peptides (i.e., TDP-43, α-synuclein) may synergistically
compromise CNS homeostasis (Iguchi et al., 2016; Ngolab et al.,
2017; Niu et al., 2020; Zhang et al., 2020). Such a gap in knowledge
is particularly relevant provided that age-related cognitive deficits
are often associated with the accumulation of multiple species
of aggregate-prone peptides (Schneider et al., 2007; Rahimi
and Kovacs, 2014; James et al., 2016; White et al., 2016).
Additional experiments should also examine how the uptake
of pathologically relevant proteins by microglia differentially
contributes to the clearance of such peptides, as well as their
potential spread to proximal cells via exosomes. As microglia
inherently play a role in Aβ/Tau degradation via phagocytosis,
and can facilitate the spread of aggregate-prone peptides via
the secretion of Aβ/Tau-containing EVs, it remains unknown
to what degree microglia contribute both to the degradation
of such proteins as well as their propagation via exosomes
(Joshi et al., 2014; Asai et al., 2015; Gouwens et al., 2018). In
addition, studies should determine if the transfer of transcripts
encoding for aggregate-prone peptides (e.g., APP, MAPT) via
exosomes is capable of increasing translation of these proteins
in recipient cells; such exploitation of host cell gene expression
machinery could facilitate the accumulation of protein aggregates
in otherwise healthy CNS cells (Gui et al., 2015; Khan et al.,
2016; O’Brien et al., 2020). Another unique aspect that requires
elucidation is the attachment of aggregate-prone proteins to
the surface of exosomes, rather than their inclusion into the
exosomal milieu. For instance, evidence suggests Aβ as well
as its degradation enzymes can be attached to the membrane
surface of exosomes (Bulloj et al., 2010; Yuyama et al., 2014;
Lim et al., 2019). Further investigations are encouraged to
determine how aggregate-prone proteins, attached to the surface
of exosomes, confer effects on the extracellular environment
(e.g., extra-cellular matrix dysregulation, plaque deposition etc.)
and whether these effects increase the likelihood for cognitive
deterioration in aging.

USING EXOSOMES TO IMPROVE
OUTCOMES IN COGNITVE DECLINE

Exosomes as Biomarkers to Predict
Dementia
Predicting individual cognitive trajectories in aging can be
important for diagnostic purposes, and the adoption of
exosomes as biomarkers may prove particularly useful in this
respect. Clinical assessment alone can fail to discriminate those
individuals who maintain cognitive resilience from those who
develop MCI, as well as those MCI patients who go on to
develop dementia (Frölich et al., 2017; Sabbagh et al., 2017; Albert
et al., 2018). Although PET neuroimaging and CSF assessments
via lumbar puncture can augment diagnostic sensitivity and
specificity of tests to detect plaques and tangles, such approaches
can be invasive, lengthy and costs are not routinely covered by
insurance. Furthermore, early detection of vulnerable individuals
may help improve patient outcomes and offer an opportunity for
earlier interventions. Indeed, the only FDA approved treatments
for dementia (i.e., cholinesterase inhibitors, NMDA antagonist,
Aβ antibodies) are specified for persons already exhibiting
symptoms; however, the underlying neurobiology of cognitive
decline is hypothesized to begin years or decades before the
onset of behavioral impairments (Long and Holtzman, 2019).
Therefore, using exosomes as biomarkers to enhance detection
of susceptible individuals may facilitate intervention by health
care providers (e.g., enrolling in clinical trials, implementing risk-
reduction strategies) and ultimately improve prognosis (Ngandu
et al., 2015; Seifan and Isaacson, 2015).

Numerous studies have used miRNAs isolated from blood-
derived exosomes as biomarkers to classify individuals who are
exhibiting late life cognitive dysfunction. Table 1 summarizes
clinical investigations that have developed algorithms based
on machine learning and other statistical approaches to
predict diagnostic status using miRNA from exosomes. Altered
expression of larger (i.e., 7–16) as well as more limited (i.e.,
1–3) panels of specific miRNAs are capable of accurately
distinguishing between clinical cases with AD dementia and
healthy, aged-matched controls (Liu et al., 2014; Cheng et al.,
2015; Lugli et al., 2015; Wei et al., 2018; Dong et al., 2021). In
addition, miRNAs from blood-derived exosomes have also been
used to differentiate dementia phenotypes (i.e., AD dementia,
Lewy Body dementia, Vascular dementia etc.) (Yang et al., 2018;
Gámez-Valero et al., 2019; Barbagallo et al., 2020). Although
several studies have directly associated exosomal miRNAs
with acute cognitive performance (e.g., MoCA, MMSE, CDR),
further evidence is needed to extrapolate such associations with
performance over time (Rani et al., 2017; Wei et al., 2018; Gullett
et al., 2020).

Compared to blood samples, available evidence suggests
measures of exosomal miRNAs obtained from CSF samples
offer similar accuracies in distinguishing individuals with age-
related cognitive impairment (Liu et al., 2014; Gui et al.,
2015; McKeever et al., 2018). However, results from several
studies highlight important considerations for miRNA biomarker
assessment in CSF exosomes. For example, while lower levels
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TABLE 1 | Clinical studies using exosome-derived microRNAs to predict dementia.

Source of
exosome

microRNA (miR) Prediction
model/diagnostic
evaluation

Biomarker accuracy Clinical
classification

References

Serum Upregulated in AD: miR18b-5p, miR-20a-5p, miR30e-5p,
miR-582-5p, miR-106a-5p, miR-361-5p, miR-143-3p, miR-424-5p,
miR-93-5p, miR-106b-5p, miR-101-3p, miR-335-5p, miR-15a-5p
Downregulated in AD: miR-1306-5p, miR342-3p, miR-15b-3p

Random decision forest Combined panel of 16 miRs: sensitivity
87%;specificity 77%

HC vs. AD Cheng et al., 2015

Serum Upregulated in AD: miR-22-3p, miR-378a-3p
Downregulated in AD: miR-30b-5p

Logistic regression, ROC
curve analysis

Combined panel of 3 miRs:
AUC 0.88

HC vs. AD Dong et al., 2021

Serum Downregulated in AD: miR-223 Spearman correlation, ROC
curve analysis

MMSE scores (r = 0.37); CDR scores
(r = 0.46); AUC 0.88

HC vs. AD Wei et al., 2018

Serum Upregulated in AD: miR-135a, miR-384
Downregulated in AD: miR-193b

ROC curve analysis miR-135a (AUC 0.72), miR-193b (AUC
0.55), miR-384 (AUC 0.99)

AD vs. VD Yang et al., 2018

Serum Upregulated in AD: miR-22, miR-23a, miR-29a, miR-34b, miR-130b Logistic regression, ROC
analysis

Univariate logistic regression and ROC
curve for each miR:
miR-22 (AUC 0.76), miR-23a (AUC 0.82),
miR-29a (AUC 0.83), miR-34b (AUC 0.81),
miR-130b (AUC 0.80)
Combined panel of 5 miRs: AUC 0.85

AD vs. VD Barbagallo et al., 2020

Serum & Plasma Downregulated in AD: miR-193b Mann-Whitney U Test miR-193b (p < 0.05) HC vs. AD
HC vs. MCI
MCI vs. AD

Liu et al., 2014

Plasma Downregulated in AD: miR-342-3p, miR-141-3p, miR-342-5p,
miR-23b-3p, miR-24-3p, miR-125b-5p, miR-152-3p

J48 decision tree, SVM,
adaboostM1, ROC curve
analysis

Combined panel of 7 miRs:
precision (J48 decision tree 0.78, SVM
0.82, AdaboostM1 0.89);
AUC (J48 decision tree 0.75, SVM 0.83,
AdaboostM1 0.92)

HC vs. AD Lugli et al., 2015

Plasma Downregulated in AD: miR-451a, miR-21-5p ROC curve analysis miR-451a (AUC 0.95), miR-21-5p (AUC
0.93)

AD vs. DLB Gámez-Valero et al.,
2019

Plasma Upregulated miRs correlated with lower MoCA scores:
miR-342-3p, miR-125b-5p, miR-10a-5p, miR-140-3p, miR-451a,
miR-99a-5p, miR-23b-3p, miR-10b-5p, miR-125a-5p, miR-186-5p,
miR-378a-3p, miR-26b-5p, miR-30c-5p

Multiple regression Coefficients (age –0.063 to –0.074;
miR –1.00 to –1.74); R2 0.12 to 0.15;
p < 0.05 to 0.01

Older adults
(60–89 years)

Rani et al., 2017

CSF Downregulated in AD: miR-29c, miR-136-3p, miR-16-2, miR-331-5p
Upregulated in AD: miR-132-5p, miR-485-5p

ANOVA Fold Change
miR-29c (–0.47), miR-136-3p (–0.12),
miR-16-2 (–0.83), miR-331-5p (–0.61),
miR-132-5p (0.12), miR-485-5p (1.39)

HC vs. AD Gui et al., 2015

CSF Downregulated in AD: miR-451a, miR-605-5p
Upregulated in AD: miR-125b-5p

ROC curve analyses AUC (EOAD/LOAD)
miR-451a (0.95/0.85)
miR-605-5p (0.71/0.77)
miR-125b-5p (0.72/0.79)

HC vs. LOAD
HC vs. YOAD

McKeever et al., 2018

CSF Downregulated in AD: miR-193b Spearman correlation CSF Aβ load (r = –0.44, p < 0.05) AD Liu et al., 2014

AD, Alzheimer’s Disease; AUC, area under the curve; CDR, clinical dementia rating; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; HC, Healthy Controls; LOAD, Late-Onset AD; MCI, mild cognitive
impairment; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; ROC, receiver operating characteristic; SVM, support vector machine, VD, vascular dementia; YOAD, Young-Onset AD.
The direction of change in microRNA is indicated in bold.
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of miR-193b in exosomes derived from serum, plasma or CSF
can differentiate AD patients from controls, levels of miR-193b
in CSF exosomes can discriminate AD patients more accurately
than levels from serum exosomes (i.e., 71.4% vs. 58.8%) (Liu
et al., 2014). In addition, when miRNA measurements are derived
from CSF, it should be noted that differential concentrations
of some miRNAs in AD subjects may illustrate opposite
patterns of expression depending on whether such miRNAs
are encapsulated in exosomes or soluble in CSF (Riancho
et al., 2017). Regarding non-miRNA biomarkers, measurements
of AD-specific biomarkers (i.e., Aβ, pTau) maintain robust
correlations across blood and CSF samples, thereby offering
similar capacities to discriminate participants with age-related
cognitive impairment (Jia et al., 2019; Janelidze et al., 2020).

Although there is no consensus on which individual miRNAs
or groups of miRNAs from exosomes best predict cognitive
impairment, some consistent evidence has emerged. For example,
levels of miR-342-3p in plasma exosomes were significantly
lower in AD participants compared to controls and correlated
with poor cognitive performance (i.e., MoCA) among elderly,
cognitively unimpaired individuals in a separate study (Lugli
et al., 2015; Rani et al., 2017). Similarly, data across multiple
cohorts indicate serum exosomes from AD individuals maintain
lower levels of miR-193b (Liu et al., 2014; Yang et al., 2018).
However, some inconsistent results have been reported; for
instance, results suggest CSF exosomes from AD patients exhibit
increased levels of miR-125b-5p, yet data from another study
indicate its levels in plasma exosomes are associated with poor
cognitive performance (Rani et al., 2017; McKeever et al., 2018).
As there appears to be minimal concordance across studies, the
application of exosomal miRNAs as reliable diagnostic indicators
may currently be limited to within particular individuals
(Dong et al., 2020).

In addition to cross-sectional investigations, several studies
have used exosomes as biomarkers to predict longitudinal
variation in cognitive decline. Using neurally derived exosomal
concentrations of aggregate-prone peptides, researchers can
predict individuals who progress from MCI to AD-dementia
within 36 months (i.e., via MMSE scores), as well as cognitively
sound individuals who develop dementia up to 10 years later (i.e.,
via CDR scores) (Fiandaca et al., 2015; Winston et al., 2016).
Increased longitudinal accuracy can be achieved by combining
such exosomal concentrations of aggregate-prone peptides
with other performance measures (e.g., olfactory function) or
other exosomal cargo (e.g., insulin receptor substrates; IRS)
(Kapogiannis et al., 2015; Zhao et al., 2020). For instance, by
coalescing measures of pTau and phosphorylated IRS-1 from
exosome-enriched plasma samples, researchers can predict (i.e.,
>80% accuracy) elderly individuals who remain cognitively
resilient from those who eventually display cognitive decline
(i.e., mean follow up 3.5 ± 2.31 years) (Kapogiannis et al.,
2019). It should be noted these aggregate-prone peptides in
exosomes can also distinguish degrees of cognitive impairment
in cross-sectional studies (i.e., healthy control vs. MCI vs. AD)
(Jia et al., 2019; Nam et al., 2020; Perrotte et al., 2020). The
most consistent results from neuronal-specific exosomes across
different investigators and cohorts suggests a positive association

between AD-specific biomarkers (i.e., Aβ, pTau) with cross-
sectional and longitudinal risk of cognitive impairment (Fiandaca
et al., 2015; Winston et al., 2016; Jia et al., 2019; Nam et al., 2020;
Zhao et al., 2020).

To enhance the utilization of exosomes as reliable and valid
biomarkers, several important limitations should be considered.
When examining their associations with cognitive decline,
researchers should take steps to differentiate the tissue-specific
(i.e., systemic vs. brain) as well as the cell-specific origin
of exosomes. Indeed, data indicate exosomes from the CNS
contain significantly different molecular contents depending
on an individual’s cognitive capacities (i.e., healthy controls
vs. dementia) as well as their cellular origin (i.e., neurons vs.
astrocytes), while such differences in content can subsequently
induce distinct functional consequences for recipient cells
(Goetzl et al., 2016b; Iguchi et al., 2016; Nogueras-Ortiz et al.,
2020). Investigations should also consider steps to improve the
diagnostic accuracy of exosomes for early stages of cognitive
decline, given that current approaches differentiate healthy
individuals from dementia cases more accurately than from MCI
cases (Xing et al., 2021).

Despite limitations, the implementation of exosomes as
biomarkers for age-related cognitive decline offers several
advantages. As mentioned previously, exosomal sampling is
more cost effective and less invasive than currently available
biomarkers (i.e., CSF, PET). Furthermore, exosomes derived
from the CSF and blood offer similar accuracy for identifying
individuals exhibiting cognitive decline, while neuroimaging
and blood derived exosomes exhibit similar specificity for
distinguishing dementia cases from healthy controls (Gui
et al., 2015; Jia et al., 2019; Lim et al., 2019). Meanwhile,
exosomes can be sampled from several biological fluids
(e.g., blood, saliva, urine, breast milk) (Pisitkun et al., 2004;
Gallo et al., 2012; Mirza et al., 2019). Indeed, recent reports
indicate neuronal exosomes can be isolated from saliva, while
urinary exosomes can classify dementia patients from healthy
controls (Rani et al., 2019; Sun et al., 2019). Additionally,
the diversity of exosomal content presents investigators
with the unique opportunity to improve diagnostic capacity;
compared to approaches which assess a single molecular
target (e.g., proteins), exosomes can enable researchers
to leverage information simultaneously from a variety of
molecular targets (e.g., proteins, lipids, RNA, DNA) (Thakur
et al., 2014; Dinkins et al., 2017; Asada et al., 2019; Teruel-
Montoya et al., 2019). However, comparisons across studies
should be restricted to samples of the same biological fluid,
given that preparations from different biological fluids
incur differing degrees of contamination during preparation
(Grigor’eva et al., 2017).

Engineered Exosomes as a Cargo
Delivery Vehicle for Cognition
Therapeutics
Along with their diagnostic applications, exosomes can
potentially serve as efficient delivery vehicles for the treatment
of age-related cognitive dysfunction. Compared to traditional
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drug delivery, exosomes offer a number of benefits including
their capacity to translocate functional biomolecules, their
stability in blood, and immune tolerance (Pêche et al., 2006;
Sun et al., 2013; Song et al., 2016). Naturally occurring
exosomes derived from a variety of sources have been
investigated for therapeutic applications, including those
from different mammalian cells (e.g., mesenchymal stem
cells, macrophages, tumor cells), plant cells, and biological
fluids (e.g., plasma, serum, and milk) (Luan et al., 2017;
Alfieri et al., 2021; Kučuk et al., 2021; Perut et al., 2021).
Isolated exosomes can be exogenously loaded with therapeutic
cargo for targeted delivery, ranging from RNAs (siRNA,
miRNA, lncRNA) and proteins to synthetic chemicals and
drugs. Numerous methodological approaches have been
developed for modifying exosome contents for specific clinical
applications, including passive (e.g., incubation) and active
processes (e.g., sonication, extrusion, electroporation, chemical
transfection) (Luan et al., 2017; Fu et al., 2020). Exosomes
can also be modified to target a precise cell type within a
given tissue by click chemistry methods that attach molecules
of interest to the luminal surface via covalent bonds, or
by manipulating exosome-producing parent cells in vitro
(i.e., gene transfection, drug treatment) (Ohno et al., 2013;
Smyth et al., 2014; Nakase and Futaki, 2015; Qi et al., 2016;
Conlan et al., 2017). For instance, to generate exosomes that
specifically target glioma cells, researchers have attached
a neuropilin-1 peptide to cargo-loaded exosomes utilizing
copper-catalyzed cycloaddition reactions of sulfonyl azide (Jia
et al., 2018). Researchers have also developed transfection
strategies to facilitate exosomal delivery to neurons and glia,
such as fusing the rabies viral glycoprotein with the gene
encoding for exosome transmembrane protein lysosome-
associated membrane protein 2b (LAMP2B) (Alvarez-Erviti
et al., 2011). Similar transfection strategies have enabled
therapeutic delivery to glioma cells, whereby the fusion of
a transferrin receptor peptide T7 with LAMP2B enabled
the delivery of miRNA oligonucleotides against miR-21
(Kim et al., 2020).

Perhaps the greatest advantage offered by exosomes is
their capacity to transverse the BBB due to their small size,
endogenous biological properties, and low immunogenicity,
which has otherwise been a major obstacle in treatment
development for cognitive decline (Pardridge, 2020). This
has enabled the systemic administration of exosomes to
efficiently deliver genetic material (e.g., oligonucleotides,
miRNAs) and therapeutic drugs to the brain, where they
induce functional alterations in targeted CNS cell types
(Alvarez-Erviti et al., 2011; Kim et al., 2020). Numerous
animal studies have evaluated the potential use of exosomes as
drug delivery mechanisms for age-related neurodegenerative
disorders and neuroinflammatory conditions. Across
several different mouse models, including those exposed
to lipopolysaccharide (LPS)-induced CNS inflammation
and experimental autoimmune encephalitis, the intranasal
delivery and subsequent CNS uptake of exosomes loaded
with anti-inflammatory compounds (i.e., curcumin or Stat3-
inhibitor) protected mice from the deleterious effects otherwise

associated with aberrant neuroinflammation (e.g., increased
proinflammatory cytokine expression, increased disease
severity) (Zhuang et al., 2011). Similarly, in a mouse model of
ischemic stroke, the incorporation of neuron specific fusion
proteins on the exosomal surface along with the intravenous
application of such exosomes was capable of delivering specific
compounds (e.g., miRNAs, flavonoids) to the CNS, where
they exerted neuroprotective effects and promoted neuronal
viability (Yang et al., 2017; Guo et al., 2021). Furthermore,
evidence suggests exosomes can ferry cargo across the BBB
without exogenous modification of CNS-targeting peptides
on their surface. For instance, due to their inherent brain-
homing peptides, exosomes isolated from macrophages
and administered intravenously can deliver brain-derived
neurotrophic factor (BDNF) to the CNS (Yuan et al., 2017).
Likewise, systemic administration of macrophage-derived
exosomes loaded with glial cell-line derived neurotrophic
factor (GDNF) reduced neuroinflammation and ameliorated
degeneration of dopaminergic neurons in a mouse model of
Parkinson’s disease (PD) (Zhao et al., 2014). In another mouse
model of PD, systemic administration of macrophage-derived
exosomes delivered an antioxidant enzyme to dopaminergic
neurons and resulted in significantly improved motor function
(Haney et al., 2015). Beneficial effects have also been reported
in transgenic AD-mice following intraparietal injection of
brain-specific exosomes containing quercetin; here, exosomal
delivery across the BBB resulted in an attenuation of memory
and spatial learning deficits, as well as the mitigation of
neuropathological hallmarks (e.g., pTau, neurofibrillary tangles)
(Qi et al., 2020).

Although engineered exosomes may eventually prove more
effective, existing evidence from stem cell derived exosomes
demonstrates that even un-modified exosomes hold promise for
dementia treatment. In APP/PS1 mice across several research
groups, the application of exosomes isolated from cultured stem
cells (human umbilical, mouse bone barrow, mouse embryonic)
can reliably improve performance on cognitive tasks (novel
object recognition, Morris Water Maze) and inhibit biological
processes associated with cognitive impairment, including the
dysregulated expression of pro- and anti-inflammatory cytokines
(IL1-β and IL-10), the activation of CNS immune cells
(astrocytes, microglia) and the deposition of Aβ (Aβ1-40, Aβ1-42,
plaques) (Cui et al., 2018, 2019; Ding et al., 2018; Wang
et al., 2018; Li et al., 2020; Yang et al., 2020). Additional data
has suggested such protective effects observed across multiple
AD mouse models may be due to the natural inclusion of
antioxidants (bioactive catalase) and Aβ degrading enzymes
(neprilysin, insulin degrading enzyme) in stem cell exosomes
(de Godoy et al., 2018; Ding et al., 2018; Lee et al., 2018;
Bodart-Santos et al., 2019; Elia et al., 2019; Micci et al., 2019;
Apodaca et al., 2021). Together, these animal studies support
the therapeutic potential of engineered exosomes as CNS-
specific delivery vehicles to ameliorate cellular and cognitive
dysfunction (Figure 1).

While the clinical development of therapeutic interventions
faces a variety of hurdles, the consideration of exosomes
as a novel delivery vehicle for future nanotherapeutics
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FIGURE 1 | Schematic illustration depicting the application of exosomes for central nervous system (CNS) delivery of therapeutic cargo to combat the
neurobiological underpinnings of age-related cognitive decline. Natural exosomes or those modified for targeted delivery to specific brain cells (e.g., neurons,
oligodendrocytes, astrocytes, and microglia) are loaded with therapeutic molecular cargo (e.g., nucleic acids, proteins, and drugs) using passive or active strategies.
Exosomes are then administered systemically, where the route of administration depends upon multiple parameters including stability, biodistribution, dose, and
therapeutic efficacy. With their inherent capacity to penetrate the blood brain barrier (BBB), exosomes ferry therapeutic cargos to the targeted brain cells and
ameliorate aberrant neurobiological processes (e.g., neuroinflammation, neuronal cell death, Aβ degradation/clearance etc.) that may otherwise contribute to
age-related cognitive decline. Created with Biorender.

TABLE 2 | Clinical trials involving exosome-based therapeutic interventions for neurological disorders (ClinicalTrials.gov Database, 2022).

Exosome Intervention Route of administration Therapeutic condition Outcome measures Clinical trial ID

Allogenic adipose MSC-derived
exosomes

Intranasal AD Adverse event, cognitive
function, quality of life, AD
biomarkers

NCT04388982

Focused ultrasound delivery of
exosomes

Intravenous Refractory depression,
anxiety disorders, and
neurodegenerative
dementia

Depressive and anxiety
symptoms, cognitive function

NCT04202770

Allogenic MSC-derived exosomes
transfected with miR-124

Stereotaxis/intraparenchymal Cerebrovascular disorders Stroke recurrence, seizure,
hemorrhage, disability

NCT03384433

Exosomes containing neonatal stem
cell products

Epineural using ultrasound
guidance, intravenous

Neuralgia Pain, depression severity, daily
functioning, adverse event

NCT04202783

AD, Alzheimer’s Disease; MSC, Mesenchymal Stem Cells.

may prove to enhance outcomes for those individuals
vulnerable to age-related cognitive pathologies. In this
context, the use of un-modified exosomes isolated from
adipose mesenchymal stem cells is currently being investigated
for AD-dementia in clinics (NCT04388982). Although the
study is only exploring the safety and efficacy of exosome
treatment in patients, data from secondary outcome measures
that include AD biomarkers based in Aβ plasma/CSF
measures, PET scans, and neuropsychological tests, may
further encourage the development of engineered vesicles
for the treatment of age-related cognitive decline. Table 2
summarizes ongoing clinical trials using exosome-based
therapeutic interventions in neurodegenerative and neurological

disorders assessing cognitive, disability, and daily functioning
outcomes1.

CONCLUSION

The current composition proposes exosomes are uniquely
suited to improve our mechanistic understanding as well
as enhance patient outcomes for the growing public health
challenge of age-related cognitive decline. We highlight how
the analysis of exosomes can improve our understanding of

1http://www.clinicaltrials.gov
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varying mechanisms in age-related cognitive decline, including
the role of miRNAs, neuroinflammation and aggregate-prone
proteins (i.e., Aβ, pTau). Despite these contributions, we suggest
specific areas of inquiry that warrant further interrogation,
including the elucidation mechanisms in recipient cells that
are modulated by exosomal miRNAs, the characterization
of exosomal contents that are responsible for alterations in
neuroinflammation and the examination of other aggregate-
prone peptides (e.g., TDP-43, α-synuclein) in exosomes that may
synergistically increase risk for late life cognitive impairment.
Moreover, we discuss how exosomes might be used to enhance
outcomes for elderly individuals by serving as reliable biomarkers
and therapeutic agents.

To improve the reliability of studies going forward, consistent
nomenclature coupled with protocol modifications that enhance
the discrimination of EVs could be particularly effective.
Due to similar biophysical properties (i.e., overlapping size,
density, and protein compositions), isolation techniques
developed for exosomes can inadvertently lead to results
that are derived from samples containing a variety of
different EVs (Théry et al., 2018; Witwer and Théry, 2019).
Similarly, exosome-specific effects can be reported from
protocols that fail to adequately purify EVs from non-
vesicular components that can confound ensuing biochemical
measurements (e.g., RNA-protein complexes) (Lötvall et al.,
2014). To avoid different kinds of vesicles being labeled
with the same terminology, MISEV guidelines suggest EVs
should instead be labeled according to their size, biochemical
composition and conditions/cellular origin (Théry et al.,
2018). Several methodological alterations have also been
suggested to improve accuracy in terminology, including the
use of serum over plasma, and the use of brain derived
exosomes rather than total exosomes (Xing et al., 2021).
Moreover, technical aspects should also be considered for
increasing reliability, including the standardization of exosomal
extraction and isolation, where differences in protocols can
otherwise lead to substantially divergent results both between
as well as within procedures (e.g., immunoprecipitation,
ultracentrifugation) (Martins et al., 2018; Patel et al., 2019;
Brennan et al., 2020; Shtam et al., 2020). Similarly, investigations
should employ parallel protocols for the handling and
preservation of samples across experimental designs, given
that alternative storage conditions can alter exosome stability
(Cheng et al., 2019). Consistent nomenclature suggested by
MISEV guidelines, protocol adjustments (i.e., using appropriate
controls, characterizing vesicles with advanced microscopy,
profiling protein composition etc.) and standardized technical
procedures across studies may improve the reliability of exosome
measurements and enhance their application in the context of
age-related cognitive decline.

Several additional limitations hinder the further application
of exosomes discussed herein. Notably, it remains unknown
whether concurrent variation in exosomes and cognitive
capacities is reflective of a causal or reverse-causal association.
In other words, it is difficult to determine if exosomal

differentiation contributes to divergent cognitive trajectories, or
if such differences are secondary to other biological processes
that otherwise increase risk for cognitive deterioration in aging.
A lack of data measuring time-dependent variation in the profiles
of neuronal exosomes contributes to this lack of understanding,
and potentially inhibits researchers from adequately controlling
for the effects of aging. Although a limited set of investigations
have employed longitudinal designs (Fiandaca et al., 2015;
Winston et al., 2016; Kapogiannis et al., 2019; Zhao et al.,
2020), future studies should take steps to establish temporal
precedence and determine the causal implications of exosomes
in facilitating cognitive decline. Along with the call to establish
causation, additional evidence is needed to discern the role of
modifiable life factors that can lead to cognitive resiliency in
aging, such as exercise, diet and cognitive stimulation (Duggan
and Parikh, 2021). For example, our recent data in rodents
has demonstrated that engagement on an attention demanding
task during aging leads to the upregulation of transcripts
linked to extracellular vesicles, suggesting exosome-related
biochemical pathways could be important for inducing individual
variation in cognitive resilience (Duggan et al., 2019). Another
limitation is the need to examine alternative neurobiological
mechanisms not discussed in the current composition. Indeed,
data suggest individuals exhibiting cognitive deficits in aging
maintain altered concentrations of exosomal proteins implicated
in insulin signaling (Kapogiannis et al., 2015, 2019), lysosomal
degradation/autophagy (Goetzl et al., 2015) as well as synaptic
integrity (Goetzl et al., 2016a, 2018a; Winston et al., 2016,
2018; Agliardi et al., 2019; Jia et al., 2021). By addressing these
limitations, researchers may gain a greater understanding of
exosome-mediated regulation of miRNAs, neuroinflammation,
and aggregate-prone proteins, while enhancing the potential for
exosomes to serve as reliable biomarkers of cognitive decline
and as nanocarriers to deliver therapeutic agents to the brain in
neurodegenerative conditions.
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