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In this review, the current understanding of leptin’s role in energy balance, glycemic
regulation, and cognitive function is examined, and its involvement in maintaining the
homeostatic “harmony” of these physiologies is explored. The effects of exercise on
circulating leptin levels are summarized, and the results of clinical application of leptin to
metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence
is presented which suggests that synthetic peptide leptin mimetics may be useful in
resolving not only the leptin resistance associated with common obesity and other
elements of metabolic syndrome, but also the peripheral insulin resistance characterizing
type 2 diabetes mellitus, and the central insulin resistance associated with certain
neurologic deficits in humans.
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INTRODUCTION

Since the cloning of the mouse and human leptin genes more than 25 years ago (Zhang et al.,
1994), a significant body of research has been devoted to elucidating the biology and physiological
role of leptin, the 16 kDa leptin gene product synthesized and secreted primarily by white adipose
tissue (WAT). WAT, originally considered to be simply a fat storage depot, is now recognized as
a highly-active endocrine organ which secretes a large group of hormones, collectively classified
as adipokines or adipocytokines (Lehr et al., 2012). These hormones are pleiotropic in nature,
and exert autocrine, paracrine, or endocrine influences on metabolic processes in the periphery
and in the central nervous system (CNS) (Park and Ahima, 2015). Although leptin was originally
considered an anti-obesity hormone because of its regulatory role in the maintenance of body
weight (Friedman, 2016), there is growing evidence supporting the significant influence leptin
exerts on both glycemic control (Lee et al., 2011; Morton and Schwartz, 2011) and cognitive
function (Harvey, 2010; Yin et al., 2018; Forny-Germano et al., 2019) as well (Figure 1).

Sadly, by 2030 the number of overweight and obese adults is projected to rise to 1.35 billion and
573 million, respectively (Kelly et al., 2008). Without a doubt, lifestyle choices, nutrition, and the
lack of sufficient exercise to control body weight have made obesity a well-established global risk
factor for a number of other chronic disorders, including type 2 diabetes, cardiovascular disease,
arthritis, mild cognitive impairment (MCI), Alzheimer’s Disease (AD), and some forms of cancer
(Elias et al., 2005; Pugazhenthi et al., 2017; Lengyel et al., 2018). Although leptin therapy has been
shown to reverse metabolic and neuroendocrine dysfunctions in obese individuals with congenital
leptin deficiency, most cases of common obesity are associated with resistance to elevated levels of
endogenous leptin, and to exogenously delivered leptin as well (Bluher and Mantzoros, 2009). This
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Obesity/diabetes Alzheimer’s Disease/demen�a

FIGURE 1 | Leptin: the biochemical link connecting obesity, diabetes, and
cognitive decline. Leptin deficiency (hypoleptinemia) and leptin resistance
(hyperleptinemia) are characterized by dysfunctional leptin signaling both
centrally and in the periphery. In the brain, dysfunctional leptin signaling in the
hypothalamus causes numerous systemic metabolic defects including, but
not limited to obesity and diabetes (insulin resistance). Dysfunctional leptin
signaling in the hippocampus and cerebral cortex results in the induction and
progression of the beta amyloid (Aβ) and Tau pathology associated with
Alzheimer’s Disease (AD) and other forms of dementia. Obesity and diabetes
are considered significant risk factors for the onset and progression of AD and
AD-like cognitive impairment.

disappointing caveat has been a catalyst for the development of
novel leptin mimetics which will be discussed later in this review.

In this review, the current understanding of leptin’s role in
energy balance, glycemic regulation, and cognitive function will
be examined; the effects of exercise on circulating leptin levels
will be described; the notion that leptin may well be responsible
for the homeostatic “harmony” of these physiologies will be
explored; and evidence that synthetic peptide leptin mimetics
may reduce or resolve the leptin resistance associated with these
metabolic and neurologic deficits will be presented.

LEPTIN AND OBESITY

Background
Congenital leptin deficiency is rare, and is expressed in
a phenotype which includes obesity, insulin resistance,
diabetes, dyslipidemia, and other abnormalities associated with
metabolic syndrome. When these patients are treated with leptin
replacement therapy, appetite is suppressed, energy expenditure
is stimulated, weight loss occurs, and insulin resistance, blood
glucose levels, and dyslipidemia are reduced (Farooqi et al.,
1999, 2000; Licinio et al., 2004). Common non-genetically obese
patients, however, are refractory to exogenous leptin therapy
and remain obese (Considine et al., 1996). The inability of leptin
to exert an anorexigenic effect in these individuals reflects a
state of leptin resistance in which extra calories are consumed

and sustained weight loss is prevented (Woods et al., 2000).
Paradoxically, although these individuals exhibit high levels of
leptin expression in WAT, the elevated levels of circulating leptin
fail to reduce adiposity, improve energy homeostasis, or reduce
insulin resistance (Bluher and Mantzoros, 2009).

Leptin Resistance
The mechanism(s) responsible for leptin resistance have been
intensively investigated but are not yet completely understood.
Over the years, a number of possible mechanisms have been
suggested: downregulation of the leptin signal transduction
pathway in hypothalamic and other CNS neurons known to
regulate energy balance (Bjorbaek et al., 1998); impairment of
leptin binding by elevated levels of C-reactive protein (Chen
et al., 2006); decrease in histone deacetylase activity, an important
regulator of food intake (Kabra et al., 2016); hypothalamic
inflammation, endoplasmic reticulum stress, and autophagy
(Mantzoros and Flier, 2000; Myers et al., 2012; Jung and Kim,
2013). There is no doubt that any or all of these abnormalities
may contribute to the expression of leptin resistance and its
associated dysfunctions.

Underlying all of these proposed mechanisms to explain
the development of leptin resistance, however, are obesity-
related defects in the saturable transport of leptin across
the blood-brain barrier (BBB) into the CNS (Banks et al.,
1999, 2004; El-Haschimi et al., 2000; Banks, 2015). In this
regard, obesity and chronic consumption of high-fat diets
are known to produce significant changes in the BBB (Kim
et al., 2016), and also in brain regions containing neurons
with high metabolic demands, such as those in the arcuate
nucleus of the hypothalamus and the hippocampus (Moraes
et al., 2009). Rodent studies have shown that maintenance on
a high-fat diet not only compromises the integrity of the BBB
due to the loss of leptin receptor-containing tanycytes, the
specialized ependymal cells in the median eminence responsible
for the active transport of leptin into the CNS (Balland
et al., 2014; Kim et al., 2016), but also causes neuronal
loss in the arcuate nucleus, the region of the hypothalamus
containing first order neurons with the highest expression of
leptin receptors (Moraes et al., 2009). Taken together, these
observations suggest that reduced access of leptin into the CNS
due to the depletion and/or desensitization of tanycytes (Banks
et al., 2000), coupled with neuronal loss of leptin receptors
may ultimately be responsible for the leptin resistance that
characterizes common obesity.

Mechanism of Action
Once across the BBB, leptin exerts its metabolic effects
through binding to leptin receptors highly expressed in
the arcuate nucleus of the hypothalamus and in some
other brain regions (Moraes et al., 2009). Receptor binding
initiates several signal transduction pathways: Janus kinase
2—signal transducer and activator of transcription 3 (JAK2-
STAT3); insulin receptor substrate-phosphatidylinositol 3-kinase
(PI3K); SH2-containing protein tyrosine phosphatase 2 (SHP2)-
mitogen-activated protein kinase (MAPK); and 5’adenosine
monophosphate-activated protein kinase (AMPK)/acetyl-CoA
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carboxylase (ACC) (Park and Ahima, 2015). Leptin activation
of JAK2-STAT3 signaling, however, is the primary metabolic
pathway regulating energy balance (Bates et al., 2003; Dardeno
et al., 2010).

In the arcuate nucleus of the hypothalamus, leptin
binding initiates a complex neural pathway which controls
appetite by activating anorexigenic neurons that synthesize
pro-opiomelanocortin (POMC) and cocaine- and amphetamine-
regulated transcript (CART), hormones that inhibit orexigenic
neurons that synthesize agouti-related peptide (AgRP) and
neuropeptide Y (NPY), neurotransmitters that stimulate
appetite (Ahima et al., 1999; Cowley et al., 2001; Robertson
et al., 2008). Feeding is also suppressed by leptin binding to
neurons in the lateral hypothalamus which express melanin-
concentrating hormone (MCH) and orexins (Robertson et al.,
2008). Also in the lateral hypothalamus, a distinct population
of leptin receptor-bearing neurons which innervate the ventral
tegmental area and do not express MCH or orexins, has also
been identified suggesting an additional role for leptin in
feeding behavior mediated by the mesolimbic dopamine system
(Lenninger et al., 2009).

The role of leptin in energy balance has been most clearly
demonstrated in rodent models of leptin deficiency. The ob/ob
mouse, with a single point mutation at codon 105 in the
leptin gene (Zhang et al., 1994), is totally leptin deficient, and
presents with a phenotype including severe hyperphasia, a low
basal metabolic rate, and rapid onset obesity (Pelleymounter
et al., 1995), now known to result from over-expression of
hypothalamic NPY and MCH, and low expression of POMC
(Ahima and Osy, 2004). In this animal model, leptin treatment
reverses all of these dysfunctions and normalizes synaptic inputs
to POMC and AgRP neurons to levels found in wild-type
non-obese mice (Pinto et al., 2004). As noted earlier, however,
the majority of obesity in humans is not the result of leptin
deficiency, but rather of leptin resistance—a critical barrier
to leptin therapy.

LEPTIN AND DIABETES

Background
The results of studies in genetically obese ob/ob mice (Koch
et al., 2010), diet-induced obese (DIO) mice (Pocai et al.,
2005), and insulin-deficient rats (Hidaka et al., 2002) indicate
that intra-cerebroventricular (ICV) delivery of leptin, resulting
only in insignificant changes in peripheral leptin levels, restores
glycemic control and insulin sensitivity. These observations
strongly support the notion that central leptin signaling alone
is sufficient for the glucoregulatory actions of leptin, and that
leptin affects peripheral insulin sensitivity via CNS mechanisms
that are independent of its effects on food intake and body weight
(Coppari and Bjorbaek, 2012).

Central Gluco-Regulatory Effects of
Leptin
It has been shown that expression of the long isoform of the
leptin receptor is higher in the CNS than it is in peripheral

tissues (Leshan et al., 2006). This observation has prompted
studies designed to identify the specific brain regions involved
in leptin-mediated glycemic regulation. These protocols have
utilized the injection of leptin into specific brain areas, as
indicated earlier, and genetic deletion or restoration of leptin
receptors in specific neuronal populations (Fujikawa et al., 2013;
D’souza et al., 2017). Leptin receptors are expressed principally
in GABAergic and glutamatergic neurons in several regions of
the hypothalamus: the arcuate (ARC) nucleus, the ventromedial
nucleus (VMH), the lateral hypothalamic area (LHA), and the
dorsomedial hypothalamic (DMH) nucleus (Schwartz et al., 1996;
Elmquist et al., 1997, 1998). The primary neuronal populations,
however, that have been associated with leptin-mediated effects
on glycemic control are in the ARC and VMH (Elmquist et al.,
1998; Coppari et al., 2005; Moraes et al., 2009).

A number of rodent studies have shown that leptin suppresses
hepatic glucose production via multiple mechanisms, including
some involving POMC- and AgRP-expressing neurons in the
ARC. In this regard, selective expression of leptin receptors
in hypothalamic POMC neurons has been shown to prevent
diabetes in leptin receptor-deficient db/db mice, independent of
changes in food intake and body weight (Coppari et al., 2005;
Huo et al., 2009; Fujikawa et al., 2010; Berglund et al., 2012).
Another study showed that selective re-expression of leptin
receptors in AgRP neurons also mediates leptin’s anti-diabetic
actions in db/db mice by suppressing glucagon production
(Gonçalves et al., 2014). Interestingly, the loss of leptin receptors
in POMC neurons of hyperleptinemic ob/ob mice did not
affect the glucose lowering actions of leptin (Gonçalves et al.,
2014). In streptozotocin (STZ) -treated mice, however, loss of
leptin receptors in POMC neurons only partially prevented
leptin-mediated reversal of hyperglycemia (Fujikawa et al.,
2013). Taken together, these observations suggest that leptin
action exclusively on POMC neurons is sufficient, but more
than likely, not solely involved in the central regulation of
blood glucose levels.

The CNS utilizes sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS) pathways to modulate
peripheral responses, and a number of rodent studies have
demonstrated the involvement of these pathways in the
glucoregulatory actions of leptin. In lean rodents: (1) ICV
or intravenous (IV) delivery of leptin has been shown to
increase sympathetic activity in muscle, brown adipose tissue
(BAT), kidney, and adrenal glands (Dunbar et al., 1997; Haynes
et al., 1997), and parasympathetic activity in the liver (Tanida
et al., 2015); (2) hepatic vagotomy in insulin-resistant mice
only modestly inhibits the ability of leptin to improve glucose
tolerance (Li et al., 2011); and (3) glucose uptake into BAT
following the microinjection of leptin into the VMH of lean rats
is blocked by surgical sympathetic denervation (Haque et al.,
1999; Minokishi et al., 1999). In STZ-treated mice, however,
the glucose-lowering action of leptin was not affected by partial
chemical sympathectomy, sub-diaphragmatic vagotomy, or by
antagonizing or blocking β-adrenergic receptors (Denroche et al.,
2016). Taken together, the results of these studies provide
substantial evidence supporting the involvement of the SNS and
PNS in leptin-mediated glucose homeostasis.
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Peripheral Gluco-Regulatory Effects of
Leptin
Insulin and glucagon, products of the β- and α-cells of the
pancreas, respectively, are the principal regulators of glucose
homeostasis. In addition to lowering blood glucose levels in
hyperglycemic insulin-resistant ob/ob mice, leptin has been
shown to reduce circulating insulin levels as well (Seufert et al.,
1999). Leptin inhibits insulin gene expression and glucose-
stimulated insulin secretion to adapt circulating glucose levels
to body fat stores (Seufert et al., 1999; Cases et al., 2001), and
insulin stimulates leptin synthesis and secretion establishing an
adipoinsular axis (Seufert, 2004). This hormonal feedback loop,
involving leptin from adipose tissue and insulin from β-cells,
is vital to maintaining energy balance. Notably, the insulin
reducing effects of leptin are not secondary to glucose lowering
in ob/ob mice, however, since a reduction in circulating insulin
was also observed in normal lean mice following leptin treatment
(Seufert, 2004). Leptin has also been shown to protect β-cells from
lipotoxicity in various animal models (Lee et al., 2007, 2011).

There is conflicting evidence as to whether or not leptin acts
directly on β-cells to suppress insulin synthesis and secretion.
Some studies utilizing pancreatic islets or perfused pancreas
preparations have shown that leptin can inhibit insulin secretion
(Emilsson et al., 1997; Fehmann et al., 1997; Ishida et al., 1997);
others have shown just the opposite (Tanizawa et al., 1997;
Leclercq-Meyer and Malaisse, 1998). Various leptin receptor
knockout mouse lines, generated to investigate the role of leptin
on β-cell function in vivo, have also produced conflicting results:
LepR fl/flRIP-cre and LepRfl/fl Psdx1-cre mice are characterized
by hyperinsulinemia (Covey et al., 2006; Morioka et al., 2007),
whereas LepRflfl Ins1-cre mice do not exhibit hyperinsulinemia
(Soedling et al., 2015). Adding to the confusion, neither RT-
qPCR analysis (Soedling et al., 2015) nor single cell transcriptome
analysis (Benner et al., 2014) of mouse and human islet cell
populations has been able to detect leptin receptor on β-cells,
in spite of published evidence of leptin binding, leptin receptor
transcript expression, and functional leptin receptor signaling
(Kiefer et al., 1996; Emilsson et al., 1997; Seufert et al., 1999;
Benner et al., 2014).

In summary, although the evidence for direct effects of leptin
on pancreatic β-cells is inconsistent, the indirect effects of leptin
on insulin suppression are unambiguous. As reviewed earlier in
this section, a number of observations support this assessment.
The reports of reduced circulating insulin levels following ICV
or systemic delivery of leptin in both genetic and non-genetic
rodent models of diabetes, as well as those showing the induction
of hyperinsulinemia in at least some strains of leptin receptor
knock-out mice, strongly suggest that the regulation of insulin
is mediated through the CNS.

LEPTIN AND COGNITIVE FUNCTION

Background
In addition to its role in the regulation of energy balance and
glucose homeostasis, a growing body of evidence implicates
leptin in the maintenance of cognition and memory as well.

Because extensive data from epidemiological studies have
consistently confirmed that obesity, diabetes, and metabolic
syndrome increase the risk of developing cognitive impairment
and dementia (Baker et al., 2011; McCrimmon et al., 2012;
Lehtisalo et al., 2016; Espeland et al., 2017; Pal et al., 2018),
it is not surprising that more than 10 years ago, leptin was
proposed to be the biochemical “link” connecting all of these
pathologies (Harvey, 2010). This notion has been extensively
explored since then, and appears to have weathered the test of
time (Hamilton and Harvey, 2021).

Neurotrophic Actions of Leptin
To understand the basis for the role of leptin in cognition, it is
necessary to review the known effects of leptin on brain anatomy
and function. Leptin receptors have been identified in both
neuronal and non-neuronal cells not only in the hypothalamus,
but also in the cerebral cortex, dentate gyrus, and in CA1 and
CA3 areas of the hippocampus, brain regions known to be
involved in cognition and memory (Schwartz et al., 1996; Pan
et al., 2012; Kim et al., 2014). Several lines of evidence indicate
a key role for leptin in neuro-developmental processes (Ahima
et al., 1999). In this regard, leptin has been shown to regulate
the morphology and synaptic function of hippocampal neurons
(Irving and Harvey, 2014, 2021; McGregor and Harvey, 2019),
and also to be essential for hippocampal spine formation (Dhar
et al., 2014; McGregor and Harvey, 2019). In elderly humans,
plasma concentrations of leptin are positively correlated with
gray matter volume, and inversely correlated with age-related
cognitive decline (Narita et al., 2009). Worthy of special note,
humans with congenital leptin deficiency have been found to
have structural brain abnormalities and neurocognitive deficits
that can be attenuated by exogenous leptin (Matochik et al., 2005;
Paz-Filho et al., 2008).

Communication between excitatory synapses can be
modulated by changes in the level of neuronal excitation
(Vitureira and Goda, 2013; McGregor and Harvey, 2019).
Persistent increases, called long-term potentiation (LTP), or
decreases, called long-term depression (LTD), in synaptic
activity are proposed to be the principal cellular events
involved in learning and memory (Bliss and Collingridge,
1993; Collingridge et al., 2010). The primary, but not sole,
excitatory neurotransmitter in the mammalian brain is
glutamate (Meldrum, 2000) which activates N-methyl-D-
aspartate (NMDA) receptors, and leads to a postsynaptic rise in
intracellular calcium that is critical for the induction of LTP and
LTD at hippocampal CA1 synapses (Collingridge et al., 1983;
Harvey, 2007). In this regard, leptin has been shown to modify
excitatory synaptic transmission at hippocampal CA1 synapses
by enhancing LTP and decreasing LTD, thereby increasing the
efficiency of excitatory synaptic transmission, and improving
hippocampal-dependent learning and memory (Shanley et al.,
2001; Oomura et al., 2006; Moult and Harvey, 2011; Irving and
Harvey, 2014, 2021). Interestingly, Durakoglugil et al. (2005) have
reported that under conditions of enhanced excitably, however,
leptin can also induce a form of NMDA receptor-dependent LTD.
Taken together, these data provide strong evidence supporting
the involvement of leptin in hippocampal function.
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Neuroprotective Actions of Leptin
In addition to the neurotrophic actions of leptin, its
neuroprotective actions have also been demonstrated both
in vitro and in vivo. In cell models of glucose deprivation,
and in animal models of transient cerebral ischemia, leptin
treatment has been shown to protect neurons from ischemic
damage (Zhang et al., 2007; Zhang and Chen, 2008). Also,
excitotoxic lesions in mouse brains generated by the delivery
of the glutamate analog ibotenate, were significantly reduced
by co-administration with leptin (Dicou et al., 2001). In other
studies, leptin has also been shown to exert a cryoprotective effect
in two experimental models of Parkinson’s disease, one induced
by 1-methyl-4 pyridinium, a mitochondrial neurotoxin, and the
other by 6-hydroxydopamine (Lu et al., 2006; Weng et al., 2007).

Leptin has also been shown to have neuroprotective effects
against the progression of Alzheimer’s Disease (AD) pathology.
A number of studies have consistently indicated that leptin
treatment can decrease beta amyloid (Aβ) levels by targeting
Aβ production, clearance, degradation, and aggregation (Fewlass
et al., 2004; Marwarha et al., 2010; Greco et al., 2011; Niedowicz
et al., 2013; Marawarha et al., 2014; Yamamoto et al., 2014).
In vitro, exogenous leptin has been shown to protect hippocampal
and hypothalamic cell lines from the neurotoxic effects of
oligomeric soluble Aβ by preventing superoxide production and
mitochondrial dysfunction (Yamamoto et al., 2014), and by
reversing Aβ-mediated decreases in insulin-like growth factor-1,
a known neuroprotective and neurotropic cytokine (Marwarha
et al., 2011). Leptin has also been reported to reduce tau
phosphorylation in primary cultures of murine cortical neurons
(Doherty et al., 2013), in cultured rat neurons, and in human cell
lines (Greco et al., 2008, 2009).

In vivo studies in a number of animal models have provided
data supporting the in vitro data. Chronic leptin treatment of
transgenic mice overexpressing amyloid precursor protein (APP)
was shown to decrease brain levels of Aβ and phosphorylated
tau (Greco et al., 2010). In other studies, both exogenous leptin
administration and leptin viral gene transfer resulted in an
improvement in memory and behavior tasks in transgenic mouse
models of AD (Greco et al., 2010; Perez-Gonzalez et al., 2014).
In rats, chronic ICV delivery of leptin was shown to reduce Aβ1-
42-mediated impairment in spatial memory and suppression of
hippocampal LTP (Tong et al., 2015).

Role of Leptin in Alzheimer’s Disease
Recent epidemiological and human studies also indicate that
leptin may play an important role in AD. It is well-documented
that age is an important factor in the development of
neurodegenerative disease. In this regard, low plasma leptin
levels in late-life have been consistently associated with an
increased risk for cognitive decline and the development of
AD (Holden et al., 2009; Zeki Al Hazzouri et al., 2013;
McGregor et al., 2014; Littlejohns et al., 2015; Yin et al.,
2018; Lloret et al., 2019). In a number of studies, plasma
leptin levels have also been reported to be lower in individuals
with MCI (mild cognitive impairment) or AD compared to
normal controls, and negatively correlating with the degree of

cognitive impairment and dementia (Baranowska-Bik et al., 2015;
Teunissen et al., 2015). Other studies have reported conflicting
findings (Gustafson et al., 2012; Oania and McEvoy, 2015). It
has been suggested, however, that the discrepancies in these
studies may reflect the influence of confounding factors such
as sample size, exercise, diet, sex, and even misclassification
of AD as the diagnosis, that may not have been taken
into consideration.

On the other hand, there is also a growing body of
evidence from clinical studies implicating a significant role for
inflammatory mechanisms in the pathophysiological processes
leading to cognitive impairment and dementia (Kemka et al.,
2014; Magalhães et al., 2018), and that cytokines participate
in cognitive processes by influencing neuronal plasticity,
neurogenesis, and neuromodulation (Marin and Kipnis, 2013;
Donzis and Tronson, 2014). It is important to note here that
leptin has a dual role: as a hormone, it influences multiple
endocrine functions in addition to its key role in energy balance,
and as a cytokine, it promotes inflammatory responses (La Cava,
2017). In this regard, leptin has been shown to enhance the
expression and production of both TNF-α and IL-6 peripherally
and in the brain (Magalhães et al., 2018; Feinkohl et al., 2020).
TNF-α is known to modulate neuronal function by reducing
hippocampal synaptic plasticity (DaRe et al., 2020). IL-6 has
been associated with enhanced disease progression and severity
of symptoms in AD (Donzis and Tronson, 2014). The pro-
inflammatory actions of leptin have negatively impacted its
clinical application to chronic human disease.

In suggesting that leptin may be the biochemical “link”
connecting obesity, diabetes, and cognitive impairment, it seems
necessary to comment on the seeming paradox regarding the
observation that both mid-life obesity and late-life weight loss
are considered risk factors for developing AD (Emmerzaal
et al., 2015). In this regard, obesity (increased body fat mass)
results in the production of pathologically high levels of
circulating leptin and central leptin resistance, while being
underweight (decreased body fat mass) results in the production
of low levels of circulating leptin. The consequences of obesity
or underweight are leptin resistance or leptin deficiency,
respectively, which in both cases reduces leptin signaling in
the brain. Because of leptin’s neurotrophic and neuroprotective
actions discussed earlier, the deleterious effects of diminished
leptin signaling on AD pathology and cognitive dysfunction are
progressively enhanced.

LEPTIN AND EXERCISE

Background
Hyperleptinemia, the consequence of increased leptin secretion
and reduced leptin clearance, is a characteristic of the obesity
syndrome (Hulver and Houmard, 2003). Counter-intuitively,
since it is well-established that leptin induces satiety, stimulates
lipid metabolism, and enhances energy expenditure (Baile et al.,
2000; Dalamaga et al., 2013; Moon et al., 2013), one would
not expect hyperleptinemia to be part of the pathology of
obesity, but rather a part of its resolution. For reasons previously

Frontiers in Aging Neuroscience | www.frontiersin.org 5 April 2022 | Volume 14 | Article 861350

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-861350 April 15, 2022 Time: 9:37 # 6

Grasso Leptin Mimetics Improve Cognitive Function

discussed, however, we know that hyperleptinemia is responsible
for the leptin resistance seen in common obesity, and for the
failure of exogenous leptin to resolve this problem. Thus, dietary
interventions and exercise protocols designed to reduce plasma
leptin levels may improve not only metabolic disorders associated
with hyperleptinemia, but cognitive function as well.

Plasma leptin concentrations are tightly coupled to white
adipose tissue mass (Ronnemaa et al., 1997). Consequently, any
reduction in adipose tissue mass that occurs during weight
loss lowers plasma leptin concentrations (Eriksson et al., 1999).
Plasma leptin levels are also modulated by energy balance: they
are increased by feeding and decreased by fasting (Kolaczynski
et al., 1996a,b), and exhibit a diurnal circadian rhythm with
highest concentrations near midnight and lowest concentrations
near mid-morning (Friedman and Halaas, 1998; Kanabrocki
et al., 2001). The regulation of this rhythm is also complex in
nature. It is hormonally influenced (Nishiyama et al., 2000), sex-
dependent (Paolisso et al., 1998; Saad et al., 1998), and altered
by meal timing (Schoeller et al., 1997) and dietary composition
(Choa and Boozer, 2000; Herrmann et al., 2001).

Because of these confounding influences, the results from
studies examining the effects of physical exercise on plasma
leptin concentrations are difficult to evaluate. Nonetheless,
because leptin responses and adaptations to exercise may have
important health-related ramifications, it is imperative that
they continue to be examined. In this regard, exercise is
known to not only effectively reduce body fat mass (Eriksson
et al., 1999), but also to influence reproductive function
(Veniant and LeBel, 2003) and thyroid function (Papovic and
Duntas, 2005), as well as concentrations of other hormones,
including insulin (Pocai et al., 2005), cortisol (Pralong et al.,
1998), catecholamines (Fritsche et al., 1998), and growth
hormone (Carro et al., 1997). Several cytokines, such as tumor
necrosis factor–α and interlekin-6, also alter leptin mRNA
expression and circulating leptin levels (Janik et al., 1997;
Mantzoros et al., 1997).

Effects of Exercise on Circulating Leptin
The effects of exercise on circulating leptin have been investigated
under a number of different protocols: after single bouts
of exercise at maximal and submaximal intensity, and for
short and long durations; after short- and long-term exercise
training; and after resistance (weight) training (Ryan et al.,
2000; Hulver and Houmard, 2003). Cross-sectional data indicate
that plasma leptin concentrations are associated with fitness
level, and are not independent of body fat mass (Gippini
et al., 1999). In order for exercise to alter serum leptin
levels, a threshold of energy deficit must be achieved (Hulver
and Houmard, 2003). When leptin levels are closely matched
to adiposity at steady state, negative energy balance results
in a reduction in leptin level that is more rapid than the
change in adiposity (Morrison, 2008). In this regard, preventing
this fall is sufficient to attenuate many of the physiological
events associated with negative energy balance, such as a
decline in metabolism, decreases in bone mass, reductions
in thyroid hormones, reduction in testosterone levels, and
inability to concentrate.

Single Bouts of Exercise and Leptin Levels
Studies examining the effects of a single bout of exercise of
short and long duration, and at varying intensity levels, on
circulating leptin levels in humans have reported conflicting
results. With regard to short-term (<60 min) studies, Elias et al.
(2000) observed a decline in plasma leptin in males after graded
treadmill exercise to exhaustion, and suggested that this may be
associated with an elevated production in non-esterified fatty
acids during exercise, which has been shown to be inversely
correlated with leptin levels (Duclos et al., 1999). Weltman
et al. (2000) reported that 30 min of exercise at, above, and
below lactate threshold, an index of accelerated metabolism and
exercise intensity, did not alter serum leptin concentrations in
young males either during exercise or recovery. Perusse et al.
(1997) reported no change in leptin levels in 51 untrained men
and 46 untrained women following a 10- to12-min maximal
exercise test on a cycle ergometer. Fisher et al. (2001), however,
observed increases in circulating leptin during 41 min of cycling
at 50% of cycling intensity, followed by a reduction to control
values during a 2-h recovery period. Kraemer et al. (1999)
also reported significant increases in leptin responses in a
graded exercise test to exhaustion in young adolescent runners,
males and females, over the course of a short track season.
Taken together, however, more studies suggest that plasma
leptin concentrations in healthy males and females increase
or remain unchanged by short-duration exercise, regardless of
exercise intensity.

Similar to what has been reported for most short-duration
exercise studies, the results of long-duration (>60 min) exercise
studies have also shown either no change or a decline in
circulating leptin following exercise. Torjman et al. (1999)
measured leptin concentrations following 60 min of treadmill
exercise at 50% of VO2max in six healthy males. After correcting
for hemoconcentration, no effect on serum leptin during a 4-
h recovery period was found. Landt et al. (1997) reported an
insignificant 8% reduction in fasting serum leptin concentrations
in 12 men after 2 h of cycling exercise. Leal-Cerro et al. (1998), in
a study controlled for circadian variations, reported only a small
reduction in serum leptin levels in males following a 26-mile
marathon. Karamouzis et al. (2002) evaluated leptin responses
in men following a 25 km ocean swim and reported reduced
serum leptin concentrations. Zaccaria et al. (2002) reported
the effects on serum leptin concentrations of three competitive
endurance races in 45 males who participated in either a half-
marathon run, a ski-alpinism race, or an ultramarathon race.
Only the two prolonged endurance exercises involving high
energy expenditure, the ski-alpinism race and the ultramarathon
race, induced a marked reduction in circulating leptin.

Training and Leptin Levels
There have also been a number of studies reporting the effects
of short- and long-term training, on leptin concentrations. In
summary, short-term (<12 weeks) training has been consistently
reported to have no influence on leptin concentrations in males
or females unless the training was associated with fat loss (Halle
et al., 1999; Houmard et al., 2000; Fatouros et al., 2005; Unal et al.,
2005a,b; Kraemer et al., 2011).
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There are disparate findings with respect to long-term (more
than 12 weeks) training studies, however, with some studies
reporting no effect of long-term training on leptin concentrations
other than that induced by fat loss (Perusse et al., 1997; Fedewa
et al., 2018), and others reporting a further reduction in plasma
leptin after accounting for fat loss (Pasman et al., 1999; Thong
et al., 2000; Roseland et al., 2001). Some of these contributing
factors are suggested to involve alterations in energy balance, and
improvements in insulin sensitivity (Flores et al., 2006) and lipid
metabolism (Goldberg and Elliot, 1987).

Resistance Training and Leptin Levels
Other studies examined the effects of resistance exercise (weight
training) on plasma leptin concentrations. In one of these,
Kanaley et al. (2001) observed a reduction in plasma leptin
in T2DM patients 24 h following upper and lower body
resistance exercise, whereas non-diabetic individuals of the same
age and sex did not show any decline. In another study,
Nindl et al. (2002) measured leptin levels overnight at 3-
h intervals following 50 total sets of squats, bench presses,
leg presses, and pull-down exercise, and found a 3-h delay
before any observable reduction in plasma leptin was evident.
Ryan et al. (2000) examined the effects of resistance training
in obese postmenopausal females, with and without weight
loss. Fat-free mass and resting metabolic rate were increased
in both groups, but plasma leptin was reduced by 36% only
in the group that lost weight. In a recent meta-analysis
(Rostas et al., 2017) examining 3481 medical records, training
intervention was found to decrease plasma leptin in middle-
aged or elderly (45 years and older), overweight or obese (BMI
over 25) males and females, even without weight loss. Taken
together, these results suggest that resistance training successfully
reduces hyperleptinemia, even in the absence of dieting or
major weight loss.

SMALL MOLECULE SYNTHETIC
PEPTIDE LEPTIN MIMETICS

Background
With the cloning of the mouse and human leptin genes (Zhang
et al., 1994), as well as ongoing discoveries of the pleiotropic
nature of leptin’s actions, it is not surprising that expectations
for the therapeutic and/or prophylactic application of leptin
to a number of metabolic and neurologic pathologies in the
clinic were high. As discussed earlier, although leptin showed
excellent results in reversing many metabolic (Friedman, 2016)
and cognitive (Harvey, 2010) dysfunctions in rodent models,
and in leptin deficient humans (Farooqi et al., 1999), clinical
trials with recombinant leptin in subjects with common obesity
consistently reported disappointing outcomes (Heymsfield et al.,
1999; Chan et al., 2005; Lo et al., 2005; Zelissen et al.,
2005). These results reflected the consequences of absolute or
relative resistance to exogenous leptin caused by decreased
efficiency, or failure, of leptin transport across the BBB into
the CNS (Banks et al., 1999, 2000; Banks, 2015). Because of
the potential adverse effects leptin, including its tendency to

stimulate angiogenesis (Skrypnik et al., 2021) and carcinogenesis
(Lin and Hsiao, 2021), and to aggravate autoimmune disease
(Procaccini et al., 2015), the application of leptin to chronic
disease has been severely limited. FDA approval has been
given, however, to metreleptin, an analog of leptin, for treating
lipodystrophy (Araujo-Vilar and Santini, 2019) because of its
proven efficacy in treating leptin deficiency disease compared
to its lack of efficacy in treating common obesity with
hyperleptinemia.

Over the course of time, the limited clinical success of
recombinant leptin has generated a great deal of interest,
and effort, in developing leptin-related synthetic peptide drug
candidates with the ability to cross the BBB, and mimick the
central and peripheral activities of leptin. These candidates are
small molecules corresponding to discrete domains within the
leptin molecule—the domain(s) of interest being the active
epitope(s) within the intact molecule. These efforts utilize the
methodologies of solid phase peptide synthesis to construct the
peptides, and rodent models in which the bioactivity of the
peptides is assessed.

Translational Pathway of a Small
Molecule Synthetic Peptide Leptin
Mimetic
Searching for the Active Epitope(s) of Leptin
Successful cloning of the mouse and human leptin genes led
to the identification of a single point mutation at codon
105 which changes the coding sequence for the amino acid
arginine at this position to a premature stop codon (Zhang
et al., 1994). The consequences of the truncated mRNA
transcribed by this mutation were reflected in a leptin deficiency
syndrome that included obesity, increased body fat disposition,
hyperglycemia, hyperinsulinemia, hypothermia, reduced bone
mass, and impaired reproductive and thyroid function in both
male and female ob/ob mice (Wauters et al., 2000). With this
landmark discovery, peptide chemists now had some direction
regarding where to start their search for active epitopes within
the leptin molecule: in domains in the C-terminus distal to amino
acid residue 105.

For two years, our laboratory used this information to initially
epitope map the region between amino acids 106 and 167 (Grasso
et al., 1997), and then the entire sequence of secreted mouse leptin
(Grasso et al., 1999). Synthetic peptides, each 15 amino acids
long and overlapping at the C-terminus by five amino acids, were
delivered by intraperitoneal injection to leptin-deficient female
ob/ob mice. In both of these studies, leptin-like activity was
localized to a domain between amino acid residues 106 and 140
(85 and 119 in secreted mouse leptin after cleavage of the 21
amino acid signal peptide). Of the three peptides comprising this
region that reduced body weight gain and food intake, the most
active of these peptides encompassed amino acids 116–130 (85–
109), and was chosen for further development. Confirming our
choice, leptin-like activity of 116–130 on reproductive (Gonzalez
et al., 1999; Tena-Sempere et al., 2000) adrenal (Malendowicz
et al., 2000a,b), and cognitive (Malekizadeh et al., 2017) function
was also reported.
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Optimizing the Size of the Mimetic
Since then, a number of analogs of 116–130 have been developed
in our laboratory, and their pre-clinical applications have
expanded to include not only obesity, but also exploration of
their efficacy in treating diabetes, osteoporosis, dyslipidemia, and
cognitive dysfunction. Initially, C-terminal truncation of 116–
130 indicated that of the 15 amino acids in this peptide, only the
first seven (116–122) were essential for its activity (Rozhavskaya-
Arena et al., 2000). This analog was called “OB3.” To improve
the potency of OB3, and to increase resistance to proteolysis,
the L-Leucine residue at position four (identified by alanine
substitution as critical for its activity) in OB3 was replaced
by its d-isomer (Rozhavskaya-Arena et al., 2000). This analog,
called “[D-Leu-4]-OB3,” was significantly more potent than OB3
improved glycemic control as well as body weight gain (Grasso
et al., 2001), and was the first analog to retain full activity after
being delivered by intranasal instillation (Novakovic et al., 2009)
or by oral gavage (Lee et al., 2010; Novakovic et al., 2010)
in Intravail R© (Aegis Therapeutics, San Diego, CA), a patented
transmucosal absorption enhancing agent.

In addition to its activity as stand-alone therapy, oral delivery
of [D-Leu-4]-OB3 in Intravail R©, in combination with exenatide or
pramlintide acetate, augmented their effects on body weight gain
and glucose homeostasis in an insulin-resistant mouse model
(Leinung and Grasso, 2012). In insulin-deficient mice, [D-Leu-
4]-OB3 was as effective as metformin in preventing the body
weight gain associated with insulin therapy, and on a molar basis,
was as good or surpassed metformin as an insulin sensitizer
(Novakovic et al., 2013).

Defining the Signal Transduction Pathway of the
Mimetic
Having confirmed the efficacy of our synthetic peptide leptin
mimetics in a number of mouse models of obesity and diabetes,
we turned our attention to exploring the molecular basis of
this activity. We focused our efforts on the signal transduction
pathways known to be involved in leptin signaling. In a
specific and concentration-dependent manner, [D-Leu-4]-OB3
was found to induce phosphorylation of ERK1/2, STAT3 Ser-727,
STAT3 Tyr-705, and PI-3K p85 (Lin et al., 2014). These results
indicate that, in signaling pathways similar to those identified
for leptin activation of STAT3, our biologically active leptin-
related synthetic peptide analogs also activate STAT3 through
phosphorylation of serine and tyrosine residues by multiple
signal transduction pathways.

Improving the Pharmacokinetics and Efficacy of the
Mimetic
With the possibility of future drug development for human
disease, the pharmacokinetic (PK) profiles of [D-Leu-4]-
OB3, following intraperitoneal (ip), subcutaneous (sc), and
intramuscular (im) injection in PBS, and intranasal and oral
delivery in Intravail R© were examined (Lee et al., 2010). The
results of this study indicated that oral delivery of [D-Leu-4]-
OB3 in Intravail R© was capable of achieving relatively high serum
levels of bioactive peptide compared to commonly used injection
methods. These profiles also suggested that the observed efficacy

of [D-Leu-4]-OB3 on energy balance, glycemic control, and bone
turnover in mouse models of obesity and/or diabetes might
be improved by enhancing its bioavailability: i.e., increasing its
uptake, extending its half-life, and reducing plasma clearance.

In an effort to address these issues, myristic (tetradecanoic)
acid, known to increase membrane solubility, was conjugated
to the N-terminal of [D-Leu-4]-OB3 (Novakovic et al., 2014).
Myristoylation is the approach that was used to develop detemir
insulin (Levemir R©, Novo Nordisk), an analog of human insulin
with a half-life of 7–8 h, which is commonly used in the
management of T2DM in the clinic. This new analog was named
“MA-[D-Leu-4]-OB3.” The PK profiles of MA-[D-Leu-4]-OB3
following ip, sc, and im injection in PBS, and intranasal and
oral delivery in Intravail R© were compared to those of [D-Leu-4]-
OB3. At a dose 10-fold lower than that used for [D-Leu-4]-OB3,
the uptake and half-life of MA-[D-Leu-4]-OB3 were significantly
elevated, and its plasma clearance was significantly reduced.
Worthy of special note, compared to oral delivery of [D-Leu-4]-
OB3 in Intravail R©, uptake of MA-[D-Leu-4]-OB3 following oral
delivery in Intravail R© was approximately twofold higher, half-
life increased from 20 min to 29 h, and plasma clearance was
reduced fivefold.

Visualizing the Uptake of the Mimetic in the Brain
The notion that leptin exerts its effects on energy balance and
glycemic control via signals from the CNS was initially raised
by Camfield et al. (1995). This hypothesis was subsequently
confirmed, and a central mechanism of action regulating leptin’s
effects on feeding behavior is now generally accepted. In this
regard, studies utilizing both autoradiographic and in situ
hybridization techniques have localized leptin receptors in the
leptomeninges and choroid plexus of the third ventricle in
ob/ob, db/db, and normal C57BL/6J mice (Lynn et al., 1996),
and in the arcuate, ventromedial, paraventricular, and ventral
premammillary nuclei of the hypothalamus (Mercer et al., 1996).
Because of the uniquely high concentration of leptin receptors
identified in the arcuate nucleus, this area of the brain is now
recognized as the central leptin signaling center (Ha et al., 2013).

Based on physiological and signaling data, and the small size
of our bioactive peptides, we hypothesized that they may be able
to circumvent the transport defects associated with the leptin
resistance seen in common obesity, and in a manner similar
to leptin, achieve their effects on energy balance and glucose
homeostasis through the activation of central leptin receptors
known to be concentrated in specific nuclei in the hypothalamus.
Because “seeing is believing,” free-floating coronal brain sections
were processed and imaged by immunofluorescence microscopy
following oral delivery of [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3
in Intravail R© to normal Swiss Webster and C57BL/6J mice, and
to leptin-deficient ob/ob and leptin-resistant diet-induced obese
(DIO) mice. In all four strains of mice, immuno-reactivity was
concentrated in the median eminence, at the base and along the
inner wall of the third ventricle, and in the brain parenchyma
at the level of the arcuate nucleus (Anderson et al., 2017).
These results provided visual evidence that [D-Leu-4]-OB3 and
MA-[D-Leu-4]-OB3 cross the BBB, further supporting a central
mechanism of action for these peptides. Most noteworthy in this
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study, however, was the localization of immuno-reactivity in the
hypothalamus of DIO mice, via a conduit that is closed to leptin
in this rodent model, and in most cases of human obesity.

Assessing the Effects of Leptin Mimetics
on Cognitive Function
Because the links between obesity, diabetes, and cognitive
impairment are strong, and the regulatory effects of our
synthetic peptide leptin mimetics on energy balance and glucose
homeostasis have been established in a number of mouse models
of obesity and diabetes, it was of interest to examine whether their
influence on cognitive function also mimicked that of leptin. In
STZ-treated Swiss Webster mice, a model of insulin deficiency
(Anderson et al., 2019), and in DIO mice, a model of insulin
resistance (Hirschstein et al., 2019), oral delivery of MA-[D-Leu-
4]-OB3 in Intravail R© not only reduced body weight gain and
restored glycemic control, but also improved episodic memory.

A recently-published follow-up study indicated that the
mechanism of action by which MA-[D-Leu-4]-OB3 improves
cognitive function in these mouse models appears to be related
to its ability to enhance insulin sensitivity peripherally and
in the brain, and to reduce TNF-α-induced neurodegeneration
(Hirschstein et al., 2020). Most recently, the prophylactic capacity
of MA-[D-Leu-4]-OB3 to prevent or slow the progression of
obesity, insulin resistance, and cognitive impairment in a mouse
model of T2DM has been reported (Chua et al., 2021). The ability
of MA-[D-Leu-4]-OB3 to improve serum lipid profiles in mouse
models of T1DM and T2DM (Hirschstein et al., 2021), suggests
an additional application targeted toward reducing the risk of
adverse cardiovascular events in humans that are associated with
both T1DM and T2DM.

CONCLUDING REMARKS

There is no doubt that obesity, diabetes, Alzheimer’s Disease
(AD), and AD-like cognitive impairments are modern-day

pandemics that are predicted to become even more wide-
spread as world populations age. That these pathologies
are linked to each other is obvious in that dysregulation
of one becomes a risk factor for the development, or
progression, of pathology in the others. In this review, we
have examined the current understanding of the role of leptin,
an adipocytokine hormone, in each of these pathologies, and
discussed the reasons behind the disappointing outcome of
its application in the clinic. We have reviewed the effects
of exercise on circulating leptin levels, and have presented
an over-view of research in the development of leptin
mimetics, small molecule synthetic peptides containing the
active epitope of leptin. These peptides have been found
to safely mimick the activity of leptin in mouse models
of genetic and non-genetic obesity, diabetes, and cognitive
impairment, thus overcoming the central and peripheral leptin
resistance responsible for leptin’s failure in the clinic. These
studies provide convincing evidence supporting the notion
that leptin mimetics may have the ability to “harness” the
power of leptin, and may be useful in preventing or slowing
the progression of leptin-regulated dysfunctions in human
disease without the undesirable, and potentially lethal, side
effects of leptin.
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