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Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with an
increasing prevalence in industrialized, aging populations. AD susceptibility has an
established genetic basis which has been the focus of a large number of genome-
wide association studies (GWAS) published over the last decade. Most of these GWAS
used dichotomized clinical diagnostic status, i.e., case vs. control classification, as
outcome phenotypes, without the use of biomarkers. An alternative and potentially
more powerful study design is afforded by using quantitative AD-related phenotypes as
GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically,
we utilized genotype and phenotype data from n = 931 individuals collected under
the auspices of the European Medical Information Framework for Alzheimer’s Disease
Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate
GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits
and seven cognitive performance traits. For the latter, longitudinal data from at least
two timepoints were available in addition to cross-sectional assessments at baseline.
Our GWAS analyses revealed several genome-wide significant associations for the
neuropsychological performance measures, in particular those assayed longitudinally.
Among the most noteworthy signals were associations in or near EHBP1 (EH domain
binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112;
17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding
2; 6p27) with immediate recall in a memory performance test. On the X chromosome,
which is often excluded in other GWAS, we identified a genome-wide significant signal
near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic
score (PGS) analyses showed the expected strong associations with SNPs highlighted
in relevant previous GWAS on hippocampal volume and cognitive function, they did
not show noteworthy associations with recent AD risk GWAS findings. In summary, our
study highlights the power of using quantitative endophenotypes as outcome traits in
AD-related GWAS analyses and nominates several new loci not previously implicated in
cognitive decline.

Keywords: genome-wide association study, GWAS, X chromosome, Alzheimer’s disease (AD), MRI, imaging,
cognitive function

INTRODUCTION

Alzheimer’s disease is the most common neurodegenerative
disease in humans and the most common form of dementia. In
2018, estimates were published that 50 million dementia patients
exist worldwide, about two-third of whom were diagnosed
with AD (Patterson, 2018). Pathologically, AD is characterized
by the accumulation of extracellular amyloid β (Aβ) peptide
deposits (“plaques”) and intracellular hyperphosphorylated
tau protein aggregates (“tangles”) in the brain, leading to
synaptic dysfunction, neuroinflammation, neuronal loss, and,
ultimately, onset of cognitive decline (Sperling et al., 2014;
Mattsson et al., 2015). Genetically, AD is a heterogeneous

disorder with both monogenic and polygenic forms. The
former is caused by highly penetrant but rare mutations in
three genes encoding the amyloid beta precursor protein
(APP) and presenilins 1 and 2 (PSEN1/PSEN2), which only
make up a small fraction (<<5%) of all AD cases (Cacace
et al., 2016). Most patients, however, suffer from “polygenic
AD,” which is determined by the action (and interaction) of
numerous independent genomic variants, likely in concert with
non-genetic factors, such as environmental exposures (e.g.,
head trauma) and lifestyle choices (e.g., alcohol consumption
and cigarette smoking) (Bertram and Tanzi, 2020). Based on
results from the currently most recent and largest genome-
wide association study (GWAS) performed in AD, there are
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now 38 independent loci showing genome-wide significant
association with disease risk (Wightman et al., 2021). The
most strongly and most consistently associated AD risk gene
is APOE, which encodes apolipoprotein E, a cholesterol
transport protein that has been implicated in numerous
amyloid-specific pathways, including amyloid trafficking, as
well as plaque clearance (Holtzman et al., 2012). Although
the heritability of polygenic AD is estimated to be around
60–80% (Gatz et al., 2006), APOE and the other currently
known 37 independent risk loci explain only part of the
disease’s phenotypic variance (Wightman et al., 2021).
While most AD GWAS only consider clinically diagnosed
“probable AD” cases and cognitively unimpaired controls,
involving a risk for mis-diagnosis of patients and inclusion
of preclinical AD cases as controls, additional information
about the genetic architecture of AD and additional statistical
power is also afforded by using “endophenotypes” related
to AD, ideally measured on a quantitative scale such as
biomarker data, imaging, or neurocognitive performance
(Gottesman and Gould, 2003; MacRae and Vasan, 2011;
Zhang et al., 2020).

In our study, we expand earlier work from our group
(Hong et al., 2020, 2021) derived from European Medical
Information Framework Alzheimer’s Disease Multimodal
Biomarker Discovery (EMIF-AD MBD) sample (Bos et al.,
2018). Specifically, in two previous GWAS we set out to
identify variants underlying variation in several cerebrospinal
fluid (CSF) phenotypes, such as levels of CSF Aβ and tau
protein (Hong et al., 2020), or neurofilament light (NfL)
chain, chitinase-3-like protein 1 (YKL-40), and neurogranin
(Ng), which reflect axonal damage, astroglial activation,
and synaptic degeneration, respectively (Hong et al., 2021).
However, the EMIF-AD MBD dataset features several
other quantitative phenotypes, including cross-sectional
MRI measurements and cross-sectional and longitudinal
neuropsychological tests, which are used as outcome traits in
the current study. Thus, while using the same individuals
and identical genome-wide SNP genotype data as in
Hong et al. (2020, 2021), we substantially extended our
previous work by focusing on entirely novel phenotypic
domains available in EMIF-AD MBD. Specifically, we
performed GWAS and polygenic score (PGS) analyses
on seven neuropsychological (using both cross-sectional
and longitudinal data) and five brain imaging phenotypes
(using cross-sectional data from MRI scans). In the 19
performed GWAS scans (which also included the X
chromosome), we identified a total of 13 genome-wide
significant loci highlighting several novel genes showing
association with the analyzed traits. While we do not see a
noteworthy overlap in the genetic architectures underlying
our “endophenotypes” and AD by polygenic score (PGS)
analysis, we did observe significant correlations in PGS
constructed from earlier GWAS on hippocampal volume
(Hibar et al., 2017) and general cognitive function (Davies
et al., 2018) with the respective phenotypes in EMIF-
AD MBD. Taken together, our novel results pinpoint

several new genetic loci potentially involved in AD-related
pathophysiology.

MATERIALS AND METHODS

Sample Description
Analyses were based on the EMIF-AD MBD dataset which
was collected across 11 different European study centers
(Bos et al., 2018). In total, this dataset included 1,221 [563 (46%)
female; mean age = 67.9 years, SD = 8.3] individuals from
three diagnostic stages: normal controls (NC), subjects with
mild cognitive impairment (MCI) and subjects with a clinical
diagnosis of AD. A diagnosis of AD was based on National
Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association
criteria (NINCDS-ADRDA) (McKhann et al., 1984) while MCI
was diagnosed using criteria of Petersen (2004) in nine centers,
while two centers used the criteria by Winblad et al. (2004).
Individuals showing normal performance on neuropsychological
assessment (within 1.5 SD of the average for age, gender, and
education) at baseline were classified as NC (Bos et al., 2018). An
overview of the quantitative phenotypes investigated in this study
is provided in Table 1. Due to partially missing phenotype data
(in the neurocognitive domain), the effective sample sizes vary
for the different GWAS analyses (see Table 1). The local medical
ethical review boards in each participating recruitment center
had approved the study prior to commencement. Furthermore,
all subjects had provided written informed consent at the time
of inclusion in the cohort for use of data, samples and scans
(Bos et al., 2018).

Magnetic Resonance Imaging
Phenotypes Description
The five MRI phenotypes were collected for 862 subjects. Brain
MRIs were used to assess hippocampal volume (mm3, left and
right hemisphere, and sum of both; all adjusted for intracranial
volume), whole brain cortical thickness (in mm), and white
matter lesions (WML; using the Fazekas scale) (Ten Kate et al.,
2018). The Fazekas scale categorizes WMLs into 4 categories:
Level 0 (no or almost no lesion), level 1 (multiple punctate
lesions), level 2 (early confluent WML), and level 3 (presence
of large confluent WML). Details on the scanning procedures
and data harmonization across centers can be found in Bos et al.
(2018) and Ten Kate et al. (2018).

Neuropsychological Phenotypes
Description
Cross-sectional (and follow-up) data were available for the
following seven neuropsychological domains within the
EMIF-AD MBD dataset: global cognition (Mini Mental State
Examination, MMSE), attention, executive function, language,
memory (immediate and delayed) and visuoconstruction
(for a detailed description of all neuropsychological tests see
Supplementary Material). For each cognitive domain, a primary
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TABLE 1 | Description of EMID-AD MBD datasets analyzed per phenotype.

Baseline Longitudinal

Category Phenotype Sample size MAF filter Sample size MAF filter

Neuropsychological MMSE 867 0.02 520 0.02

Attention 806 0.01 402 0.02

Executive functioning 686 0.01 234 0.02

Language 849 0.01 409 0.02

Memory Delayed 729 0.01 337 0.02

Memory Immediate 797 0.01 345 0.02

Visuoconstruction 429 0.02 149 0.04

MRI Fazekas score 606 0.01 n.a. n.a.

Cortical thickness 560 0.01 n.a. n.a.

Left Hippocampus volume 605 0.01 n.a. n.a.

Right Hippocampus volume 605 0.01 n.a. n.a.

Summed Hippocampus volume 605 0.01 n.a. n.a.

“MAF filter” denotes the applied MAF filter for each GWAS. For cross-sectional MMSE we used an MAF threshold of 0.02 due to residual inflation of the GWAS test
statistics. Information on tests used for generating baseline and longitudinal phenotypes can be found in Supplementary Material.
MMSE, Mini Mental State Examination. “n.a.”, not available. MRI, Magnetic Resonance Imaging. MAF, Minor Allele Frequency.

test was selected by Bos et al. (2018). If the preferred test were
not available, an alternative priority test from the same cognitive
domain was chosen. More details on the neuropsychological
tests used for generating these phenotypes can be found in
Bos et al. (2018). Raw data on these tests were normalized
with the help of a z-transformation, so that the data were
comparable within a cognitive domain despite representing
partially different tests across centers. For the cross-sectional
GWAS analyses, the z-scores derived from baseline data were
used. The number of subjects used for each test can be found
in Supplementary Material. For all seven neuropsychological
domains, follow-up data from at least one additional time
point were available for each individual and used to construct
a longitudinal phenotype using the following formula [which
estimates the relative change in cognitive performance per time
interval (here: years)]:

Scorelast − Scorefirst
Scorelast+Scorefirst

2 ∗ interval

When calculating longitudinal phenotypes, this formula was
applied separately for each neuropsychological test. Outlying
scores were determined using a false discovery rate (FDR)
threshold of 0.05 and were excluded from all subsequent analyses.
Only the most frequently used tests per cognitive domain
were included in the final phenotypes (for more information,
see Supplementary Material). Both baseline and longitudinal
phenotypes were adjusted for age at baseline.

DNA Extraction, Genotype Imputation
and Quality Control
A detailed description of the genotyping procedures, quality
control (QC) and subsequent data processing can be found in
Hong et al. (2020) (Supplementary Material). Here, the same
genotype data were used for the GWAS analyses. Briefly, 936
DNA samples were subjected to genome-wide SNP genotyping

using the Infinium Global Screening Array (GSA) with Shared
Custom Content (Illumina Inc.). Imputation was then performed
using Minimac3 (Das et al., 2016). Extensive post-imputation
QC resulted in 7,464,105 autosomal SNPs with a minor allele
frequency (MAF)≥ 0.01 in 888 individuals of European ancestry.
More details can be found in Supplementary Material.

For the X chromosome, QC was performed separately for
male and female subjects for non-pseudoautosomal regions,
using slightly different criteria compared to the autosomes (see
Supplementary Material). In contrast, pseudoautosomal regions
(PAR1 and PAR2) were treated analogously to the autosomal
SNPs. After QC, imputations were performed on the Sanger
Institute imputation server1 using the extended HRC reference
panel (McCarthy et al., 2016). After imputation, we used the
same QC criteria as for the autosomal SNPs but performed these
separately for female and male data sets, except the HWE test
(P < 1.0E-4) which was performed on all samples combined
as recommended previously (Graffelman and Weir, 2016) and
implemented in PLINK2. For males, markers were coded as 0
vs. 2 (instead of 0 vs. 1), to adjust for the missing second X
chromosome (as recommended in Smith et al., 2021).

Genome-Wide Association Studies and
Post-Genome-Wide Association Studies
Analyses
SNP-based association analyses were performed assuming
an additive linear model (command: –glm) using allele
dosages (to account for imputation uncertainty) in PLINK2
(Purcell et al., 2007). The model is equivalent to a test for a dose-
response relationship between allele dose (i.e., one or two copies
vs. reference genotype) on the outcome trait. The covariates
included in the analyses were sex, diagnostic status and the first
three principal components from a principal component analysis
(PCA) to adjust for population-specific differences. Generally,

1https://imputation.sanger.ac.uk/

Frontiers in Aging Neuroscience | www.frontiersin.org 4 March 2022 | Volume 14 | Article 840651

https://imputation.sanger.ac.uk/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-840651 March 21, 2022 Time: 16:46 # 5

Homann et al. GWAS in EMIF-AD MBD Dataset

we excluded SNPs from the GWAS analyses with MAF < 0.01.
However, due to differences in the effective sample sizes across
phenotypes this threshold was adapted upward (up to 0.04) to
prevent inflation of test statistics owing to low frequency SNPs
(see Table 1 for more details). Diagnostic status was coded
with two dummy variables as follows: NC = (0, 0), MCI = (0,
1), AD = (1, 1). For four longitudinal cognitive phenotypes
an additional dummy variable was introduced to code for the
neuropsychological test used, in cases where two different tests
were used for generating these phenotypes. Details can be found
in Supplementary Material.

To explore associations on the X chromosome that were
potentially driven by genetic sex, we additionally conducted the
analyses separately in females and males. We then combined
these two additional sets of results in a meta-analysis using
Stouffer’s method as implemented in METAL (Willer et al., 2010).
As we found no noteworthy differences in the results using
Stouffer’s method, only the results from the linear regression
analysis in the combined sample are shown.

The FUMA platform2 (Watanabe et al., 2017) was used for
post-GWAS analyses, including gene-based association analyses
(via MAGMA, de Leeuw et al., 2015) and to annotate and
visualize the GWAS results. To this end, we defined genome-
wide significance at α= 5.0E-08 for the SNP-based analyses while
genome-wide suggestive evidence was set at α = 1.0E-05. For
the gene-based analyses, we adjusted for the number of protein-
coding genes examined (19,485) using the Bonferroni method,
resulting in a threshold of α= 2.566E-06.

In FUMA, both the SNP annotation and the Combined
Annotation Dependent Depletion (CADD) score (Rentzsch et al.,
2021) are provided. The main GWAS results are reported only
for “independent significant” SNPs, as defined by FUMA. These
represent SNPs that are not highly correlated with one another
using a threshold of r2 < 0.6 (using reference data from the 1,000
Genomes Project).

Subsequently, the top SNPs, i.e., those with the smallest
P-values per respective phenotype, were examined in more detail
using additional tools. First, the Variant Effect Predictor on
Ensembl (VEP,3 McLaren et al., 2016) was used to determine
a possibly functional effect due to changes in the coding
sequence, e.g., missense variants. Second, SNPs were examined
using data from the RegulomeDB database4 (Boyle et al., 2012)
to assess possible effects on gene expression. Third, we used
data from the Genotype-Tissue Expression (GTEx, V8) project
portal5 (Lonsdale et al., 2013) to assess whether SNPs represent
expression / splicing quantitative trait loci (eQTLs/sQTLs). While
GTEx provides data on gene expression in 54 tissues, we laid
particular emphasis in genes expressed in brain. Lastly, we
interrogated the GWAS catalog6 (Buniello et al., 2019) to assess
whether any of the top SNPs were previously reported to show
association with other phenotypes by GWAS. To this end, we

2http://fuma.ctglab.nl/
3http://grch37.ensembl.org/Tools/VEP
4https://regulomedb.org/regulome-search
5https://www.gtexportal.org/home/
6https://www.ebi.ac.uk/gwas/home

considered genes and loci within a 1 Mb region (±500,000 bp)
around the SNP of interest. In case SNPs not identical to our “top
SNP” were reported to show association with an AD-relevant
phenotype (brain imaging, cognition, etc.), the LDlink platform
(Machiela and Chanock, 2015) was used to determine pairwise
LD to top SNPs.7 In this context we defined relevant LD using a
threshold of r2 > 0.6.

Polygenic Score Analysis
In addition to the primary GWAS analyses described above, we
also calculated polygenic scores (PGS) to estimate the extent
of genetic correlation with the GWAS results for three other
phenotypes. To this end, we used the summary statistics of a
GWAS on AD risk (Jansen et al., 2019) as comparison to both
phenotypic domains (MRI and neurocognitive performance) of
our study, and the GWAS on general cognitive function (Davies
et al., 2018) as comparison to the GWAS on neuropsychological
phenotypes. Finally, the GWAS on hippocampal volume (Hibar
et al., 2017) served as comparison to our GWAS analyses on
MRI phenotypes. PGS calculations were performed using PRSice-
2 software (Choi and O’Reilly, 2019). Statistical analyses fitted
general linear regression models with PGS as predictor adjusting
for the same covariates as in the primary GWAS analyses: sex,
diagnostic status, and PC1-3 (and type of cognitive test, where
applicable). To adjust for multiple testing of this arm of our
study, we used a conservative threshold based on Bonferroni
adjustment (α = 5.0E-03 = 0.05/(5∗2) for the MRI phenotypes,
and α = 1.8E-03 = 0.05/(14∗2) for the neuropsychological
phenotypes). However, given the (at least partial) correlation
between phenotypes, we note that the true threshold is likely
somewhere between 0.05 and these Bonferroni-adjusted values.

RESULTS

Genome-Wide Association Studies on
Magnetic Resonance Imaging
Phenotypes
The genomic inflation factor λ ranged between 1.004 and 1.012
in all five SNP-based analyses, indicating that the results of the
MRI GWAS analyses were not affected by substantial inflation
of the test statistics. In the actual association analyses of the
five quantitative MRI phenotypes, we identified no genome-
wide significant (P < 5.0E-08) signals but observed 385 variants
with at least suggestively significant (P < 1.0E-05) evidence of
association (Supplementary Tables 15–19). The lowest P-value
was observed with SNP rs16829761 for the Fazekas phenotype
(P = 5.08E-08; Supplementary Figure 31), which only fell slightly
above the genome-wide significance threshold. According to VEP
(McLaren et al., 2016), this variant is located in an intron of
the genes IQCJ (protein: IQ motif containing J) and SCHIP1
(protein: schwannomin-interacting protein 1). In the GTEx
database (Lonsdale et al., 2013), the lead-SNP identified here
(rs16829761) is not listed as eQTL or sQTL, which may be due

7https://ldlink.nci.nih.gov/?tab=ldpair
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to the comparatively low MAF (0.01). The CADD score, i.e., the
in silico predicted deleteriousness, of rs16829761 is also low at
approximately 0.074. In addition, none of the gene-based GWAS
analyses using MAGMA revealed any genome-wide significant
signals (P < 2.566E-06) using the MRI traits analyzed. The
genomic inflation factor λ ranged between 0.984 and 1.060 in
these five gene-based analyses.

Genome-Wide Association Studies on
Neuropsychological Phenotypes
Across the 14 GWAS performed on cross-sectional and
longitudinal neuropsychological phenotypes available in EMIF-
AD MBD, there were a total of 13 genome-wide significant loci,
two of which were identified via the gene-based analyses using
MAGMA (de Leeuw et al., 2015). Three of the genome-wide
significant signals were observed in the analyses of cross-sectional
phenotype data and 10 with longitudinal outcomes. Overall, none
of the sets of GWAS results in this arm of our study appeared to
be strongly affected by inflation of the genome-wide test statistics
as evidenced by genomic inflation factors near 1 (range: 0.969–
1.012 in the SNP-based analyses and 0.922–1.036 in the gene-
based analyses). Table 2 provides a detailed summary of these
genome-wide significant loci, and Figure 1 shows multi-trait
Manhattan (MH) plots of the SNP-based GWAS results for cross-
sectional (Figure 1A) and longitudinal (Figure 1B) analyses
(for corresponding QQ plots: see Supplementary Figures 1, 2).
The following two paragraphs highlight the most interesting
results in either the analyses of cross-sectional or longitudinal
neuropsychological traits.

Analyses of Cross-Sectional Data
The most interesting finding in this domain was elicited by
markers in EHBP1 which showed genome-wide significant
evidence of association with the delayed recall memory
phenotype in the gene-based analysis (P = 1.17E-07; Table 2
and Supplementary Figure 20). The lead SNP (rs6705798) in
this region only missed the genome-wide significance threshold
by a small margin (P = 8.78E-08; Table 2 and Figure 1A).
EHBP1 is located on chromosome 2p15 and encodes EH domain
binding protein 1.

Analyses of Longitudinal Data
The strongest signal in the longitudinal analyses was elicited by a
locus on chromosome 6q27 (rs73045836; P = 7.50E-11; Table 2,
Figure 1B, and Supplementary Figure 25) in the analysis using
an immediate memory recall paradigm. This SNP is located in an
intron of SMOC2 coding for secreted modular calcium-binding
protein 2, which, among other functions, promotes extracellular
matrix assembly (Gao et al., 2019). It needs to be noted that with
an MAF ∼2% this SNP is rather infrequent which may increase
the possibility of representing a false-positive finding. Perhaps
more interesting is the association signal observed near SNP
rs5943462 (MAF ∼0.05) and the visuoconstruction phenotype
on the X chromosome (P = 1.06E-09; Table 2, Figure 1B, and
Supplementary Figure 29). This SNP is an intronic variant
located in IL1RAPL1 encoding interleukin 1 receptor accessory
protein−like 1, which belongs to a class of molecules that

regulate synapse formation (Montani et al., 2019). The third
highlighted signal in this domain relates to the genome-wide
significant variant rs74381761 (MAF ∼0.05) on chromosome
8p23.1 (P = 1.89E-08; Table 2, Figure 1B, and Supplementary
Figure 5) which shows association with the longitudinal MMSE
phenotype. The lead SNP is located in an intergenic region near
TNKS (gene-based P = 4.87E-04; Table 2). This gene encodes
the protein tankyrase, which belongs to a class of poly (ADP-
ribose) polymerases and is involved in various processes in the
body, such as telomere length regulation, the Wnt/β-catenin
signaling pathway, or glucose transport (Damale et al., 2020). The
last featured signal relates to the association observed near SNP
rs9652864 (MAF ∼0.22) on chromosome 17q24.1 (P = 3.20E-
08; Table 2, Figure 1B, and Supplementary Figure 21) and the
delayed recall test. This variant is located in an intron of CEP112,
which encodes centrosomal protein 112. Overall, there were eight
correlated SNPs in this locus all showing strongly association
(Supplementary Table 10).

Comparison of Cross-Sectional vs. Longitudinal
Genome-Wide Association Studies Results
After completion of the separate GWAS on cross-sectional
and longitudinal outcomes, we assessed whether the results
of these two analysis arms showed any overlap. To this
end, we followed two approaches: First, we performed a
look-up of top results from one paradigm in the equivalent
other. Specifically, we checked whether a genome-wide
significant SNP from the cross-sectional analyses also had a
low P-value in the corresponding longitudinal GWAS and
vice versa. The lowest corresponding P-value was 0.015 (at
baseline) for rs73045828, which attained P = 5.65E-09 in the
longitudinal GWAS for immediate memory (Supplementary
Table 21). No further signal overlaps were observed across
corresponding cross-sectional and longitudinal phenotypes.
Second, we took a more comprehensive approach by comparing
a larger set of SNPs across both phenotypic domains. To
this end, we constructed PGS from the summary statistics
of the cross-sectional GWAS (as an approximate measure of
“aggregated SNP effects”) and used these PGS as independent
variables in a linear model predicting longitudinal outcomes.
Effectively, this allowed us to determine how much phenotypic
variance in the longitudinal data can be explained by top
SNPs of the matching cross-sectional GWAS. Overall, these
analyses did not reveal a substantial correlation in genetic
results for corresponding phenotypes (Supplementary
Table 22), in agreement with the look up of individual
SNPs (see above). The best model fit was observed with the
PGS for executive function and visuoconstruction, where
the GWAS top SNPs from the cross-sectional data used
in the PGS explained 4–9% of the phenotypic variance
of the corresponding longitudinal outcomes, respectively
(Supplementary Table 22). We note, however, that the PGS
method was not designed for computing genetic correlations
of non-independent samples (as is the case here), so this
analysis must be considered “exploratory,” and the reported
results represent no more than “upper bounds” of the potential
genetic correlations.
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TABLE 2 | Genome-wide significant associations observed in GWAS of cognitive phenotypes.

Study arm Phenotype Lead variant Chr Position Nearest gene A1 A2 Beta MAF P (SNP) P (Gene)

Cross-sectional MemoryDelayed rs6705798 2p15 63,259,881 EHBP1 C T −0.32739 0.358 8.78E-08 1.17E-07

MMSE rs2122118 2q33.3 207,252,439 AC017081.2 G A −2.82266 0.022 3.03E-09 n.a.

Visuoconstruction rs113492235 4q34.2 177,252,900 SPCS3 T C −2.17956 0.022 1.51E-08 0.15674

Longitudinal MemoryImmediate rs73045836 6q27 169,062,739 SMOC2 G T −0.36094 0.020 7.50E-11 0.0035373

MMSE rs74381761 8p23.1 9,389,761 TNKS C G −0.08453 0.048 1.89E-08 0.00048716

Attention rs116900143 10q23.31 92,588,290 HTR7 C T −0.35173 0.023 1.95E-08 0.019663

MemoryImmediate rs11217863 11q23.3 120,293,138 AP002348.1 A G −0.16626 0.080 7.81E-08 8.91E-07

Attention rs111959303 12q14.3 66,844,015 GRIP1 T C 0.37459 0.022 2.52E-08 0.81478

Attention rs34736485 16q23.2 79,272,611 RP11-679B19.2 T G 0.31924 0.022 1.59E-08 n.a.

MemoryDelayed rs9652864 17q24.1 63,741,645 CEP112 A T 0.29184 0.218 3.20E-08 0.016339

MemoryImmediate rs146202660 18q21.1 45,022,937 CTD-2130O13.1 T G −0.29342 0.029 4.63E-08 n.a.

Executive rs16982556 20q13.32 57,801,889 ZNF831 T C −0.29752 0.062 1.26E-08 0.0025565

Visuoconstruction rs5943462 Xp21.3 28,823,154 IL1RAPL1 G C −0.14082 0.051 1.06E-09 0.006719

Bold font indicates genome-wide significant (on SNP- or gene-level) results (see section Materials and Methods for details). “Chr” and “Position” according to
GRCh37/hg19. “A1” denotes the effect allele. “P (SNP)” is the P-value of the lead SNP at this locus. “P (Gene)” is the P-value belonging to “Nearest gene.” Top
results from these GWAS analyses can be found in Supplementary Tables 1–19.
MMSE, Mini Mental State Examination. “n.a.”, not available. MRI, Magnetic Resonance Imaging. MAF, Minor Allele Frequency.

FIGURE 1 | Multi-trait Manhattan plots for the SNP-based GWAS results on neuropsychological phenotypes (A: cross-sectional; B: longitudinal). For details on the
analyzed traits see section “Materials and Methods” and Supplementary Material.
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Role of APOE in Genome-Wide
Association Studies on Magnetic
Resonance Imaging and
Neuropsychological Performance
Given the substantial role that variants in APOE play in the
genetic architecture of AD, we present findings for this locus
separately, i.e., the results for SNP rs429358 (which defines the ε4
allele) and rs7412 (which defines the ε2 allele). In relation to the
common genotype ε3/ε3, the risk to develop AD is increased by a
factor of ∼3.2 for genotype ε3/ε4, while two ε4 alleles (genotype
ε4/ε4) show ORs around 10–12 when compared to normal
controls (Neu et al., 2017). The minor allele at rs429358 (ε4)
is overrepresented in the EMIF-AD MBD dataset with an MAF
∼29% (the MAF in the general Northern European population
is ∼16%), which is due to the special design of participant
recruitment (see Bos et al., 2018). For the neuropsychological
phenotypes, the P-values of rs429358 are unremarkable except
for the domain “delayed memory,” where P-values of 0.0005 and
0.0042 were observed for the baseline and longitudinal analyses,
respectively (Supplementary Table 20). In the MRI analyses,
the only association signal observed with rs429358 was with
hippocampal volume (Supplementary Table 20). Interestingly,
this was driven by an association with the volume of the left
(P = 0.0002) hippocampus, while no association was observed
with the corresponding data of the right hemisphere (P = 0.2956).
We note that for both traits, i.e., delayed memory and left
hippocampal volume, the effect direction the corresponding β

coefficient is consistent with the deleterious effect of the minor
(T/ε4) allele at rs429358 known from the literature (Neu et al.,
2017). For the minor allele at rs7412 (ε2) we observed no
noteworthy association signals in any of the analyses performed
in this study (Supplementary Table 20), possibly because power
for this variant was much reduced owing to its lower MAF (4.6%
here, 7.5% in the general western European control population).

Polygenic Score Analyses Using
Published Genome-Wide Association
Studies Results
In these analyses we aimed to estimate the degree of genetic
overlap between the MRI and neuropsychological outcomes
available in EMIF-AD MBD and other relevant traits from
the literature, such as AD risk, using published GWAS
summary statistics.

Polygenic Score Analyses With Magnetic Resonance
Imaging Phenotypes
As expected, the strongest overlap was observed with a prior
GWAS also using MRI outcomes. Specifically, we used GWAS
results by the ENIGMA group (Hibar et al., 2017) who studied
26 imaging traits in n = 33,536 individuals. Here, the best
overlap was seen with each of the three hippocampal MRI
traits (up to 2.7% variance explained, P = 6.0E-06; Table 3 and
Supplementary Table 24). In contrast, in PGS analyses using
SNPs associated with AD risk (Jansen et al., 2019), we found only
one moderate correlation with white matter damage (measured

by the Fazekas score). For this trait the AD SNPs explained 1.4%
variance (P = 3.7E-03; Table 3 and Supplementary Table 24).

Polygenic Score Analyses With Neuropsychological
Phenotypes
As for the MRI data, the best fit in the PGS analyses with the
neuropsychological phenotypes was observed with a GWAS that
also used neurocognitive performance as outcome (Davies et al.,
2018). Specifically, this study defined a PCA-derived factor for
“general cognitive function” which was analyzed in > 300,000
individuals. In EMIF-AD MBD, associations with four of the
14 calculated PGS fell below the multiple testing threshold of
1.8E-03 (Table 3). The strongest association was observed with
the longitudinal attention function for which the GWAS results
from Davies et al. (2018) explained 2.3% of the phenotypic
variance (P = 1.79E-03, Table 3 and Supplementary Table 23).
The next best associations were seen with longitudinal executive
functioning (r2 = 0.028; P = 9.79E-03; Supplementary Table 23)
and visuoconstructional abilities (r2 = 0.058; P = 3.08E-03;
Supplementary Table 23). However, these latter two associations
do not survive multiple testing correction (Table 3). Interestingly
and similar to the MRI-based results, we did not find strong
evidence for a genetic overlap between the neurocognitive
outcomes tested here and AD risk based on Jansen et al.
(2019) (Supplementary Table 23). This included the various
phenotypes measuring components of “memory” performance,
regardless of whether or not they were ascertained cross-
sectionally or longitudinally.

DISCUSSION

This study extends previous GWAS analyses from our group
utilizing phenotypic data from the EMIF-AD MBD study (Hong
et al., 2020, 2021) using different outcome traits hitherto not
analyzed by GWAS. The overarching goal of this work was
to decipher the genetic architecture of AD-related MRI and
neuropsychological (endo)phenotypes to better understand AD
pathophysiology. Both previous EMIF-AD MBD GWAS focused
on AD biomarkers measured in CSF and, among other findings,
identified variants in TMEM106B as trans-pQTLs of CSF
neurofilament light (NfL) levels (Hong et al., 2021). Interestingly,
the same locus was subsequently highlighted as a novel AD
risk locus in a GWAS on > 1.1 million individuals (Wightman
et al., 2021), showcasing the power of the quantitative biomarker
GWAS approach that was also followed in this study. In the
current work, we focused on biomarkers / phenotypes derived
from brain imaging and neuropsychological testing in the same
EMIF-AD MBD individuals. Overall, we performed 19 individual
GWAS and identified a total of 13 genome-wide significant loci
highlighting several novel genes that are potentially involved
in contributing to AD pathophysiology. Our study represents
one of few GWAS in the literature to also include the X
chromosome, where we identified a genome-wide significant
association between markers near IL1RAPL1 and longitudinal
visuoconstructive ability. Interestingly, neither APOE nor the
other recently described AD GWAS loci appear to have a major
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TABLE 3 | Summary of PGS results significant after multiple testing correction.

Prior GWAS Phenotype Threshold Number of SNPs R2 P-value

Hibar et al. (2017) Hippocampus volume sum 0.0001 127 0.027 6.06E-06

Hippocampus volume left 0.0001 127 0.026 9.98E-06

Hippocampus volume right 0.0001 127 0.024 2.48E-05

Jansen et al. (2019) Fazekas 0.17075 22,269 0.014 3.72E-03

Davies et al. (2018) Baseline MMSE 0.248 63,792 0.016 1.66E-06

Baseline executive functioning 0.0014 4,469 0.018 1.98E-05

Baseline language 0.0061 9,031 0.010 1.25E-03

Longitudinal attention 5.0E-08 163 0.023 1.79E-03

“Threshold” refers to P-value cut-off used for PGS construction in prior GWAS summary statistics and “Number of SNPs” refers to the LD-pruned SNPs passing this
threshold that are included in PGS calculations. “R2” denotes the phenotypic variance explained by the SNPs of the prior GWAS in the EMIF-AD MBD dataset. A full listing
of results from these PRS analyses can be found in Supplementary Material.
MMSE, Mini Mental State Examination.

impact on the traits analyzed in our study. In summary, our
extensive genome-wide analyses nominate several novel loci
potentially involved in neurocognitive functioning. Some of these
may prove informative to better understand the genetic forces
underlying AD and related phenotypes.

In the remainder of this section, we discuss the potential
role of five loci, which we consider the most interesting
findings of our study. The strongest GWAS signal was elicited
by SNP rs73045836 (P = 7.50E-11; Table 2, Figure 1B, and
Supplementary Figure 25) showing genome-wide significant
association with the longitudinal data of the immediate recall
memory phenotype. The gene annotated to the associated
region on chromosome 6q27, SMOC2, encodes secreted modular
calcium-binding protein 2. SMOC2 is an extracellular matrix
protein from the secreted protein, acidic and rich in cysteine
(SPARC) family (Gao et al., 2019) recently linked to age-
dependent bone loss in humans (Morkmued et al., 2020). In
the AD context, it is noteworthy that SMOC2 was recently
found to be altered in CSF samples of early AD in a proteomics
profiling study (Whelan et al., 2019). Interestingly, there is similar
evidence on a potential link to AD for a SMOC2 isoform, i.e.,
SMOC1 (gene: SMOC1, located on chromosome 14q24.2). While
variants in this gene did not show strong evidence of genetic
association with the traits analyzed here, it is noteworthy that
SMOC1 was recently nominated as a novel AD biomarker in
proteomic screens of AD CSF and brain samples in various
studies (Bai et al., 2020; Wang et al., 2020; Sathe et al., 2021).
In summary, our finding of genome-wide significant association
between SMOC2 and memory performance in the EMIF-AD
MBD datasets extends the emerging literature on the role of
SPARC protein family members in AD and related traits.

The second strongest association signal was observed near
SNP rs5943462 (MAF ∼0.05) on the X chromosome (P = 1.06E-
09; Table 2; Figure 1B and Supplementary Figure 29) with
the longitudinal data of the visuoconstruction phenotype.
The SNP is located in an intron of IL1RAPL1. This gene
encodes interleukin 1 receptor accessory protein−like 1,
which belongs to a class of molecules that regulate synapse
formation. IL1RAPL1 is mostly expressed in brain areas that
are involved in memory development, such as hippocampus,
dentate gyrus, and entorhinal cortex, suggesting that the

protein may have a specialized role in physiological processes
underlying memory and learning abilities (Montani et al., 2019).
Even small changes in the expression and function of these
proteins can provoke major alterations in synaptic connectivity,
resulting in cognitive damage (Montani et al., 2019). Moreover,
IL1RAPL1 was nominated as a candidate gene for X-linked
mental retardation (Raymond, 2006). Although the GWAS on
longitudinal visuoconstruction included only 149 individuals, we
believe this signal to be plausible and very interesting because of
the well-established role of IL1RAPL1 on human brain function.

The third highlighted signal relates to the association between
variant rs74381761 (MAF ∼0.05) on chromosome 8p23.1
(P = 1.89E-08; Table 2, Figure 1B, and Supplementary Figure 5)
and longitudinal MMSE measurements. This SNP is located
in an intergenic region near TNKS. This gene encodes the
protein tankyrase, which belongs to a class of poly (ADP-ribose)
polymerases and is involved in various processes in the body,
such as telomere regulation, Wnt/β-catenin signaling pathway
or glucose transport (Damale et al., 2020). According to GTEx
(Lonsdale et al., 2013), TNKS is highly expressed in brain
(mostly in cerebellum). Moreover, SNPs annotated to TNKS
were associated with brain white matter hyperintensity (WMH)
measurements (Armstrong et al., 2020; Sargurupremraj et al.,
2020; Zhao et al., 2021) and cortical surface area measurements
(Grasby et al., 2020) according to the GWAS catalog (Buniello
et al., 2019). With a gene-based P-value of 4.87E-04 and the
strong functional link to brain function, we consider the signal
around TNKS as plausible and very interesting.

The last highlighted finding from the longitudinal
analyses relates to the genome-wide significant association
observed between SNP rs9652864 and the delayed recall
memory phenotype (P = 3.20E-08; Table 2, Figure 1B, and
Supplementary Figure 21). This variant (MAF = 0.218) attained
a P-value of 6.73E-04 in the GWAS of Davies et al. (2018)
on cross-sectional cognitive performance, lending additional
support to our finding. The SNP is located in an intron of
CEP112 which encodes centrosomal protein 112. Centrosomal
proteins are known as the components of the centrosome
involved in centriole biogenesis, cell cycle progression, and
spindle-kinetochore assembly control (Mazaheri Moghaddam
et al., 2021). Despite showing only low levels of expression in
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the central nervous system (CNS) according to GTEx, SNPs
in this gene have been associated with cortical surface area by
neuroimaging in two independent GWAS (Grasby et al., 2020;
van der Meer et al., 2020) according to the GWAS catalog
(Buniello et al., 2019). However, none of these neuroimaging
SNPs is in relevant LD (r2 > 0.6) to the lead variant identified
here. Notwithstanding, given that variants in this gene have
shown genetic links to both cognitive function and structural
brain imaging, we consider this finding as plausible and
highly interesting.

In the GWAS analyses of the cross-sectional neurocognitive
phenotypes, we observed three genome-wide significant signals,
of which we consider the gene-based association with EHBP1 as
the most interesting finding (P = 1.17E-07; Table 2, Figure 1A,
and Supplementary Figure 20). This protein interacts with
Eps15-homology domain-containing protein 1/2 (EHD1/2) that
plays a central role in GLUT4 transport and couples endocytic
vesicles to the actin cytoskeleton (Rai et al., 2020). It is highly
expressed in many tissues, including the brain, according to
GTEx (Lonsdale et al., 2013). While there does not appear to be an
obvious link between EHBP1 and brain function in the literature
(e.g., in the GWAS catalog, Buniello et al., 2019), we note that this
gene is located within 5 kb of OTX1 (orthodenticle homeobox
1; gene-based P = 1.19E-05), which acts as transcription factor
and plays a role in brain and sensory organ development in
Drosophila and vertebrates, including humans (Omodei et al.,
2009). Our lead SNP in this region, i.e., rs6705798, falls just short
of attaining genome-wide significance (P = 8.78E-08; Table 2
and Figure 1A) and is reported to represent an eQTL of both
OTX1 and EHBP1 in various human tissues according to GTEx
(Lonsdale et al., 2013).

In addition to searching for novel genetic determinants of
the neuroimaging and neurocognitive traits analyzed in this
study, we also investigated the overlap with known GWAS
findings. First and foremost, this relates to two commonly
studied alleles in the APOE gene, which appear to only play
a minor role in this setting. Specifically, SNP rs429358, which
defines the ε4 allele in APOE, does not even reach genome-
wide suggestive significance (P < 1.0E-05) in any of the 19
GWAS investigated here. The strongest associations with this
allele were seen with MRI-based hippocampus volume (left
volume P = 0.0002, summed volume P = 0.0005; Supplementary
Table 20) and with the delayed recall memory test (baseline
P = 0.0005, longitudinal P = 0.0042; Supplementary Table 20).
The effect directions of these associations are consistent with
the deleterious influence of rs429358 on AD (Neu et al.,
2017). While this at best modest degree of association between
rs429358 and the traits investigated here could be due to
a number of study-specific aspects, e.g., insufficient power,
aspects of sample ascertainment, it is in general agreement
with the literature: In the GWAS on cognitive function by
Davies et al. (2018), APOE ε4 also showed only marginal
association (P = 2.2E-04), and it was not reported to show
genome-wide significant evidence of association (P = 4.1E-
07) with hippocampal volume in the GWAS by Hibar et al.
(2017). Lastly, while rs429358 did show evidence of genome-
wide significant association with several imaging traits in the

more recent GWAS on brain imaging phenotypes in the
United Kingdom biobank, none of the hippocampus-based
measurements exceeded that study’s multiple testing threshold
(Smith et al., 2021). We note, that our current findings are
different from our earlier GWAS analyses in the EMIF-AD MBD
dataset, where the ε4 allele showed very pronounced evidence
of association in CSF and imaging markers related to Aβ42
(Hong et al., 2020). Taken together, there is now converging
evidence from our and previous studies that despite APOE ε4’s
role in contributing to AD risk and Aβ42-related phenotypes,
the same allele does not appear to show a comparably strong
influence on variation of other AD-related traits, including the
ones studied here.

Extending the comparison to additional genetic variants
associated with AD risk in the GWAS by Jansen et al. (2019)
did also not show any noteworthy or consistent overlap
with the GWAS results generated in this study. In contrast,
highly significant overlaps by PGS analysis were observed
upon using GWAS results from Davies et al. (2018) for
the neuropsychological and Hibar et al. (2017) for the MRI
phenotypes, which is not surprising given that very similar
neuropsychological and neuroimaging traits were used as
outcomes in these studies. Collectively, the PGS results of this
and previous work show that there is only very limited overlap in
the genetic architecture (at least when studying common SNPs)
between AD on the one and neuropsychological performance or
structural brain imaging on the other hand. We note that this
does not preclude the possibility that certain molecular pathways
targeted by the genes highlighted in this GWAS may be shared
with AD pathophysiology.

While our study has several noteworthy strengths (e.g.,
the use of highly standardized procedures in generating and
harmonizing both the genotype and phenotype data of our study,
use of both cross-sectional and longitudinal neurocognitive
performance data, inclusion of the X chromosome in the
GWAS), it may also have been negatively affected by some
limitations. First and foremost, we note that the sample
size used for the present analyses is comparatively small for
“GWAS standards” and was well under 1,000 in some instances
(Table 1). Accordingly, the statistical power of these analyses
was low. This limitation is at least partially countered by
the quantitative nature of nearly all analyzed phenotypes: it
is well established that quantitative trait association analyses
are more powerful than those using binary phenotypes, e.g.,
in a case-control setting (Bush and Moore, 2012). Second,
in addition to resulting in low power, small sample sizes
also increase the possibility of false-positive findings, especially
for infrequent variants (i.e., those with an MAF < 5%).
In this context we note that eight of our thirteen genome-
wide significant signals were elicited by such variants. Thus,
independent replication—ideally in larger datasets—is needed to
confirm the main findings of our GWAS before any further-
reaching conclusions can be reached. Third, we note that
the phenotype data used as outcome traits in our GWAS
analyses were collected at different participating centers at times
using different types of examinations (e.g., different tests to
study the same overarching neuropsychological domain). To
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alleviate potential bias resulting from this inherent phenotypic
heterogeneity, all clinical data were processed, quality-controlled
and harmonized (e.g., by normalizing most variables within
centers) centrally by an experienced team of researchers (see
Bos et al., 2018 for more details). We emphasize that this
potential heterogeneity does not apply to the genetic data as these
were generated in one laboratory experiment and subsequently
processed jointly in one analytical framework, minimizing the
emergence of potential batch effects. Last but not least, we
emphasize that owing to its particular ascertainment design (Bos
et al., 2018) the EMIF-AD MBD dataset does not (attempt to)
constitute a representative sample from the “general population.”
Accordingly, the results presented here cannot be generalized
to the general population. We note that the same is true
for many GWAS in this and other fields, which typically use
clinic-based ascertainment which is not representative of the
population as a whole.

CONCLUSION

In conclusion, our study delivers an entirely novel set of GWAS
results from participants of the EMIF-AD MBD dataset. We
nominate several novel and functionally interesting genetic
association signals with phenotypes related to neurocognitive
function and structural brain imaging. Even though independent
replication is still needed, our results may prove informative
to better understand the genetic forces underlying AD and
related phenotypes.
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