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Healthy aging is accompanied by multi-faceted changes. Especially within the brain,
healthy aging exerts substantial impetus on core parts of cognitive and motivational
networks. Rewards comprise basic needs, such as food, sleep, and social contact.
Thus, a functionally intact reward system remains indispensable for elderly people to
cope with everyday life and adapt to their changing environment. Research shows that
reward system function is better preserved in the elderly than most cognitive functions.
To investigate the compensatory mechanisms providing reward system stability in
aging, we employed a well-established reward paradigm (Monetary Incentive Delay
Task) in groups of young and old participants while undergoing EEG measurement.
As a new approach, we applied EEG connectivity analyses to assess cortical reward-
related network connectivity. At the behavioral level, our results confirm that the
function of the reward system is preserved in old age. The mechanisms identified
for maintaining reward system function in old age do not fit into previously described
models of cognitive aging. Overall, older adults exhibit lower reward-related connectivity
modulation, higher reliance on posterior and right-lateralized brain areas than younger
adults, and connectivity modulation in the opposite direction than younger adults, with
usually greater connectivity during non-reward compared to reward conditions. We
believe that the reward system has unique compensatory mechanisms distinct from
other cognitive functions, probably due to its etymologically very early origin. In summary,
this study provides important new insights into cortical reward network connectivity in
healthy aging.

Keywords: healthy aging, EEG, reward, functional connectivity, HAROLD, PASA

Abbreviations: BDI-II, Beck Depression Inventory II; C, Central; DPSS, discrete prolate spheroidal sequences; EEG,
Electroencephalography; EQ-5D, European quality of life 5 dimensions; FCL, Frontocentral left; FCR, Frontocentral right;
FDR, False discovery rate; FL, Frontal left; FP, Frontopolar; FPCN, Frontoparietal control network; FR, Frontal right;
GEE, Generalized estimating equations; HAROLD, Hemispheric asymmetry reduction in older adults; ICA, Independent
component analysis; MEG, Magnetoencephalography; MID, Monetary incentive delay task; MoCA, Montreal cognitive
assessment; mPFC, Medial prefrontal cortex; O, Occipital; OFC, Orbitofrontal cortex; PASA, Posterior-anterior shift in aging;
PL, Parietal left; POC, Parietooccipital central; POL, Parietooccipital left; POR, Parietooccipital right; PR, Parietal right; py,
pack years of smoking; RT, Reaction time; SF-36, Short form-36 health survey; SST, Socioemotional selectivity theory; TL,
Temporal left; TR, Temporal right; VAN, Ventral attention network.
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INTRODUCTION

In a globally aging society, understanding motivational and
cognitive processes in the elderly are of growing importance.
A functionally intact reward system remains indispensable in
healthy aging to succeed in daily life. Reward prediction and
receiving are involved in every part of an individual’s behavior,
shaping its actions to obtain rewards and avoid punishment
(Schultz, 1998; Wise, 2004; Berridge and Kringelbach, 2008).
Reward measurably improves cognitive performance and
decision-making in humans (Spaniol et al., 2014; Cohen et al,
2016; Cox and Witten, 2019; Bowen et al.,, 2020). Cognition
is inseparably intertwined with reward processing (Pessoa
and Engelmann, 2010). Rewards exert extensive influences on
behavior, mediating multi-faceted cognitive processes (Braver
etal., 2014). In this way, reward-based enhancement of cognitive
performance is conveyed through cognitive control processes
(Jimura et al., 2010; Pessoa and Engelmann, 2010). Cognitive as
well as reward functions critically rely on cortical areas like the
PFC and parietal cortex, serving the integration of reward and
cognitive control networks (Pessoa and Engelmann, 2010; Braver
et al., 2014; Chau et al., 2018). Across these links, the reward
network functionally interacts with cognition-related large-scale
networks like the frontoparietal control network (FPCN),
default network (DN), and ventral and dorsal attention network
(VAN, DAN) (Raichle et al., 2001; Corbetta and Shulman, 2002;
Vincent et al., 2008; Spaniol et al., 2015; Parro et al., 2018). The
reward system’s core part is the mesocorticolimbic dopamine
system, comprising projections of midbrain dopamine neurons
to cortical structures, such as the medial prefrontal (mPFC)
and orbitofrontal cortex (OFC) (Wise, 2004; Bjorklund and
Dunnett, 2007; Lammel et al., 2008; Haber and Knutson, 2010;
Ikemoto, 2010).

All the structures and mechanisms involved are subject to
age-related changes. For instance, brain volume decreases with
age up to 0.5% per year at the age of 60 (Hedman et al,
2012); locally pronounced in prefrontal areas (Gordon et al.,
2008; Raz et al., 2010; Zanto and Gazzaley, 2019). Furthermore,
the most important neurotransmitter in the reward system, the
dopamine system (Wise, 2002; Schultz, 2007) declines with age
(Fearnley and Lees, 1991; Backman et al., 2006; Li et al., 2009;
Karrer et al., 2017).

These multilayered structural changes inevitably affect related
brain functions, not only in the reward system but also
in a wide range of cognitive areas. Interestingly, not all
cognitive domains are equally affected by age-related changes
(Lyoo and Yoon, 2017).

Recent studies have indicated that the reward system’s
function is less affected by age-related changes than other highly
interconnected functions like fluid cognitive domains (Blum
et al,, 2018; Tryon et al., 2020). Reward sensitivity remains
preserved in age as older people are able to exhibit enhanced
performance (Spaniol et al, 2015; Castel et al,, 2016; Yee
et al., 2019) and restoration of age-impaired cognitive abilities
under incentive motivation (Ferdinand and Czernochowski,
2018). With respect to this divergency, however, it remains
an open question how the aging brain manages to preserve

the functionality of the reward system despite the cellular
and molecular changes affecting its core parts. In general,
older adults attempt to preserve their cognitive abilities with
reduced resources by employing compensatory mechanisms.
These compensatory mechanisms are well-observed in fMRI
brain network alterations in older adults that comprise hypo- and
hyperactivations in specific patterns that have been summarized
in several models. Three of these models characterizing
mechanisms of cognitive aging are the HAROLD (Hemispheric
Asymmetry Reduction in Older Adults) (Cabeza, 2002), the
PASA (posterior-anterior shift in aging) model (Davis et al,
2008), and the theory of frontoparietal control network (FPCN)
hyperactivation (Reuter-Lorenz and Park, 2014; Li et al,
2015). The HAROLD model describes bilateral frontal cortical
activation in older adults in comparison to lateralized frontal
cortical activation in younger adults (Cabeza, 2002; Cabeza et al.,
2018). PASA coherently describes a prefrontal over-related to
an occipital underrecruitment in older compared to younger
adults (Davis et al, 2008). FPCN network hyperactivation,
HAROLD, and PASA all have been found to be associated with
improved cognitive performance in healthy aging (Li et al., 2015).
Qualifying that, HAROLD and PASA or FPCN hyperactivation
to date have been tested using demanding cognitive tasks.
Additionally, these models have been proposed to reflect
aging mechanisms in salience networks (Jacques et al., 2013).
Compensatory reorganization of cognitive networks during
reward processing has already been reported in healthy aging
(Spaniol et al., 2015). It remains unclear which compensatory
mechanisms underlie reward system function in healthy aging
and whether these models are able to explain preserved reward
system stability.

We performed a study contrasting older and younger
participant groups in a monetary incentive delay task (MID)
using electroencephalography (EEG) (Knutson et al., 2000).
Reward-guided acting can be separated into two distinct temporal
phases, the prediction and the receiving phases. The MID allows
to dissociate both phases. In the prediction phase, a reward-
predicting stimulus elicits specific approach behavior, serving
the obtaining of a reward (Schultz, 2006). Reward receipt is
accompanied by pleasure, known as hedonia (Berridge and
Kringelbach, 2015; Becker et al, 2019). EEG offers a high
temporal resolution and, therefore, provides detailed information
on the time course of neuronal information processing (Andri
and Nowak, 2007). Rapidly changing network states can be
investigated by employing functional connectivity analyses
(Friston, 2011; Fries, 2015; Meyer et al., 2021).

Studies investigating reward processing in healthy aging
largely confirmed the notion of preserved reward sensitivity
in older adults. In EEG studies, reward prediction has been
related to increased frontal theta power (Dofiamayor et al,
2012; Gruber et al., 2013), whereas reward consumption was
associated with high-beta oscillations (20-35 Hz) in younger
adults (Marco-Pallarés et al., 2015). Only one study investigated
age-related effects of incentives on brain oscillations, reporting
increased frontocentral and parietooccipital theta power for
reward anticipation in older but not younger adults (Steiger
and Bunzeck, 2017). To date, no EEG studies investigating
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aging effects on the reward system with complex functional
connectivity analyses, especially in the context of compensation,
have been published (Meyer et al., 2021).

This study aims to further understand the neural mechanisms
providing for generally stable reward system function in the
elderly. Therefore, we first hypothesized a behaviorally preserved
reward system function in older adults. For investigating reward-
based modulation of large-scale brain networks, functional brain
connectivity analyses were employed. Based on previous studies,
diminished neuronal reward effects on older adults are expected.
We hypothesized altered responses to occur in reward-related
frequency bands: in the alpha band due to its involvement in
attentional processes (Sadaghiani and Kleinschmidt, 2016) and
reward prediction (Heuer et al., 2017); in the delta band as it has
been associated with reward, motivation, and salience detection
(Knyazev, 2012); in the theta and high-beta bands for their
roles in reward feedback processing (Luft, 2014; Andreou et al.,
2017; Glazer et al., 2018). Furthermore, we especially focused
on compensatory mechanisms within the reward system and
changes in cognition-related networks during reward processing
in older adults. Due to the close link between reward processing
and cognition, we propose established functional compensatory
mechanisms of cognitive control (i.e., HAROLD, PASA, and
FPCN hyperactivation) to apply to preserved reward system
function in healthy aging.

MATERIALS AND METHODS

Participants

This study was comprised of 46 healthy volunteers (Table 1)
with no history of neurological or psychiatric disease, who were
divided into 2 groups according to their age. The younger group
comprised 22 subjects (13 women), aged 18 to 33 years (mean,
24.59 £ 3.96), and the older group, 24 subjects (13 women),
aged 62 to 86 years (mean, 69.42 £ 5.85). Prior to the monetary
incentive delay task (MID), the subjects had undergone an
assessment with an anamnesis questionnaire and standardized
questionnaires (Edinburgh Handedness Inventory, BDI-II, SF-
36 (Kirchberger, 2000), EQ-5D (EuroQol Group, 1990), and
the MoCA (Nasreddine et al., 2005) test for the older group
(Table 1). All the subjects were right-handed according to the
Edinburgh Handedness Inventory (Oldfield, 1971). We explicitly
tested for the presence of depressive symptoms and included only
the subjects with a BDI-II Score < = 14 points (Beck et al,,
1996). Further exclusion criteria were sight defects, substance
dependence, and current ingestion of psychopharmaca. From
the initial sample of 49 subjects, data of three subjects had to
be excluded from analysis because of red-green color blindness
(one subject), technical errors (2 subjects). All experiments were
approved by the local ethics committee, and all the subjects
provided written informed consent in accordance with the
Declaration of Helsinki.

Stimuli and Procedure
In this study, we utilized the monetary incentive delay task
(MID), which is the most frequently used paradigm for

examining reward system function (Knutson et al., 2000). In this
paradigm, scalable monetary cues indicate possible rewards that
can be earned by a fast response to a target.

The here employed version of the MID task (Figure 1)
consisted of 450 trials (300 trials for the older group), subdivided
into three blocks of 150 (100) trials with short breaks in between
(Figure 1). Each trial randomly started with one of the three
following reward incentive cues:

A circle with one line indicated a possible gain of 3 cents.
A circle with two lines, indicating a possible
gain of 30 cents.

A triangle, indicating a possible gain of 0 cent. Cue were
shown for 250 ms each. The trials cued with a triangle
(0 cent - gain) served as the neutral control condition.

The participants were told to hit the answer button with their
right index fingers as fast as possible as soon as a white square (the
target) appeared on the screen afterward. Between the cue and the
target, a fixation cross with randomized duration (750-1,250 ms)
was presented. Target duration adapted to individual reaction
times, resulting in a predestined hit rate of 75%. Performance
feedback was presented by a green laughing smiley if the time
limit was not exceeded. A red sad smiley appeared otherwise.
Afterward, pictures of coins visualized monetary rewards. Both
feedback screens had duration of 1,000 ms each. For investigating
neural mechanisms of reward prediction error, in 50 (33 for
the older group) trials, unexpectedly, no monetary rewards were
distributed. Gain cues preceded these trials, and the participants
hit in time (positive feedback), but, on the last screen, a gray
coin was displayed (not analyzed in this study). The participants
received a start budget of 20€ (30€) and could earn about 30€
(20€). They were told in the beginning that the money they
earned (Table 1) would be paid as an expense allowance by non-
cash payment afterward. Test persons performed a short training
session in advance.

Measurements took place in a magnetically shielded chamber
of the Biomagnetic Centre, Compartment of Neurology, in the
University Hospital of Friedrich-Schiller-University Jena. EEG
was conducted using MEG-compatible 60-channel EEG caps
(Waveguard, ANT). Stimuli were presented on a screen in
the chamber using Presentation (Neurobehavioral Systems, Inc.,
Berkeley, CA., United States, Version 16.3). The participants

TABLE 1 | An overview of test person groups and assessment.

YOUNG GROUP OLD GROUP
Participants 22 24
Sex 13 female, 9 male 13 female, 11 male
Age 18-33 years 62-86 years

(mean 24.59 + 3.96) (mean 69.42 + 5.85)

BDI-II median 1.5 points median 4.0 points
(IQR = 6, range 0-11) (IQR = 7, range 0-13)
MoCA - mean score 25.75 + 2.07
(range 21-29 points)
Mean money 52.69 + 1.18 51.45 +£ 1.57
gainin € (range, 50.09 — 55.25) (48.66 — 54.75)
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Monetary Incentive Delay Task (MID)
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FIGURE 1 | A scheme of the monetary incentive delay task (MID). The MID consisted of 450 trials (300 trials for the older group) separated into three blocks. Each
trial randomly started with one of the three following reward incentive cues: a circle with one line indicated a possible gain of 3 cents; a circle with two lines, indicating
a possible gain of 30 cents; and a triangle, indicating a possible gain of O cent. The cues were shown for 250 ms each. The trials cued with a triangle (O cent-gain)
served as the neutral control condition. Between the cue and the target, a fixation cross with randomized duration (750-1,250 ms) was presented. Target duration
was adapted to individual reaction times, resulting in a predestined hit rate of 75%. Performance feedback was presented by a green laughing smiley if the time limit
was not exceeded. A red sad smiley appeared otherwise. Afterward, pictures of coins visualized monetary rewards. Both feedback screens had duration of
1,000 ms each.

responded with a keyboard (a LUMItouch photon control optical
response pad). The participants had sufficient or corrected-to-
normal vision.

Preprocessing of EEG Data

EEG data were acquired using a sampling rate of 1 kHz.
A bandpass filter for.1-1,000 Hz was applied. Measurement data
were preprocessed with the MatLab fieldtrip toolbox (Oostenveld
et al., 2011). Measurement files were segmented into trials
lasting from —.5 to 1. s around the trigger onset. These trials
were entirely employed for subsequent analyses. The data were
downsampled to 500 Hz and then submitted to a visual artifact
correction method, reject visual. Bad EEG channels and trials
with artifacts were removed. An independent component analysis
(ICA) was performed to correct for eyeblink and heartbeat
artifacts, as well as electric noise. Finally, a bandpass filter
for.1-100 Hz was applied. To provide analysis with respect to

functional segregation of cortical areas, EEG channels were
anatomically divided into 14 groups corresponding to their
underlying brain regions (Figures 2A,B).

Connectivity analyses (Friston, 2011; Sakkalis, 2011) were
applied by estimating coherence with the fieldtrip toolbox
(Oostenveld et al., 2011), employing a non-parametric approach
event-related for frequencies of 1. to 40 Hz (in 1-Hz steps)
for all combinations of channel groups (Pereda et al., 2005).
First, data were Fast Fourier transformed (Cooley and Tukey,
1965) using DPSS (discrete prolate spheroidal sequences) as a
tapering function. Then, the cross-spectral density (Formula 1)

FORMULA 1 | Calculation of cross-spectral density of Fourier-transformed data X
(f)and Y (f) (Kida et al., 2015).

Gy (H=XHYT ()
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FIGURE 2 | EEG channel groups (A), an overview of EEG channels and their assignment to regional channel groups. (B) Simplified scheme of EEG channel groups

A EEG CHANNEL GROUPS EEG ELECTRODES

Frontopolar FP FPz, FZ
Frontal left FL FP1, AF3, AF7, F7
Frontal right FR FP2, AF4, AF8, F8
Temporal left TL FT9, FT7,T7, TP7, TP9, P7
Temporal right TR FT10, FT8, T8, TP8, TP10, P8
Frontocentral left FCL F1, F3, FC1, FC5
Frontocentral right FCR F2, F4, FC2, FC6
Parietal left PL C1, C3, C5, CP1, CP3, CP5
Parietal right PR C2, C4, C6, CP2, CP4, CP6
Central C FCz, Cz, CPz
Parietooccipital left POL P1, P3, PO3
Parietooccipital right POR P2, P4, PO4
Parietooccipital central POC Pz, POz
Occipital o Oz, 01, 02, PO7, PO8

defined in 2 (A).

was computed from frequency domain data. Finally, using
the cross-spectral density matrix, the coherence coeflicient
Cxy (f) for signals X and Y representing pairwise channel-group
combinations was calculated (Formula 2)'.

As coherence analysis here was conducted on the channel
group level, spatial resolution was reduced in advance to
serve asgreater reliability of results. Averaging of signals
across these regional channel groups facilitates dissociation
of adjacent regions and reduces short-interelectrode-distance
volume conduction effects. Consequently, genuine coherence
results can be expected for inter-regional coherence, especially for
non-adjacent channel groups (Srinivasan et al., 2007; Fries, 2015).

Statistical Analysis

Coherence results were analyzed using R (Version 4.1.1/Kick
Things) (R Core Team, 2020) and RStudio (Version 2021.09.0
Build 351) (RStudio Team, 2020). Coherence coefficients of
each channel combination were averaged across frequency
bands (alpha, 8-12 Hz; beta, 13-30 Hz; delta, 0.5-3 Hz;
theta, 4-7 Hz) (Engel and Fries, 2010). We were interested
in group differences in the connectedness between prespecified
channel groups (channel groups networks) (Figure 2).
To access the between network connectivity, the connectivity
between each combination of channels of the two networks

Thttps://www.fieldtriptoolbox.org/tutorial/connectivity/

FORMULA 2 | Coherence coefficient; x (1), y (t) - time series; Gxy (f) -
cross-spectral density of x and y; Gxx (f), Gyy (f) - autospectral densities of x and y
(Kida et al., 2015).

was estimated and averaged for each participant. Afterward,
coherence values were transformed into a z-score by Fisher’s
z-transformation. This analysis was performed separately for
each experimental condition, resulting in one averaged value
per network-condition subject. Within-group comparisons of the
between network connectivity were performed by a paired ¢-test
between the experimental conditions. To account for between-
group differences, Welch’s two sample ¢-test was used by entering
the connectivity difference between experimental conditions for
each subject. All results were corrected for multiple comparison
by using the false discovery rate (FDR).

Statistical analyses of questionnaire data were conducted using
SPSS software (Version 27, IBM). If the normal distribution was
not given, nonparametric tests were employed. Reaction times
were resolved by excluding misses and values below 150 ms as
well as all reaction times above 414 ms (75. quartile plus 3*IQR)
as outliers (Baayen and Milin, 2010; Markovi¢ et al., 2019).

To analyze reaction times, generalized estimating equations
(GEE) assuming a normal-distributed response (Liang and Zeger,
1986; Hojsgaard et al., 2005) were calculated using R (Version
4.1.1/Kick Things) (R Core Team, 2020) and RStudio (Version
2021.09.0 Build 351) (RStudio Team, 2020). The goal of GEE is
to draw inferences from the population by accounting for the
within-subject correlation of longitudinal data. Ignoring these
correlations would lead to regression estimates, being more
widely scattered around the true population means. It is an
extension of the generalized linear model (GLM) to correlated
data, enabling the calculation of valid standard errors of the
parameter estimates.

Based on the three parameters cue (reward incentive; control,
3ct, 30ct), block (B1, B2, B3), and group (young and old) and their
interaction terms, different parameter combinations were tested
as well as the two different most reliable correlation structures

Gy (O
Gy = A% OL
Gix (1) Gy ()
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(AR1, exchangeable) to find the most suitable GEE model for
the data. After testing different models (Supplementary Table 2)
Model M3 has the lowest Model selection criteria values and is
used for further analyses (Supplementary Tables 3, 4).

RESULTS

The participants performed the MID task while undergoing EEG
measurement and reaction time recording. Reward sensitivity is
considered as faster reaction times with increasing reward.

Behavioral Data

Analyzing reaction times, mean reaction times decreased with
increasing monetary incentives in the younger and in the older
group (control, 3 ct, 30 ct, Figure 3A, full data: Supplementary
Table 1). Figure 3A gives an overview of the data, showing
significant reward-related reaction time reduction within both
groups (Mann-Whitney-U-Test). Notably, there was a higher
standard deviation in RTs in the older group, being a well-known
finding (Woods et al., 2015).

The GEE model revealed significant reward-related reaction
time reduction effects within both groups (Figure 3B
model contrasts, Figure 3E estimated marginal means, see
Supplementary Table 3 for exact values). But there were no
significant differences in the cue contrast between both groups
(Figure 3B).

According to the model, the participants of the older group
generally reacted 46.66 ms (SE = 10.3, CI: 26.5-66.8, p < .001)
slower than the participants of the younger group. Analyzing
reaction times considering the blocks revealed that the older
adults significantly improved reaction times from Blocks B1 to B3
and from B2 to B3. These improvements were significantly higher
in comparison to younger adults (Figure 3C model contrasts,
Figure 3F estimated marginal means, see Supplementary Table 4
for exact values). Younger adults only exhibited a significant
improvement between Blocks Bl and B2, not significantly
differing from the older group. Older adults show higher hit rates
than younger adults during the second and the third block across
all conditions (Figure 3D). In an additional regression analysis,
no significant effect of the factor age on reaction time differences
between conditions could be found (Supplementary Figure 1).

Effects of Rewards on Frontal Intra- and
Internet Work Connectivity

For investigating reward effects, a within-group comparison of
the neutral vs. high-reward cue (0 ct vs. 30 ct) and neutral
vs. high-reward feedback (0 ct vs. 30 ct) (Figures 4A,B) was
conducted. Important network centers of the reward system are
represented in the prefrontal cortex (Kringelbach, 2005; Tobler
et al,, 2009; Dofnamayor et al., 2012; Li et al., 2016). Thus, we
expected higher reward-related frontal connectivity. All frontal
channel groups (FR, FL, FP, FCL, FCR, see Figure 2) and all
remaining channel groups each were summarized into a new
EEG channel group. Connectivity among the five frontal channel
groups and between the newlydefined frontal and non-frontal
channel groups was assessed (Figure 4A).

First, the reward cue effect on frontal connectivity was
analyzed. In the young group, coherence within the frontal group
(mean = 0.434 vs. 0.421; p = 0.012; df = 21) and frontal-
non-frontal coherence was significantly higher in the alpha
band for the reward cue (mean = 0.405 vs. 0.391; p = 0.002;
df = 21). In the beta band, a non-significant tendency for higher
coherence during the reward cue appeared within the frontal
group (p = 0.070) and between the frontal and non-frontal
groups (p = 0.056). In the older group, no significant differences
existed for frontal-nonfrontal coherence and coherence among
frontal channel groups. There was a non-significant tendency for
lower coherence during the reward cue among the nonfrontal
channel groups in the delta band (p = 0.061) (Figure 4B).
In a finer-grained regional analysis, significant changes only
appeared in the alpha and delta bands of the young group
(Supplementary Figure 2).

Group Differences of Reward Effects on

Interregional Connectivity
Interregional connectivity modulation was compared between
groups to test for group differences of reward effects (Figure 4C).
Significant differences could exclusively be found in the delta
band, where a mixed picture concerning differences in coherence
between neutral and reward cues appeared (Figure 4D). Reward-
based modulation was higher in the older group for frontocentral
right and parietal right with parietooccipital and occipital
channel groups. In detail, this applied for FCR with POR and O;
and PR with POC and O. Modulation was higher in the younger
group for FCR with POL and POC. Noteworthy, younger and
older adults exhibited connectivity modulations in different
directions, such as coherence increased for reward compared to
neutral cues in the younger group, whereas it decreased in the
older group. In this way, coherence was significantly different
between PR and POL; both groups modulated it in the same
absolute value, but in different directions.

Application of Cognitive Aging Models

on Reward Processing in Healthy Aging
HAROLD

In case of the HAROLD model (hemispheric asymmetry
reduction in older adults) (Cabeza, 2002), frontal connectivity
within and between the frontal areas of both hemispheres was
assessed and compared between groups for the cue events.
Therefore, two new channel groups were defined, including all
frontal cortical channel groups of the left or right hemispheres
(left: FL, FCL; right: FR, FCR) (Figures 2, 5A).

In the delta band, the older group exhibited lower
reward-based coherence modulation within the left frontal
[mean = —0.041 vs. 0.019; p (uncorr) = 0.046; df = 30.1] and
the right frontal channel group [mean = —0.05 vs. 0.009; p
(uncorr) = 0.017; df = 41.8]. The younger group exhibited
higher reward-based coherence modulation in frontal left with
all other channel groups in the alpha band (mean = 0.013
vs —0.07; p = 0.038; df = 32). In the high-beta band, the
older group similarly showed lower differences in coherence
within the right frontal channel group [mean = 0.014 vs.
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FIGURE 3 | Behavioral data: (A), Boxplot: single mean reaction time data, lines/points correspond to different participants. P-values from the paired Mann-Whitney
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0.003; p (uncorr) = 0.035; df = 40.5] than the younger group.
In the high-beta band, there was a non-significant result for
higher modulation in the younger group between frontal
right and other channel groups (p = 0.062) (Figure 5B,a). To
investigate hemispheric asymmetry, the difference in reward-
based coherence modulation of the frontal left and the frontal
right channels was compared between the older and the younger
groups, revealing no significant results (Figure 5B,b).

PASA

For testing the PASA (posterior-anterior shift in aging) model
(Davis et al., 2008), an analysis of connectivity between and
among frontal and occipital channel groups was conducted and
compared between the older and the younger groups for the
cue events. Therefore, frontal channel groups (FP, FR, FL, FCR,
FCL) and parietooccipital and occipital channel groups (POC,
POL, POR, and O) were summarized into two new groups
(Figures 2, 5A).

The difference between conditions was greater in the
older compared to the younger group for coherence among
occipital channel groups in the delta band [mean = 0.001 vs.
—0.01; p (uncorr) = 0.044; df = 33] and in the theta band
[mean =0 .001 vs. —0.006; p (uncorr) = 0.043; df = 29.3].
In both cases, coherence was modulated reversely in older

adults so that it decreased during reward cues. In the beta
band, the older adults showed higher coherence modulation
between occipital and all other channel groups (mean = 0.001
vs. —0.004; p = 0.045; df = 37.4). In the high-beta band,
the older group exhibited a significantly higher reward-based
modulation in coherence between frontal and occipital groups
[mean = 0.003 vs. —0.006; p (uncorr) = 0.039; df = 34.2] and
a marginally non-significant result for differences in coherence
among occipital channel groups [p (uncorr) = 0.059]. In the
beta band, two non-significant results pointed to a greater
difference in coherence between frontal and occipital groups [p
(uncorr) = 0.061] and in coherence among occipital channel
groups [p (uncorr) 0.052] in the older group. A non-
significant tendency appeared in the alpha band, indicating lower
differences between conditions in coherence between frontal and
occipital groups [p (uncorr) = 0.066] and between frontal and
remaining channel groups (p = 0.060) coherence in the older
group (Figure 5B,a). Comparing the difference in reward-based
modulation of frontal and occipital coherence between groups,
no significant results appeared (Figure 5B,b).

Frontoparietal Control Network
To investigate connectivity between frontal and parietal areas for
the cue events, four new channel groups were defined: a frontal
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right (FR, FCR), a frontal left (FL, FCL), a parietal left (PL, POL),
and a parietal right channel group (PR, POR) (Figures 2, 6A).

In the alpha band, the older group exhibited lower left
frontoparietal [mean = 0.013 vs. —0.005; p (uncorr) = 0.043;
df = 35.3] and left frontal with right parietal [mean = 0.015
vs. —0.01; p (uncorr) = 0.032; df = 34.1] reward-based
coherence modulation compared to the younger group
(Figure 6B).

Questionnaire

Analysis of questionnaire data amounted to the following results
(Table 1). To test for depressive symptoms, the BDI-II score was
chosen. Across subjects, the median BDI-II score (Beck et al.,
1996) was 1.5 (IQR = 6; range, 0-11) in the younger and 4
(IQR = 7; range, 0-13) in the older group. The Mann-Whitney
U-Test for independent samples (p = 0.349; U = 222) showed no
significant difference between groups. Concerning the MoCA test
(Nasreddine et al., 2005), the mean score was 25.75 (SD = 2.07;
range, 21-29 points), slightly below the original cut-off score of 26
points (results < 26 indicate cognitive impairment) (Nasreddine
et al., 2005). Test results showed a normal distribution (Shapiro-
Wilk Test, p = .349). However, no participant was excluded based
on the results of the MoCA test. Moreover, we carefully checked
for correct understanding and execution.

For hedonia assessment, the items stress, gambling behavior,
religiosity, pack-years of smoking (py), and alcohol consumption
(Saunders et al., 1993) of the anamnesis questionnaire were
evaluated. For religiosity and stress, the participants had to
answer on a scale from 1 to 10 (1 - not stressed/not religious,
10 - high stress/very religious). Both groups did not differ in
concerns of religiosity (p = 0.319; U = 211.5) and alcohol
consumption (p = 0.781; U = 248). Significant differences for
the items stress (p < 0.000; U = 57.5) and py (p = 0.045;
U = 182.5) were found, revealing that the younger participants

suffered significantly more from stress and smoked significantly
less than the older participants.

DISCUSSION

Behaviorally Robust Reward Sensitivity
in Older Age

In line with our hypothesis, we did not find a significant
effect of age on reward-dependent modulation of reaction
times (RTs). Younger and older adults significantly decreased
their reaction times with increasing reward (Figure 3 and
Supplementary Table 1). The decrease in reaction times with an
increasing monetary incentive reflects an intact reward sensitivity
in aging. This overall stability might be an explanation for
well-known psychological changes in aging. Older adults tend
to aim at preserving resources, preventing negative outcomes
and maintaining their emotional well-being. This refers to
socioemotional selectivity theory (SST), which emphasizes older
adults’ most prioritized goals of sustaining positive affect due
to perceiving their further lifetime as limited (Carstensen et al.,
1999). Thus, older people pay more attention to positive
compared to negative stimuli. This so-called “positivity effect”
explains an empirical phenomenon, stating that information
processing exhibits a positive bias in aging (Mather and
Carstensen, 2005; Reed et al., 2014).

Our results of a preserved sensitivity in older adults are in line
with most aging aging studies employing the monetary incentive
delay task (MID) (Samanez-Larkin et al., 2007; Rademacher
et al., 2014; Vink et al., 2015). However, some studies reported
a preserved but reduced or total lack of reward sensitivity in
older adults (Spaniol et al, 2015; Dhingra et al,, 2020). An
explanation for these differences could be the differing number

Frontiers in Aging Neuroscience | www.frontiersin.org

May 2022 | Volume 14 | Article 863580


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Opitz et al.

Still Wanting to Win

of trials and investigated subjects (Samanez-Larkin et al., 2014;
Yee et al,, 2019). Studies reporting reduced reward sensitivity
generally conduct fewer trials and, often, foregoing training
sessions prior to the actual experiment (Spaniol et al.,, 2015;
Dhingra et al., 2020). These differences indicate that older
adults might need a longer time for getting used to a task
so that differences in task performance stand out when the
experimental duration is shorter. Although this training effect
might account for reports of significant differences in age-related
reward sensitivity, it is, nevertheless, possible that there is a
small effect of age on reward sensitivity that might require a
high number of participants and long experiment duration to
become statistically significant. Longer experiment durations,
however, increase the risk that any measured effects are no
longer primarily due to the principal performance of the reward
system but to faster age-related exhaustibility of the attentional
system. Regardless of these methodological difficulties, a possible
effect of age on the functionality of the reward system must
be small compared to other cognitive and behavioral domains
(particularly in comparison to the age-related decrease in
RTs). Thus, it remains an open question how the aging brain
manages to preserve reward system functionality despite the
cellular and molecular changes affecting its core parts. Here,
we conducted further analyses to address the question of what
compensatory mechanisms are used to maintain reward system
function in the elderly.

Here, we used EEG connectivity measures to clarify this
question. To our best knowledge, no previous study investigated
the aging reward system with EEG connectivity measures
(Meyer et al., 2021). Connectivity analyses further improve the
understanding of reward network integrity and communication
of cortical brain areas during reward processing (Sakkalis, 2011)
and were here performed with particular focus on the prefrontal
cortex as a center for important network hubs of the reward
system (Kringelbach, 2005; Tobler et al., 2009; Dofiamayor et al.,
2012; Li et al.,, 2016).

Reward Prediction in Young and Older
Adults

Younger and older adults showed different reward-related
connectivity patterns (Figure 4B and Supplementary Figure 2).
During reward prediction, the younger adults showed
significantly higher coherence in the alpha band and lower
coherence in the delta band (Figure 4B and Supplementary
Figure 2), while, in the older group, there was no significant
reward-based modulation of coherence. The distribution of
alpha-band changes is in line with the current literature,
suggesting altered activity within the frontoparietal control
network (Sadaghiani and Kleinschmidt, 2016; Lepage and
Vijayan, 2017) and the ventral attention network (VAN) (Solis-
Vivanco et al,, 2021). Both have been found to be involved
in the reorientation of attention and the maintenance of
selective attention (Corbetta and Shulman, 2002; Mengotti
et al, 2020). Thus, our findings imply that younger adults
show enhanced recruitment of FPCN and VAN as a sign
of cognitive control and increased attention in a rewarding

context (Corbetta and Shulman, 2002; Persichetti et al., 2015).
With respect to the decreased delta band coherence, it has
been suggested that the cues elicited a “cognitive reward”
and, therefore, caused a reward feedback-like delta band
response (Bromberg-Martin and Hikosaka, 2009; Wang et al,,
2016). Taken together, changes in alpha-band coherence
might suggest increases in cognitive control and attention
in a rewarding context in young adults, while delta band
coherence during non-reward cues in younger adults may
resemble a negative reward due to the absence of a possible
monetary gain. The absence of such a modulation in older
adults might reflect their reduced ability to flexibly recruit
cognitive control mechanisms in response to varying incentives
(Huizeling et al., 2021).

Significant changes in the delta band were also found by
comparing the reward-related connectivity patterns between
older and younger adults (Figure 4D).

Analysis of Group Differences in Reward

Effects on Interregional Connectivity
Comparing the reward-related connectivity patterns between
older and younger adults, significant differences only emerged
during the cue events in the delta band. The younger adults
exhibited higher reward-based modulation of coherence in
the frontal right with parietooccipital left channel groups
(Figure 4D). Older adults exhibited higher frontoparietal
right and parietooccipital coherence modulation. Noteworthy,
younger and older adults exhibited connectivity modulations
in different directions, such as coherence increased for reward
compared to neutral cues in the younger group, whereas it
decreased in the older group (Figure 4D).

According to the function of delta oscillations, they support
the idea of older adults' altered pathways of detecting and
processing salient stimuli (Knyazev, 2007; Knyazev, 2012; Daitch
et al., 2013; Giintekin and Basar, 2016). Especially, older adults’
higher reward-related coherence modulation in the delta band
resembles the ventral attention network (VAN) (Corbetta and
Shulman, 2002). It consists of the temporoparietal junction and
middle and inferior frontal gyrus, exhibiting a right-lateralized
activation. The VAN also underlies connectivity alterations in
aging, although studies disagree on their direction and magnitude
(Li et al., 2015; Kurth et al., 2016; Deslauriers et al., 2017;
ElShafei et al., 2020). One study reported increased connectivity
within the VAN in older adults, which is in line with our
findings (Deslauriers et al., 2017). These age differences in the
reward-related network connectivity likely reflect compensatory
mechanisms employed by the aging brain to maintain behavioral
reward system function.

Application of Cognitive Aging Models

on Reward Processing

Age-related cognitive network alterations are well-observed by
fMRI in older adults and comprise hypo- and hyperactivations
in specific patterns that have been summarized in distinct
models. Their functional effect has been interpreted in the sense
of dedifferentiation and compensation (Sala-Llonch et al., 2015).
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Two of the best established compensatory models are the
HAROLD (Hemispheric Asymmetry Reduction in Older Adults)
(Cabeza, 2002) and the PASA (posterior-anterior shift in aging)
model (Davis et al., 2008). Furthermore, frontoparietal control
network (FPCN) hyperactivation has been observed in older
adults during cognitively demanding tasks (Reuter-Lorenz and
Park, 2014; Li et al, 2015). The FPCN exerts a paramount
role in organizing cognitive control and goal-directed behavior
(Spreng et al., 2010; Parro et al., 2018). Due to the close
link between reward processing and cognition, we propose
the involvement of HAROLD, PASA, and FPCN compensatory
mechanisms in preserved reward system function in healthy
aging. These compensatory models have been tested successfully
with EEG connectivity analyses elsewhere (Rosjat et al., 2018;
Rosjat et al., 2021).

Now, these models of cognitive aging were tested regarding
their applicability to the aging reward system (Figure 5A)
(Cabeza, 2002; Reuter-Lorenz and Mikels, 2006; Davis et al., 2008;
Reuter-Lorenz and Park, 2014; Festini et al., 2018).

First, the HAROLD theory (Hemispheric Asymmetry
Reduction in Older Adults) was applied (Figure 5B). It suggests
the bilateral recruitment of prefrontal brain areas in older
adults compared to a predominantly lateralized activity in
younger adults during the same cognitive task as a compensatory
mechanism (Cabeza, 2002; Cabeza and Dennis, 2012). The
additional activation is related to performance improvements
in older adults (Cabeza and Dennis, 2012). In the delta and
high-beta bands, the older group showed lower reward-related
modulation of bilateral intrahemispheric frontal coherence than
the younger group during the cue events. However, the direct
test for hemispheric asymmetry yielded no significant results
(Figure 5B,b). Hemispheric asymmetry reduction in older adults
has been reported during cognitive tasks across studies (Hogan
et al,, 2012; Learmonth et al., 2017; Kenney et al., 2019; Rosjat
et al., 2021). The here presented results do not show an apparent
HAROLD effect. A possible explanation might be that older
adults rely less on the frontal cortex for reward processing, as
indicated by the results reported above. Nevertheless,a HAROLD
effect could be observable in other cortical areas that were not
analyzed here (Kenney et al., 2019).

Another consistently observed pattern describes a prefrontal
over- related to an occipital underrecruitment in older compared
to younger adults, resulting in the PASA model (Davis et al.,
2008; Figure 5A). The additional prefrontal activation in older
adults is argued to be a compensatory mechanism for age-related
occipitotemporal deficits in the processing of sensory stimuli
(Grady et al., 1994). Evidence indicates that occipital activity is
negatively correlated with frontal activity, and the latter correlates
positively with cognitive performance, providing a mechanism
for compensation (Davis et al., 2008; Cabeza and Dennis, 2012).
During the cue events, the older adults exhibited higher reward-
based modulation of occipital coherence in the delta and theta
bands and of fronto-occipital coherence in the high-beta band.
Contrary to the PASA hypothesis, the results show higher reward-
related occipital coherence modulation in the older group during
reward anticipation. This is in line with the above-reported
results, indicating that older adults rely less on frontal cortical

areas during reward processing. Explicit comparison of frontal
relative to occipital connectivity between groups amounted to
no significant differences (Figure 5B,b). Thus, the results show
no clear PASA effect. Nevertheless, the higher fronto-occipital
coherence modulation in the older group could comply with a
PASA effect (Rosjat et al.,, 2021). The PASA phenomenon has
been described during cognitive tasks across studies (Huizeling
et al., 2021; Rosjat et al., 2021; Seider et al., 2021). According to
the PASA hypothesis, declined occipital activation is due to older
adults’ sensory processing deficits.

To sum up, we found no evidence that the HAROLD
or PASA model explains significant portions of age-related
compensatory mechanisms in the reward system, indicating that
they might only apply to specific cognitive tasks, and not to the
aging reward system.

Lower Reward-Related Frontoparietal
Control Network Modulation in Aging

Studies to date especially focused on aging effects on the reward
system itself, whereby neglecting incentive-based modulation
of the previously described large-scale brain networks (Spaniol
et al., 2015). Reward-dependent performance improvement is
mediated by the interaction of the reward system with large-scale
cognition-related networks, such as the FPCN or the VAN, by
implementing cognitive control (Spaniol et al., 2015; Parro et al.,
2018). Incentive-based overrecruitment of the default-mode
network and cognitive control regions in older compared to
younger adults together with similar reward-network activation
in both groups has been reported (Spaniol et al., 2015).

An underlying mechanism of performance enhancement
under reward conditions is the functional interaction of the
reward network with cognition-related large-scale networks like
the frontoparietal control network (FPCN) (Vincent et al,
2008), default network (DN), and ventral and dorsal attention
network (VAN, DAN). These are engaged, respectively, and
disengaged and interconnected during the performance of
cognitive tasks, according to task demands (Spaniol et al., 2015;
Parro et al.,, 2018). Importantly, the older adults achieved equal
performance as the younger adults when activation levels in
the frontoparietal control network were higher (Li et al., 2015).
Therefore, we hypothesized frontoparietal hyperactivation in
the older adults as a compensatory mechanism for functional
deficits of other brain areas (Reuter-Lorenz and Park, 2014),
implementing pronouncement of cognitive control processes
(Parro et al, 2018). Testing reward-related frontoparietal
coherence modulation (Figure 6A), the older group showed
lower reward-based modulation of left frontoparietal and left
frontal with right parietal alpha-band coherence during cue
events (Figure 6B). Thus, our hypothesis could not be confirmed
as the opposite effect was observed.

Conclusively, we found age-related compensatory
mechanisms that did not fit to predescribed age-related
compensatory mechanisms of other cognitive domains. Thus, we
propose that different neural mechanisms underlie the preserved
behavioral function of the aging reward system. One reason for
this could be the large evolutionary gap in development between
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the reward system and higher cognitive functions. Evolutionary
preserved reward-related delta oscillations support this idea
(Knyazev, 2012). Further evidence shows that salience networks
underlie less age-related decline compared to other cognitive
networks (Zhang et al., 2014). For instance, fear as another
important evolutionary skill for survival has also been found to
be relatively stable in healthy aging (LaBar et al., 2004).

Methodical Limitations

Possible limitations may have been the small number of test
persons. To identify older participants with mild cognitive
impairment up to dementia, the MoCA test was conducted,
resulting in a mean score of 25.75 (range, 21-29) (Table 1). The
original cut-off for a normal result is > 26 points, which has often
been criticized for being too conservative (Thomann et al., 2018);
therefore, no participant was excluded based on this test.

Task performance in the MID may be compromised by
a large number of trials, especially in EEG studies and the
monotonous course of the MID (Bjork et al., 2010). Additionally,
the ability to maintain attention might be reduced in older
adults. Consequently, the number of trials was reduced in the
older group. According to Spaniol et al., the MID only requires
low task-performance skills (Spaniol et al,, 2015). Therefore,
they argue that aging effects on incentive processing are less
confounded by aging effects on task performance (Spaniol
et al., 2015). This idea is supported by studies reporting equal
performance of younger and older adults in the MID using
explicit reward cues, which do not require learning (Samanez-
Larkin et al., 2007). Thus, the here used MID is a convenient
paradigm for investigating aging of the reward system (Spaniol
et al,, 2015). As our aim was to shed light on aging effects on the
reward system itself and reduce the influence of aged cognitive
abilities, the MID is the most appropriate paradigm as it requires
low cognitive processing while eliciting robust reward network
activation (Spaniol et al., 2015). Although HAROLD and PASA
have previously mainly been used to explain compensation in the
field of cognitive aging, both were successfully tested in studies
investigating risk-taking or emotional perception, being closely
related to reward processing (Lee et al, 2008; Jacques et al,
2013). Furthermore, due to the close link between reward and
cognitive networks, we assumed that comparable compensatory
mechanisms might occur in the aging reward system.

Another point is the use of money as a secondary
reward (Bonner and Sprinkle, 2002; Knutson and Wimmer,
2007; Kohls et al., 2009; Knutson and Heinz, 2015). Highly
varying individual attitudes should not be neglected (Lutz and
Widmer, 2014), including the participants’ current financial
situation. In addition, older adults, in general, seem to prefer
social and positive affective rewards over monetary rewards
(Rademacher et al., 2014; Samanez-Larkin and Knutson, 2015;
Dhingra et al., 2020).

Limitations of EEG are mainly represented by volume
conduction, the extension of electric fields in tissues surrounding
the brain, leading to low-pass spatial filtering of signals
(Srinivasan et al., 1998; Nunez and Srinivasan, 2006; Srinivasan
et al., 2007; Kayser and Tenke, 2015b; Bastos and Schoffelen,
2016). In case of coherence, the abovementioned spatial

filtering caused by volume conduction is the main reason for
artificial coherence results between EEG channels, which can be
reduced by surface Laplacian transform (Srinivasan et al., 1998).
Disadvantageously, it distorts signals from extensive sources
and may compromise genuine coherence from widespread
neural activities over a greater distance (Srinivasan et al., 1998;
Nunez and Srinivasan, 2006; Srinivasan et al., 2007; Kayser and
Tenke, 2015a,b). As this method was not applied in this study,
especially significant coherence results of adjacent regions have
to be interpreted cautiously. In sum, when interpreted carefully,
coherence offers a valuable and frequently used method for
investigating neuronal communication (Srinivasan et al., 2007;
Fries, 2015; Bastos and Schoffelen, 2016).

CONCLUSION

In the current study we found that (1) older adults show
greater reliance on posterior cortical areas for reward processing,
(2) reward-related connectivity modulation tends to be lower
in older adults, and (3) older adults modulate connectivity
in the opposite direction than younger adults, with usually
greater connectivity during non-reward compared to reward
conditions. Furthermore, our data indicate that older adults
show a more right-lateralized reward-related connectivity, in
contrast to younger adults who rely more on left-hemispheric
connectivity. These findings provide important new insights
into age-related changes in cortical connectivity in the reward
system. The mechanisms identified for maintaining reward
system function in old age did not fit into previously described
models of cognitive aging. We infer that the reward system has
unique compensatory mechanisms distinct from other cognitive
functions. Nevertheless, further studies are needed to fully
understand the complexity of changes in the reward system
in healthy aging.
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