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Late-onset Alzheimer’s disease (LOAD) is a common irreversible neurodegenerative

disease with heterogeneous genetic characteristics. Identifying the biological biomarkers

with the potential to predict the conversion from normal controls to LOAD is clinically

important for early interventions of LOAD and clinical treatment. The polygenic risk

score for LOAD (AD-PRS) has been reported the potential possibility for reliably

identifying individuals with risk of developing LOAD recently. To investigate the

external phenotype changes resulting from LOAD and the underlying etiology, we

summarize the comprehensive associations of AD-PRS with multiple biomarkers,

including neuroimaging, cerebrospinal fluid and plasma biomarkers, cardiovascular risk

factors, cognitive behavior, and mental health. This systematic review helps improve the

understanding of the biomarkers with potential predictive value for LOAD and further

optimizing the prediction and accurate treatment of LOAD.
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INTRODUCTION

Alzheimer’s disease (AD) which accounts for about 70% of dementia is an irreversible progressive
polygenic neurodegenerative disease with insidious onset (Kametani and Hasegawa, 2018; Breijyeh
and Karaman, 2020; Tank et al., 2022). By age at onset, AD can be classified into early-onset AD
(EOAD) and late-onset AD (LOAD). EOAD is an autosomal dominant disease with heritability
of more than 70% (Gatz et al., 2006; Wingo et al., 2012) and three responsible mutated genes, the
amyloid protein precursor gene (APP), presenilin-1 gene (PSEN1), and presenilin-2 gene (PSEN2),
were found to mainly dominate the production, aggregation, and clearance of amyloid β-protein
(Aβ) (Cacace et al., 2016). Unlike the EOAD, LOAD occurs in more than 95% of the AD patients
with a relatively complex polygenetic mechanism (Zhu et al., 2015; Xiao et al., 2017), and the
related external phenotype changes in the very early stage. Although aducanumab can reduce the
amyloid deposition in the brain and has been approved by Food and Drug Administration to treat
Alzheimer’s disease lately, however, controversy about it still exists (Selkoe, 2021; Servick, 2021).
Therefore, identifying the biomarkers with the potential to predict the conversion from normal
controls to LOAD and the progression of LOAD is clinically very important for early interventions.

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.849443
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.849443&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liqiaojun@tjcu.edu.cn
https://doi.org/10.3389/fnagi.2022.849443
https://www.frontiersin.org/articles/10.3389/fnagi.2022.849443/full


Li et al. PRS for LOAD With Biomarkers

In recent years, genome-wide association studies (GWAS)
have been widely applied to study complex neuropsychiatric
disorders (Ripke et al., 2014; Lello et al., 2019; van der Merwe
et al., 2019; Levey et al., 2021; Peyrot and Price, 2021) and
more than 200 susceptibility genetic variants have been identified
to characterize the polygenetic architecture of LOAD (Chen
et al., 2021). To overcome the small effect size of a single
genetic variant, some polygenic methods have been developed
to quantify the cumulative effects of multiple genetic variants
related to complex diseases (Tan et al., 2018; Altmann et al.,
2020; Choi et al., 2020), of which the polygenic risk score
(PRS) is the most representative and widely used method (Wray
et al., 2021). With the release of large-sample GWAS summary
statistics for LOAD (Lambert et al., 2013; Weiner et al., 2015;
Kunkle et al., 2019), AD-PRS, which measures the cumulative
genome-wide-weighted effects of LOAD-risk genetic variants, is
being increasingly used with multiple biomarkers to identify the
underlying neurobiological mechanisms of LOAD.

In this review, we summarized the research progress of the
associations of AD-PRS with multiple biomarkers, including
neuroimaging, cerebrospinal fluid, and plasma, cardiovascular
risk factors, cognitive behaviors, and mental health. This review
is helpful to identify the biomarkers with the potential to predict
the occurrence and development of LOAD, which is clinically
important for the early diagnosis and interventions of this
complex disease. A schematic summary of the related work in
this review is shown in Figure 1 and Table 1.

FIGURE 1 | Association of AD-PRS with various biomarkers for LOAD.

ASSOCIATIONS OF AD-PRS WITH
NEUROIMAGING BIOMARKERS

Exploring the structural and functional changes through
medical imaging techniques is crucial for understanding
LOAD development. Because of the advantages of safety and
information abundance, magnetic resonance imaging (MRI) has
become prominent among various medical imaging techniques.
Of the various modalities of MRI, structure MRI (sMRI),
diffusion tensor MRI (dMRI), and functional MRI (fMRI) have
been mostly applied to study the underlying neural mechanism
of LOAD and its clinical diagnosis and treatment by exploring
the correlation between AD-PRS and brain phenotypes.

sMRI is one of the most important avenues to illustrate
the brain morphological measures, for example, gray matter
volume, cortical surface area, and cortical thickness. Studies have
found that AD-PRS was associated with reduced gray matter
volume (GMV) in the hippocampus (Axelrud et al., 2018) and its
subregions (Heidi et al., 2021), left precuneus and right cingulate
gyrus cortex (Li et al., 2018), whereas with increased GMV in
the right superior frontal gyrus and caudate (Li et al., 2018).
Meanwhile, AD-PRS was found to be associated with decreased
surface area in the frontal pole (Xiao et al., 2017), decreased
cortical thickness in the bilateral medial temporal cortices (Lee
et al., 2021), posterior cingulate cortices (Sabuncu et al., 2012),
and bilateral entorhinal cortices (Harrison et al., 2016). The
changes of these brain regions are some of the most prominent
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TABLE 1 | The work progress in the associations of AD-PRS with multiple biomarkers.

Biomarker Subfields Variables References Program

for

PRS

Base

sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

MRI Structure

MRI

GMV in

hippocampus

Axelrud

et al.,

2018

PRSice IGAP,

n = 74,046

BHRC,

n = 716

Left

hippocampus:

β = −0.301;

right

hippocampus:

β = −0.319

- Left

hippocampus:

[−0.434,−0.087];

right

hippocampus:

[−0.468,−0.072]

GMV in

hippocampal

subregions

Heidi

et al.,

2021

PRSice2 IGAP,

n = 74,046

UKBB,

n = 17,161

Left cornu

ammonis:

β = −0.0209;

Right cornu

ammonis:

β = −0.0112

Left cornu

ammonis:

p = −0.000629;

Right cornu

ammonis:

p = 0.068324

GMV in left

precuneus

Li et al.,

2018

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 683

[−12, −51,

58.5]

p < 0.05

GMV in

right

cingulate

gyrus

Li et al.,

2018

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 683

[6, 3, 33] p < 0.05

GMV in

right

superior

frontal

gyrus

Li et al.,

2018

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 683

[6, 66, 1.5] p < 0.05

GMV in

right

caudate

Li et al.,

2018

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 683

[−1.5 ,4.5,

1.5]

p < 0.05

CS in

frontal pole

Xiao

et al.,

2017

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 231

- p = 0.029

CT in

bilateral

medial

temporal

cortex

Lee

et al.,

2021

PLINK IGAP,

n = 54,162

ADNI,

n =217

- -
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

CT in

posterior

cingulate

cortex

Sabuncu

et al.,

2012

PLINK ADNI,

n = 745

ADNI,

n = 204

r = −0.27 p < 0.05

CT in

entorhinal

cortex

Harrison

et al.,

2016

- IGAP,

n = 74,046

UCLA

Longevity

Center,

n = 45

unweighted

risk score:

r = −0.35;

weighted

risk score:

r = −0.35

unweighted

risk score:

p = 0.009;

weighted

risk score:

p = 0.009

Diffusion

tensor

MRI

FA in the

right

cingulum

bundle

Foley

et al.,

2017

PLINK IGAP,

n = 54,162

CUBRIC,

n = 272

R2 =

0.032

p = 0.009

FA and MD

in inferior

occipito-

frontal

fascicle

Harrison

et al.,

2020a

- - - - -

FA and MD

in superior

longitudinal

fascicle

Harrison

et al.,

2020a

- - - - -

FA and MD

in cingulum

Harrison

et al.,

2020a

- - - - -

FA and MD

in corpus

callosum

Harrison

et al.,

2020a

- - - - -

MNS of

visual

subnetwork

Mirza-

Davies

et al.,

2021

PLINK IGAP,

n = 94,437

ALSPAC,

n = 562

r = −0.19 p =

1.3E−5

(Continued)
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

Functional

MRI

FC

between

precuneus

and

superior

temporal

gyrus

Axelrud

et al.,

2019

PRSice IGAP,

n = 74,046

BHRC,

n = 636

discovery

sample:

β = 0.180;

replication

sample:

β = 0.202

discovery

sample:

p-adjusted =

0.036;

replication

sample:

p = 0.031

FC within

temporal

cortex

Su et al.,

2017

gPLINK - Recruited

from

hospital,

n = 218

left middle

temporal

gyrus:

β = −0.3

left middle

temporal gyrus

p<0.001

Activation

in episodic

memory

processing

network

Zhan

et al.,

2016

- - ADNI,

n = 68

[5, 8, 11]

Activation

in

hippocampus

Chandler

et al.,

2020

PLINK CTGLAB,

n =

455,258

YA-HCP,

n = 608

β = 0.102 p = 0.016 [0.019, 0.186]

Activation

in

hippocampus

ROI

Xiao

et al.,

2017

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 231

Left

hippocampal

activition:

[−39, −24,

−15];

right

hippocampal

activition:

[39, −21,

15]

Left

hippocampal

activition: p <

0.05;

right

hippocampal

activition: p

<0.05

CBF in

frontal

regions

Chandler

et al.,

2019

PLINK IGAP,

n = 74,046

Recruited

from

society,

n =75

β = −0.232 p = 0.031

Chandler

et al.,

2021

PRSice IGAP,

n = 94,437

ADNI,

n = 90

β = −0.38 p = 0.012 [−0.68, −0.09]
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

CSF and

plasma

biomarkers

CSF Aβ42 Skoog

et al.,

2021

PLINK IGAP,

n = 94,437

H70,

n = 303

include

APOE:

r =

−0.4092;

exclude

APOE:r =

−0.2789

include

APOE:

p =

0.0017;

exclude

APOE:

p =

0.1285

T-tau Porter

et al.,

2018a

- IGAP,

n = 74,046

AIBL,

n = 643

include

APOE:

r =

0.1949;

exclude

APOE:

r = 0.1787

include

APOE:

p =

0.1499;

exclude

APOE:

p =

0.0348

P-tau Porter

et al.,

2018a

- IGAP,

n = 74,046

AIBL,

n = 643

include

APOE:

r =

0.1543;

exclude

APOE:

r = 0.2044

include

APOE:

p =

0.2563;

exclude

APOE:

p =

0.0719

Ration of

Aβ42/Aβ40

Li et al.,

2020

PLINK IGAP,

n = 74,046

Recruited

from

hospital,

n = 925

r = −0.25 p < 0.001

Plasma Clusterin Morgan

et al.,

2017

- IGAP,

n = 74,046

Recruited

from

society,

n = 93

PRS:

r = 0.2;

Immune

specific

PRS:

r = 0.25

PRS:

p = 0.05;

Immune

specific

PRS:

p = 0.02

Complement

receptor 1

inhibitor

Morgan

et al.,

2017

- IGAP,

n = 74,046

Recruited

from

society,

n = 93

Immune

specific

PRS:

r = 0.22

Immune

specific

PRS:

p = 0.05
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

C-reactive

protein

Morgan

et al.,

2017

- IGAP,

n = 74,046

Recruited

from

society,

n = 93

Immune

specific

PRS:

r = 0.16

Immune

specific

PRS:

p = 0.13

Osteopontin Zhou

et al.,

2020

R - Recruited

from

hospital,

n = 829

β = 0.673 p = 5.95E−04

Neurocan

core

protein

Zhou

et al.,

2020

R - Recruited

from

hospital,

n = 829

β = 0.411 p = 1.94E−03

P-tau 181 Zettergren

et al.,

2021

- IGAP,

n = 962

ADNI,

n = 818

include APOE:

β = 0.18 ∼

0.19

exclude APOE:

β = 0.05 ∼

0.11

include APOE:

p = 3E−18 ∼

7E−15

exclude APOE:

p = 3E−4 ∼

0.03

Diabetes Richardson

et al.,

2019

- - UBKK ,

n =

334,398

- -

Diastolic

blood

pressure

Richardson

et al.,

2019

- - UBKK ,

n =

334,398

- -

Mid-life

hypertension

and

obesity

Baumgart

et al.,

2015

- - - - -

Traumatic

brain injury

Baumgart

et al.,

2015

- - - - -

Coronary

heart

disease

Elman

et al.,

2019

PLINK IGAP,

n = 74,046

VETSA,

n = 1,329

- -
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

PRS of

Coronary

artery

disease

Elman

et al.,

2019

PLINK IGAP,

n = 74,046

VETSA,

n = 1,329

OR = 1.38 p = 0.023 [1.05, 1.83]

Height and

weight

Korologou-

Linden

et al.,

2019b

PLINK IGAP,

n = 74,046

ALSPAC,

n = 7,977

height-

adjusted fat

mass:

β = 0.59% ;

height-

adjusted lean

mass:

β = 0.04 kg

height-adjusted

fat mass:

[−0.92, 2.11];

height-adjusted

lean mass:

[−0.03, 0.11]

Triglyceride Korologou-

Linden

et al.,

2019b

PLINK IGAP,

n = 74,046

ALSPAC,

n = 7,977

- -

Insulin and

C-reactive

protein

Korologou-

Linden

et al.,

2019b

PLINK IGAP,

n = 74,046

ALSPAC,

n = 7,977

- -

Cognitive

behavior

and

mental

health

Cognitive

behavior

Immediate

memory

Marden

et al.,

2016

- IGAP,

n = 74,046

HRS,

n = 8,253

non-Hispanic

whites:

β = −0.058;

non-Hispanic

blacks:

β = −0.050

non-Hispanic

whites:

[−0.074,−0.043];

non-Hispanic

blacks:

[−0.106,0.006]

Verbal

episodic

memory

Porter

et al.,

2018b

R - AIBL,

n = 226

include

APOE:

r =

−0.259;

exclude

APOE:

r = −0.208

include

APOE:

p =

0.00003;

exclude

APOE:

p = 0.004
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

General

episodic

memory

Li et al.,

2018

PLINK IGAP,

n = 74,046

Recruited

from

society,

n = 683

Working

memory

2-back:

β = −0.068;

Working

memory

3-back:

β = −0.061

Working

memory 2-back:

p = 0.196 ;

Working

memory 3-back:

p = 0.249

Total

intelligence

quotients

Korologou-

Linden

et al.,

2019a

PLINK IGAP,

n = 74,046

ALSPAC,

n = 5,525

β = −0.04 p = 0.002 [−0.07, −0.02]

Verbal

intelligence

quotients

Korologou-

Linden

et al.,

2019a

PLINK IGAP,

n = 74,046

ALSPAC,

n = 5,525

β = −0.04 p = 0.003 [−0.07, −0.01]

Performance

intelligence

quotients

Korologou-

Linden

et al.,

2019a

PLINK IGAP,

n = 74,046

ALSPAC,

n = 5,525

β = −0.03 p = 0.012 [−0.06, −0.01]

Economic

behaviors

Shin

et al.,

2019

- IGAP,

n = 74,046

HRS,

n =2936

hands-on

assets:

β = −0.3558;

hands-off

assets:

β = 0.1114

hands-on

assets: p <

0.001;

hands-off

assets: p > 0.05

Ajnakina

et al.,

2020

PRSice IGAP,

n = 74,046

ELSA,

n =7039

intermediate

wealth:

β = −0.13;

low wealth:

β = −0.21

intermediate

wealth:

p = 0.03;

low wealth: p <

0.001

intermediate

wealth: [−0.24,

−0.01];

low wealth:

[−0.30, −0.07]

Mental

health

Delusions Creese

et al.,

2019

PRSice PGC,

n =

150,034

ADNI,

n = 3,111

β = 1.18 p = 0.001 [1.06, 1.3]

(Continued)
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TABLE 1 | Continued

Biomarker Subfields Variables References Program

for

PRS

Base

Sample

Target

sample

Correlation Regression MRI coordinate

r/R2 Sig. β/OR Sig. 95%CI Coordinate

[x,y,z]

Sig.

Schizophrenia Creese

et al.,

2019

PRSice PGC,

n =

150,034

ADNI,

n = 3,111

Psychosis

wide: OR =

1.14;

Psychosis

narrow: OR =

1.16

Psychosis wide:

p = 0.003;

Psychosis

narrow:

p = 0.002

Psychosis wide:

[1.05, 1.23];

Psychosis

narrow: [1.06,

1.28]

Hallucinations Kusters

et al.,

2020

PRSice IGAP,

n = 74,046

PEG,

n = 281;

PW,

n = 118

OR = 1.37 [1.03, 1.83]

Creese

et al.,

2019

PRSice PGC,

n =

150,034

ADNI,

n = 3,111

- -

Neuroticism Duberstein

et al.,

2011

- - GEM,

n = 767

OR = 1.36 [1.08, 1.71]

Terracciano

and

Sutin,

2019

- - - - -

Major

depression

disorder

Xu et al.,

2018

PRSice PGC n =

150,034;

IGAP n =

74,046

ADNI,

n = 322

- -

ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarkers and Lifestyle study; ALSPAC, Avon Longitudinal Study of Parents and Children; Aβ, amyloid β-protein; BHRC, Brazilian High Risk Study for

Psychiatric Disorders; CBF, cerebral blood flow; CS, cortical surface; CSF, cerebrospinal fluid; CT, cortical thickness; CTGLAB, Complex Ttait Genetics Lab; CUBRIC, Cardiff University; Brain Research Imaging Centre; dMRI, diffusion

tensor MRI; ELSA, English Longitudinal Study of Aging; FA, fractional anisotropy; FC, functional connectivity; GEM, Details of the Ginkgo Evaluation of Memory study; GMV, gray matter volume; H70, Gothenburg H70 Birth Cohort

Studies; HRS, Health and Retirement Study; IGAP, International Genomics of Alzheimer’s Project; MD, mean diffusivity; MNS, mean nodal strength; PEG, The Parkinson’s Environment and Gene study; PGC, Psychiatric Genomics

Consortium; PRS, polygenic risk score; P-tau, phosphorylated tau; PW, Norwegian ParkWest study; ROI, region of interest; sMRI, structure MRI; T-tau, total tau; UBKK, UK Biobank; UCLA Longevity Center, University of California of

Los Angeles Longevity Center; VETSA, Vietnam Era Twin Study of Aging; YA-HCP, Young Human Connectome Project; - , indicates that the information is not mentioned in the original text.
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early pathological features of LOAD and can be used as reliable
predictive measures for the conversion from normal controls or
mild-cognitive impairment to LOAD (Yang et al., 2012).

dMRI is mainly used to measure the microstructural integrity
of the white matter through modeling-water diffusivity in the
tissue microstructure (Kilimann et al., 2013), with fractional
anisotropy (FA) and mean diffusivity as the two most used
indices. AD-PRS is associated with decreased FA in the right
cingulum bundle in healthy adults (Foley et al., 2017). AD-
PRS was also found to be associated with reduced FA and
increased mean diffusivity across the whole brain white matter
tracts, notably in the inferior occipitofrontal fascicle, superior
longitudinal fascicle, cingulum and corpus callosum in the AD
patients (Harrison et al., 2020a). Recently, Mirza-Davies et al.
(2021) found the visual subnetwork constructed based on dMRI
was also correlated with AD-PRS.

fMRI was used to evaluate brain activity by detecting changes
associated with blood flow (Smitha et al., 2017), referred to
as the blood-oxygen-level-dependent (BOLD) signal in the
brain-resting or task-based state. AD-PRS was found to be
associated with increased functional connectivity between the
right precuneus and the right superior temporal gyrus in the
youths, whichmight impact memory performance and inhibitory
control in early life (Axelrud et al., 2019). AD-PRS was also
found to be associated with decreased functional connectivity
within the temporal cortex inmild-cognitive impairment patients
(Su et al., 2017). The hippocampal activation, mostly responsible
for episodic memory processing, was severely impaired in the
LOAD patients (Zhan et al., 2016; Xiao et al., 2017). However,
contrary research findings have been reported between the AD-
PRS and hippocampal activation. Chandler et al. (2020) found
a significantly positive correlation and Xiao et al. (2017) found
a significantly negative correlation during the episodic memory.
This divergence may be due to the different task codings and
sample size of the studies.

Arterial spin labeling was a functional MRI technology for
measuring tissue perfusion to quantify the cerebral blood flow
(CBF) in a given period with high time resolution (Rostami
et al., 2014). There is a hypothesis proposing that insufficient CBF
increases the risk of developing LOAD, leads to the decline of
consciousness and dysfunction of LOAD, and even can be treated
as an early antecedent of LOAD (Chandler et al., 2021). AD-PRS
was found to be negatively correlated with CBF on many brain
regions across the younger and older participants, including the
frontal pole, middle frontal gyrus, inferior frontal gyrus, insular,
frontal medial cortex, and orbitofrontal cortex (Chandler et al.,
2019, 2021). These studies may shed light on exploring the key
molecular processes that underpin LOAD.

All of the above findings together revealed the close
relationship between the cumulative genetic risk of LOAD and
the changes in the brain structure and function, providing
new perspectives to explain the pathophysiology of LOAD. The
combination of the neuroimaging biomarkers with AD-PRS to
predict the LOAD development is attracting attention (Harrison
et al., 2016, 2020b; Williams et al., 2021) and this is thought to be
a promising step toward improving the very early identification
of LOAD (Williams et al., 2021).

ASSOCIATIONS OF AD-PRS WITH
CEREBROSPINAL FLUID AND PLASMA
BIOMARKERS

The concentration determination of Aβ, total tau (T-tau), and
phosphorylated tau (P-tau) in the cerebrospinal fluid (CSF) are
three classical biomarkers for the clinical diagnosis of LOAD (Lee
et al., 2019; Shen et al., 2021). The changes of these measures in
the brain occur more than 15 years before the onset of symptoms
in LOAD patients (Bateman et al., 2012; Dementia, 2021). More
studies devoted to the association analysis of AD-PRS and these
biomarkers found that AD-PRS was not only correlated with
the CSF levels of Aβ42, Aβ42/Aβ40, T-tau, and P-tau in the
older adults (Porter et al., 2018a; Li et al., 2020), but could also
predict the incidence rate of LOAD and the age at onset (Li et al.,
2020). In addition, there was an interaction between AD-PRS
and the Aβ42 pathology status to the neurofilament light (NfL)
(Skoog et al., 2021). Moreover, the A/T/N criteria including a
combined accumulation of amyloid plaques (A), neurofibrillary
tangles composed of tau (T), and neurodegeneration (N) can
predict the cognitive decline and clinical progression of LOAD
(Soldan et al., 2019; Ebenau et al., 2020) and are recommended to
be included in the diagnostic categories of LOAD (Foley et al.,
2017). AD-PRS also showed a significant correlation with the
A/T/N profiles (Ebenau et al., 2021). A study found that the
integration of genetic risk across the AD biomarkers like A/T/N
may improve the prediction of the disease progression (Moore
et al., 2019).

Various inflammations occur in pathologically vulnerable
brain regions in LOAD patients (Akiyama, 2000) and many
plasma biomarkers of inflammation are useful for early diagnosis
and monitoring the progression of LOAD (Kinney et al., 2018;
Naveed et al., 2019). AD-PRS was found to be associated with
various increased inflammatory biomarkers in the plasma, such
as clusterin, complement receptor 1 inhibitor and C-reactive
protein (Morgan et al., 2017), osteopontin and neurocan core
protein (Zhou et al., 2020), and P-tau 181 (Zettergren et al.,
2021). Similar to other biomarkers, the integration of AD-
PRS and inflammatory biomarkers can also greatly improve the
sensitivity and specificity of predicting LOAD. These findings
not only facilitate the development of genetic tools for assessing
the individual risk of LOAD but could also improve our
understanding of the underlying mechanisms of this disease.

ASSOCIATIONS OF AD-PRS WITH
CARDIOMETABOLIC RISK FACTORS

Many cardiometabolic risk factors are implicated in the etiology
of LOAD and are thought to lie on the pathways linking the
genetic variants of LOAD (Korologou-Linden et al., 2019b). Of
these factors, cardiovascular risk factors are found to increase
the incidence of LOAD (Lin et al., 2019), which may be
due to the high genetic association between LOAD and many
cardiovascular diseases, such as hypertension (Baumgart et al.,
2015), coronary heart disease (Elman et al., 2019), diabetes, and
diastolic blood pressure (Richardson et al., 2019). AD-PRS was
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also found positively associated with other cardiometabolic risk
factors such as traumatic brain injury, obesity, and hypertension
in adults (Baumgart et al., 2015). However, these associations
are not consistent throughout the whole life trajectory. For
example, Korologou-linden et al. did not detect evidence to
suggest that AD-PRS acts through childhood and adolescent
cardiometabolic risk factors (Korologou-Linden et al., 2019b).
More studies should be conducted in other large-birth cohorts
to examine whether the genetic risk for Alzheimer’s disease can
be captured in early childhood. If not, further studies should
examine whether and why these associations emerge only later, in
adulthood, when the variation in the cardiometabolic risk factors
is likely to be greater.

The combination of the genetic accumulation risk of LOAD
and some vascular risk factors increased the predictive potential
of LOAD for the shared genetic heritage (Li et al., 2016).
The coronary artery disease (CAD) interacting with the LOAD
pathology is highly heritable and CAD-PRS has been widely
used to improve cardiovascular risk prediction (Wehby et al.,
2018; Elliott et al., 2020; Levin and Rader, 2020). A healthy adult
group with higher CAD-PRS and AD-PRS showed a significantly
increased risk of developing amnestic mild-cognitive impairment
(aMCI) (Elman et al., 2019), which is a state of cognitive deficit
that is not severe enough to fulfill the criteria of dementia
(Bennett et al., 2002) and showed a much higher probability of
developing into LOAD (Chaudhury et al., 2019). In summary,
AD-PRS, combined with the PRS of cardiovascular risk factors,
has shown a superior predictive value of onset of aMCI
and LOAD compared to the independent application of AD-
PRS, indicating the importance of infusing multiple PRSs and
their interactions.

ASSOCIATION OF AD-PRS WITH
COGNITIVE BEHAVIORS AND MENTAL
HEALTH

The impairment of episodic memory and decline in advanced
cognitive functions are the earliest and most characteristically
clinical manifestations of LOAD (Bäckman et al., 2004). In the
early stage, cognitive behaviors and mental health of the LOAD
patients are partially impaired, which complicate and intertwine
with the occurrence and progression of LOAD. Exploring the
association betweenAD-PRS and cognitive functions has aroused
many important findings. For example, AD-PRS was reported
to be associated with lower total, verbal, and performance
intelligence quotients in childhood and adolescence (Korologou-
Linden et al., 2019a), whereas no significant associations were
identified in the cognitively normal adult individuals (Li et al.,
2018). Moreover, increasing studies showed that AD-PRS had
a significant negative correlation with immediate memory and
verbal episodic memory, which increases the predictive efficiency
of conversion from healthy controls to LOAD (Marden et al.,
2016; Porter et al., 2018b). It is worth noting that, in a study
of Chinese samples, a significant correlation between AD-PRS
and episodic memory ability was not found (Li et al., 2018).

The inconsistency may be caused by ethnic differences or the
evaluation efficiency of different memory scales.

AD-PRS was found to be closely associated with economic
behaviors. Individuals with different levels of AD-PRS showed
different saving behaviors and wealth composition (Shin et al.,
2019), for instance, individuals with higher AD-PRS are more
likely to hold less wealth in the Individual Retirement Accounts
and to have simpler managed assets, such as fixed deposits,
whereas individuals with lower AD-PRS have more complex
managed assets, such as stocks (Shin et al., 2019). In addition, it
was suggested that the interaction between higher AD-PRS and
lower wealth levels would lead to the early-onset age of LOAD
and accelerate its development (Ajnakina et al., 2020).

Mental health is also a vital risk factor affecting the onset
and progression of LOAD, and up to 50% of LOAD patients
have psychosis symptoms, such as hallucinations and delusions
(Creese et al., 2019). Studies have shown that AD-PRS is
positively correlated with neuroticism (Duberstein et al., 2011;
Terracciano and Sutin, 2019) and hallucinations (Kusters et al.,
2020). The association between AD-PRS and cognition was also
mediated by these two personality traits (Stephan et al., 2018).
Further, a combination between AD-PRS and major depression
disorder-PRS has been used to study LOAD and their integration
would significantly increase the ability to predict conversion from
aMCI to LOAD (Xu et al., 2018). The above results indicated
that LOAD shared a highly genetic association with mental
health disorders.

OPPORTUNITIES AND CHALLENGES FOR
AD-PRS APPLICATIONS

AD-PRS has been widely used in many different research fields
and has exhibited a huge ability in the prediction of LOAD.
However, there was large heterogeneity in AD-PRS considering
the huge variations in the calculation pipeline (Choi et al., 2020).

First, the selection of a certain PT threshold from the GWAS
summary statistics of the discovery sample was quite important
for building PRS in the target sample, because it determined how
many SNPs were included for calculation. In the classic AD-
PRS calculation method, only those SNPs less than a predefined
PT threshold were included (Axelrud et al., 2018). Recently,
the optimal PT threshold method was applied widely, in which
a series of AD-PRS were typically calculated over a range of
thresholds, and the associations between the target trait and each
AD-PRS were calculated to find out the best prediction model
with the underlying PT threshold accordingly was set as the
optimized PT threshold in the calculation of PRS (Choi et al.,
2020). Second, after identifying the PT threshold, the calculation
strategies of PRS in the target sample also varied. The simple AD-
PRS only calculates the number of risk alleles assuming that all
SNPs have the same effect on the disease. More commonly, an
odds-ratio-weighted PRSwas calculated for each individual as the
sum of the count of risk alleles multiplied by the corresponding
effect sizes across these SNPs. Third, the quality of the base
sample and target sample including ethnicity, sample size, and
the number of genetic variants used has a great impact on the
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AD-PRS and will exert the findings. To date, no consensus has
been reached about these points and various strategies have been
adopted by researchers, which of course will hamper the utility of
the AD-PRS for a clinical diagnosis.

Besides the above points, another important question is
whether the APOE-ε4 should be included for calculating AD-
PRS, which is the largest risk factor for LOAD (Kim et al.,
2009). At present, the accuracy of predicting the risk of LOAD
by using the PRS method is 84% (Escott-Price et al., 2015,
2017). However, by far, the APOE-ε4 allele (risk) and the APOE-
ε2 allele (protective) contributed the largest to this risk, where
the predictive accuracy could reach 0.68 (APOE-ε4) and 0.69
(APOE-ε4+APOE-ε2) in the clinical samples (Escott-Price et al.,
2015). An important practical and theoretical consideration is
to understand how good AD-PRS is when excluding the APOE-
ε4 gene risk and no consensus has been reached so far. Thus,
associations of the AD-PRS with multiple biomarkers adjusting
for APOE locus or not need to be tested.

It should be noted that, although some limitations about AD-
PRS still need to be addressed, the advanced development of
large-GWAS studies and data-sharing policies are driving the
AD-PRS to be constantly optimized and updated for drawing
unambiguous conclusions about LOAD. For example, many
researchers have identified that AD-PRS was associated with
lower hippocampal volume in different target samples using
different PTwhen using the publicly available International
Genomics of Alzheimer’s Project (IGAP) as the base sample
(Mormino et al., 2016; Axelrud et al., 2018; Heidi et al., 2021;
Tank et al., 2022). The underlying reason may be that the base
sample from IGAP or UK Biobank is very large which can reduce

the deviation caused by a small sample, and also offer the same
risk alleles for the AD-PRS calculation which makes the most
important risk alleles always included.

In the future, more studies considering the causal
inference between AD-PRS, biomarkers, and LOAD
occurrence are needed to infer the underlying mechanism
of LOAD. Moreover, the application of AD-PRS would
also be critical for drug discovery, as drugs targeting
proteins encoded in genetic risk loci would be more
likely to be successful in phases II and III clinical trials
(King et al., 2019). Thus, AD-PRS have a greater utility in
biomedical research and personalized precision medicine in
the future.
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