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Background: Predicting amnestic mild cognitive impairment (aMCI) in conversion and
Alzheimer’s disease (AD) remains a daunting task. Standard diagnostic procedures for
AD population are reliant on neuroimaging features (positron emission tomography,
PET), cerebrospinal fluid (CSF) biomarkers (Aβ1-42, T-tau, P-tau), which are expensive or
require invasive sampling. The blood-based biomarkers offer the opportunity to provide
an alternative approach for easy diagnosis of AD, which would be a less invasive and
cost-effective screening tool than currently approved CSF or amyloid β positron emission
tomography (PET) biomarkers.

Methods: We developed and validated a sensitive and selective immunoassay for total
Tau in plasma. Robust signatures were obtained based on several clinical features
selected by multiple machine learning algorithms between the three participant groups.
Subsequently, a well-fitted nomogram was constructed and validated, integrating
clinical factors and total Tau concentration. The predictive performance was evaluated
according to the receiver operating characteristic (ROC) curves and area under the curve
(AUC) statistics. Decision curve analysis and calibration curves are used to evaluate the
net benefit of nomograms in clinical decision-making.

Results: Under optimum conditions, chemiluminescence analysis (CLIA) displays a
desirable dynamic range within Tau concentration from 7.80 to 250 pg/mL with
readily achieved higher performances (LOD: 5.16 pg/mL). In the discovery cohort,
the discrimination between the three well-defined participant groups according to Tau
concentration was in consistent agreement with clinical diagnosis (AD vs. non-MCI:
AUC = 0.799; aMCI vs. non-MCI: AUC = 0.691; AD vs. aMCI: AUC = 0.670). Multiple
machine learning algorithms identified Age, Gender, EMPG, Tau, ALB, HCY, VB12,
and/or Glu as robust signatures. A nomogram integrated total Tau concentration and
clinical factors provided better predictive performance (AD vs. non-MCI: AUC = 0.960,
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AD vs. aMCI: AUC = 0.813 in discovery cohort; AD vs. non-MCI: AUC = 0.938, AD vs.
aMCI: AUC = 0.754 in validation cohort).

Conclusion: The developed assay and a satisfactory nomogram model hold promising
clinical potential for early diagnosis of aMCI and AD participants.

Keywords: machine learning, nomogram, amnestic mild cognitive impairment, Alzheimer’s disease,
chemiluminescence immunoassay, total tau

GRAPHICAL ABSTRACT | Flow diagram of the study design.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder in which chronic neuroinflammation results in disease
escalation among the elderly. It is characterized by progressive
deterioration of cognitive capacity, behavioral and physical
disability, and significant and irreversible brain damage (Nelson
et al., 2012; Jagust, 2018). The mechanism leading to the initiation
and propagation of this neurodegenerative disease remains a
topic of intense debate. The neuropathologic hallmarks of AD are
deposition of neuritic amyloid plaques (amyloid-β peptide) and
intraneuronal accumulation of neurofibrillary tangles (NFTs),
followed by toxic protein aggregation and cell loss in defined
brain regions (Grothe and Teipel, 2016; Fitzpatrick et al., 2017;
Josephs et al., 2017). MCI, particularly the amnestic subtype
(aMCI), is usually considered an intermediate stage between
normal aging and a diagnosis of clinically probable AD (Whitwell
et al., 2007). Amnestic MCI (aMCI) is a subtype in which
subjects exhibit distinctive memory impairments, with or without
impairment of multiple cognitive domains, but do not meet
the criteria for dementia (Huang et al., 2020). Early diagnosis
and treatment development of AD would greatly benefit from
identifying biomarkers at the prodromal stage, which may modify
disease progression (Mueller et al., 2005; Perani et al., 2016).
Nowadays, biological measures remain the gold standard for
diagnosing AD and assessing MCI conversion. The increasing
availability of techniques [i.e., mini-mental state examination
(MMSE), cerebrospinal fluid (CSF) biomarker analysis, positron
emission tomography (PET) with β -amyloid or tau tracers,
brain magnetic resonance imaging (MRI)] able to detect in vivo
AD pathological hallmarks (Santangelo et al., 2020; Arevalo-
Rodriguez et al., 2021). The clinical diagnosis of AD currently
relies on neurophysiological examination and neuroimaging,
such as mini-mental state examination (MMSE), activities of
daily living (ADL), Montreal Cognitive Assessment test (MoCA),
and physiological examination of cerebrospinal fluid (CSF β 1-
42, T-tau, P-tau), mainly leading to complementary explorations,
such as single-photon emission computed tomography (SPECT)
or positron emission tomography (PET; Mattsson et al., 2015,
2018; Roalf et al., 2017; Li et al., 2018; Meyer et al., 2020).
Determining amyloid β, total Tau, and phosphorylated Tau-
181 in CSF samples has emerged as a powerful tool for AD
discrimination due to its stability, sensitivity, and specificity
(Mielke et al., 2018; Song et al., 2018; Janelidze et al., 2020).
Some researchers pointed out that mild cognitive impairment in
progression and Alzheimer’s disease dementia can be predicted
by clinical features and a combination of CSF biomarkers may
increase the predictive power (Prestia et al., 2015; Tan et al.,
2018; Spasov et al., 2019; Santangelo et al., 2020). However, CSF
samples are obtained through a lumbar puncture (LP) or lumbar
drainage (LD), which is an invasive procedure with multiple
contraindications and treatment-related sequelae, and repeating
operations has proven difficult. Besides, PET/SPECT testing is a
time-consuming and costly imaging procedure and is unavailable
for most situations (Duits et al., 2016). Blood measurements
offer advantages over CSF for AD biomarker screening, as
blood collection is easier and less invasive. As a result,

biomarkers screened from other biological fluid samples have
become increasingly fulfilling the needs for clinical diagnostics.
Increasingly accessible laboratory techniques applied for the
detection of Aβ 40/42 oligomers, total Tau and phosphorylated
Tau (P-Tau181/217) have recently been quickly developed, such
as multiplex immunoassay, enzyme-linked immunosorbent assay
(ELISA), electrochemical detection method, surface-enhanced
Raman spectroscopy and localized surface plasmon resonance
(LSPR), etc. (Chou et al., 2008; Liu et al., 2015; Xia et al., 2016;
Kim et al., 2018, 2019; Yin et al., 2019).

This study aimed to determine the diagnostic accuracy of
total Tau in plasma for AD, both for the clinical diagnosis of
AD and predicting the probability of suffering from Alzheimer’s
disease. This report has developed and internally verified a
multipredictor nomogram that combines total plasma Tau
concentration and other robust clinical signatures to diagnose
AD and aMCI. Relative to individual clinical variables, adding
biomarkers substantially improved the diagnostic efficiency
through multiple feature selection algorithms (i.e., AD vs. non-
MCI, an improvement in predictive accuracy from 79.9 to
96.0%). Before these encouraging findings can be implemented
into routine clinical practice, they need to be validated in an
independent external cohort, representing this study’s purpose.

MATERIALS AND METHODS

Chemicals and Materials
A full-length recombinant human Tau protein (Tau441,
ab84700) ladder was purchased from Abcam (Cambridge,
United Kingdom). A pair of specific anti-Tau oligomer
antibodies (db7399 and db8769) were provided by DiagBio
Co., Ltd. (Hangzhou, China) with a purity of >99%. All
polyclonal antibodies (complete IgG) used in our experiments
are commercially available. Recombinant human T-tau was
reconstituted by 1 µ M in 10 mM phosphate-buffered solution
(PBS with 0.002% PMSF, 0.03% DTT, and 25% Glycerol, pH
7.4) and stored at −80◦C. Acridine-NHS ester (NSP-SA-NHS)
and N-hydroxysuccinimide Biotin (NHSB) were purchased
from Shchemsky (Shanghai, China). Streptavidin-coupled
superparamagnetic nano-magnetic iron particles were acquired
from Roche. A 5% bovine serum albumin (BSA; Sigma, Shanghai,
China) dissolved in PBS (with 0.05% Tween 20) was immobilized
for blocking non-specific binding. An 0.05% PBST solution

Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive
Impairment; MMSE, mini-mental state examination; CSF, cerebrospinal fluid;
PET, positron emission tomography; HCY, homocysteine; EMPG, estimated
mean plasma glucose concentration; Glu, random fasting blood glucose; ALB,
albumin; VB12, vitamin B12; AFU, α-L-fucosidase; ALP, alkaline phosphatase;
ALT, alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea
nitrogen; CHE, cholinesterase; CRP, C-reactive protein; Cr, endogenous creatinine
clearance rate; CYSC, cystatin C; DB, direct bilirubin; FER, ferritin; FFA, free
fatty acid; FH, folate; FT3, free Triiodothyronine; FT4, free thyroxine; GGT,
gamma glutamyl transferase; GLOB, globulin; HBA1, hemoglobin A1; HBA1C,
hemoglobin A1c; HBF, hemoglobin F; HCT, red blood cell specific volume;
HDL, high density lipoprotein; HGB, hemoglobin; IB, indirect bilirubin; LDL,
low-density lipoprotein; PLT, platelet count; TB, total bilirubin; TC, serum total
cholesterol; TG, triglyceride; TT3, total triiodothyronine; TT4, thyroxine; UA, uric
acid; TSH, thyroid stimulating hormone.
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(PBS with Tween 20; pH 7.4) was utilized as a washing buffer.
Deionized water (18 M� cm, Milli-Q gradient system, Millipore,
Darmstadt, Germany) was used throughout the experiments.

Preparation of Biotin-Bioconjugated
Capture Antibody
N-hydroxysuccinimide biotin was prepared by dissolving in
dimethyl sulfoxide (DMSO) to 1 mg/mL. Labeled samples were
diluted into PBS (pH 7.4) to an appropriate concentration
(∼0.5 mg/mL). Capture antibodies (db7399, Rabbit polyclonal)
were biotinylated with sulfo-N-hydroxysuccinimide (NHS)-
biotin for 30 min at 37◦C (molar ratio 1:20) following the
manufacturer’s instructions. After the reaction, free NHS-biotin
was separated on a PD-10 desalting column (GE Healthcare,
Darmstadt, Germany). The labeled antibodies were stored at
−20◦C after adding appropriate storage solution, and their
concentrations were estimated using a Pierce BCA protein assay
kit (Life Technologies, Darmstadt, Germany).

Preparation of AE-Conjugated Detection
Antibody
As described in the manufacturer’s instructions, acridine-
NHS ester (NSP-SA-NHS, AE) was solubilized in N,
N-dimethylformamide (DMF) to prepare a 5 mM AE-NHS
solution. The concentration of unconjugated antibody (db8769,
Mouse polyclonal) was first adjusted to 1.0 mg/mL using 1
M aqueous sodium bicarbonate (pH = 8.3), and 5 µL DMF
solution with NSP-SA-NHS dye was added. These reagents were
allowed to react at 30◦C for ∼30 min. After the reaction, a G25
size-exclusion gel chromatography column was employed to
purify labeled antibodies from the free dye. The column was
equilibrated with PBS buffer before adding the reaction mixture
to the G25 column. The column was then connected to a fraction
collector and eluted with PBS buffer, 500 µL each time. The
eluent was collected by continuously monitoring OD value at
280 nm, and 0.1% BSA and 0.05% NaN3 (w/v) were added. This
labeled antibody was used at a final concentration of 1 µg/mL
and stored at −20◦C. Unless otherwise stated, the procedures for
storage of labeled antibodies are the same.

Reaction Procedures of the CLIA Assay
The schematic diagram of the proposed method is illustrated
in Figure 1. The assay process involves two uninterrupted
incubation steps of 60-min duration. According to experimental
design, we set 10 different standard sample concentrations (1000,
500, 250, 125, 62.50, 31.25, 15.63, 7.81, 3.9, and 0 pg/mL). To
improve the sensitivity of the detection system, the samples were
treated with guanidine hydrochloride (Gua-HCl), revealing the
barrier from other proteins occupying the epitope of Tau protein
in plasma. During the first incubation, 100 µL of sample is
incubated with two polyclonal antibodies specific to Biotin-Ab
(50 µL) and AE-Ab (50 µL), respectively, resulting in a sandwich
complex formation specific for total Tau. In the following
incubation, after adding streptavidin-coated superparamagnetic
iron oxide nanoparticles, the sandwich complex becomes bound
to the solid phase. Using a magnetic field, the solid and liquid

phases are separated. Following that, a thorough rinse with
0.1 M PBS buffer containing 0.05% Tween 20 (pH 7.4) was
performed to remove unbound non-reacted antibodies and
other biomolecules. In a chemical detection system triggered by
NSP-SA-NHS, NaOH (trigger solution) is added as a mediator
to transfer the electron between NSP-SA-NHS and hydrogen
peroxide (H2O2) (pre-trigger solution). In an alkaline solution,
when hydrogen peroxide ions attack the molecule of acridine
ester, the substitution on the acridine ring forms unstable
dioxane, which is then decomposed into CO2 and electronically
excited N-methylacridone (photon emitter) (Fu et al., 2018; Pham
et al., 2020; Zhao et al., 2021). A photon is immediately released
when the excited N-methylacridone returns to the ground state.
During this period, a photomultiplier can monitor and quantify
the reduced current [relative light units (RLU)].

Optimization of CLIA Conditions
Generally speaking, the optimal detection conditions are
critical to improving the sensitivity of the assay. Several
physicochemical factors that influenced CLIA performance were
carefully optimized in this work. Non-specific adsorption is
bound to increase background noise and impair the sensitivity
of the analysis. Therefore, the appropriate detection antibody
concentration is significant. As for capture antibodies, an
adequate combination of antigen and antibody is the key to
accurate quantification, while excessive capture antibodies can
compete with the sandwich complex for streptavidin epitope.
Serial dilutions of Biotin-Ab (12.8, 9.6, 6.4, 3.2, 1.6, 0.8, 0.4, 0.2,
0.1, and 0.05 µg/mL) and AE-Ab (dilution ratio: 1:1, 1:2, 1:4,
and 1:8) were allowed to react with a series of standard Tau
samples and blank samples (PBST with 0.5% BSA) as described
earlier. Under pre-designed conditions, we used GraphPad Prism
9 to draw a fitting curve that varies with antibody concentration.
We determined the optimal concentration of capture antibody
and detection antibody concentration through comprehensive
consideration of sample RLU and background noise.

Assessment of Analytical Performance
Linearity: According to experimental requirements, we designed
a series of standard Tau sample concentrations (1000, 500, 250,
125, 62.50, 31.25, 15.63, 7.81, 3.9, and 0 pg/mL), and plotted
the RLU value that varies with Tau concentration. Deviations
from linearity were calculated using linear, quadratic, or cubic
regression models. If no higher-order regression was significant,
then linearity was accepted (R2 > 0.99). Limits and functional
sensitivity of the assay: As recommended by Clinical Laboratory
Standards Institute (CLSI) guideline EP17-A2 (CLSI, 2012),
multiple tests were performed to determine the low limits
of detection (LOD) and limit of quantification (LOQ). Over
2 days, ten blank samples conducted 60 measurements, with each
sample repeated three times per day. LOD and LOQ calculations
were employed either parametrically or non-parametrically as
appropriate (Zhao et al., 2021). Precision: Precision testing was
also performed following the CLSI EP05-A3 guideline (CLSI,
2014). The standard protocol incarnated a nestification of
variance components design with 15 testing days, 3 runs per day,
and 2 replicates per measurement (a 15 × 3 × 2 design) for each
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FIGURE 1 | Schematic diagram of CLIA-based technology for total Tau quantification in plasma.

level (Total number of replicates: 90 per node, Level 1: 10 pg/mL,
Level 2: 50 pg/mL, Level 3: 100 pg/mL).

Study Designs and Participants
A total of 318 patients treated at the Department of Neurology
in The Second Affiliated Hospital of Zhejiang University School
of Medicine between May 2020 and April 2021 (discovery
cohort: 138, 2020.05–2021.01; validation cohort: 180, 2021.01–
2021.08) were reviewed and included in this study if the

following conditions were met: (i) received high-resolution
morphological 18F-FDG PET or MRI to rule out other brain
inflammation; (ii) a neurological examination, review of medical
history, and administration of Logical Memory Scale-II (LM
II) and MMSE; (iii) modified Hachinski ischemia score ≤4;
(iv) all patients receive cranial CT or MRI to rule out trauma
or inflammation caused by other reasons; (v) no history of
cerebrovascular accident such as cerebral hemorrhage or cerebral
infarction; (vi) no nervous system tumors or other systemic
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malignancies; (vii) no history of drug abuse or carbon monoxide
poisoning. Clinically, the diagnosis criteria of AD and aMCI
followed the recommendations of the NIA-AA Association and
the Chinese Classification and Diagnostic Criteria for Mental
Disorders (CCMD-3). We recruited age-matched (55∼85 years
old) individuals with no cognitive impairment at the physical
examination center as healthy controls (discovery cohort: 62;
validation cohort: 50). Before enrollment, all participants and/or
their parents or legal guardians have been fully informed and
completed a written consent form. After fasting for at least
8 h, whole blood samples were collected in tubes containing
EDTA-K2 and immediately centrifuged at 3000 g for 10 min
to obtain cell-free plasma (Rózga et al., 2019; Liu et al.,
2020).

Statistical Analysis
Statistical analyses were applied using SPSS v.26.0 and RStudio
v.4.0.1. The data operations from discovery and validation
cohorts were mutually independent. Chi-square tests were
performed for categorical variables (e.g., gender) and differences
in non-normally distributed numerical data using Wilcoxon
rank-sum test between subgroups. To screen robust features,
Elastic Net [a combination of Ridge and least absolute shrinkage
and selection operator (LASSO) method], Random Forest,
Boruta, and extreme gradient boosting (XGBoost) analyses
were performed to select the most important subgroup-relevant
features by calculating the importance score for each variable
(Engebretsen and Bohlin, 2019; Johnson et al., 2020; Yperman
et al., 2020; Colen et al., 2021; Rahman et al., 2021). With
the remaining variables, the predictors were incorporated into
a multivariable logistic regression model while adjusting for
potential confounders including Age and Gender, considering
the effect of participant structure on statistical results. Based
on regression analysis results, nomograms are established and
estimated using bootstrap sampling with 1000 repetitions and
subsequently performed with 10 fold cross-validation. The
nomogram and calibration curves were generated with “rms”
package of R software1, and Hosmer–Lemeshow test was
performed to assess goodness-of-fit. Overall goodness-of-fit was
assessed with the C-index, Brier score, and calibration using plots
of observed versus predicted risk. Decision curve analysis (DCA)
is employed to evaluate the net benefit index of the new model.
The primary means of assessing the discriminatory performance
of the nomogram model or biomarkers was the area under ROC
curves (AUC; Iasonos et al., 2008; Shariat et al., 2008). The
net reclassification index (NRI) and integrated discrimination
improvement (IDI) were deployed to compare the probability
differences and quantitative differences between the two models
(Kundu et al., 2011; Martens et al., 2019). By comparing NRI and
IDI, we determined the better nomogram. The whole process was
performed in R 3.3.22. The P-values for all hypothesis tests were
two-tailed, at a statistical significance level of P < 0.05, unless
stated otherwise.

1https://github.com/harrelfe/rms
2http://www.r-project.org/

RESULTS

Optimization of CLIA Conditions
The concentration of immunosorbent (capture antibody) is a
key factor affecting the analysis performance; it can bind all
the target antigens in the sample to be tested. Streptavidin-
coupled magnetic nanobeads should provide enough epitopes to
accommodate the whole sandwich complex. In this experiment,
we set up a series of different concentrations of Tau samples
(0, 100, 1000, and 2000 pg/mL) and capture antibodies (0.05,
0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40, 9.60, and 12.80 µg/mL).
As revealed in Figure 2A, a standard curve was plotted based on
chemiluminescence intensity of different Tau concentrations to
assess associations between luminescence intensity and capture
antibody concentration. The luminescence intensity increases
with capture antibody concentration and reaches equilibrium
at 1.6 µg/mL. As the concentration continues to increase, the
luminescence intensity tends to decrease, which may be caused
by excess capture antibodies occupying the streptavidin epitope.
Besides, we performed a dilution series of the detection antibody
(dilution ratio: 1:1, 1:2, 1:4, and 1:8) to determine how few
antibodies are required for detection above background. In all
cases, relative luminescence intensity was correlated with the level
of detection antibody, implying that the higher concentration, the
higher the luminescence intensity. Considering signal-to-noise
ratio (SNR) and detectable linear range of the target antigen,
we chose 1: 8 as the optimal dilution ratio of the detection
antibody (Figure 2B).

Total Tau Detection Using CLIA
Under optimized conditions, a direct standard CLIA curve
was established. The net luminescence intensity (RLU
minus background signal noise) varies continuously against
various concentrations of Tau standard solution (3.90–
2000 pg/mL). The calibration curve of developed CLIA
covered a satisfactory linear range from 7.80 to 250 pg/mL
with a reliable correlation coefficient (R2 = 0.9988). In
this calibration curve, the limit of detection (LOD) is
5.16 pg/mL (Figure 3A); it is defined as the lowest dilution
ratio at which more than 95% of contrived replicates are
detected, yielding a signal three times higher than the standard
deviation of blank samples. The applicability of the developed
methodology to routine application depends on its high
reproducibility. Following experimental design, repeatability
was investigated by three tests at every Tau concentration
in 15 days. The reproducibility of method was assessed by
relative standard deviations (RSDs). The RSDs of intra-
day precision and inter-day precision for each level of Tau
was ≤10%. Supplementary Table 1 displays that average
recovery yields of Tau at three levels were all in the range
of 85–111% (Level 1: 85–111%; Level 2: 94–104%; Level 3:
98–103%), and their RSD was all ≤10% (Figures 3B–E).
Detailed results are reported in Supplementary Table 1. These
results emphasized that CLIA exhibited fairly repeatability
and reliability compared to other detection technologies
for total Tau (Supplementary Table 2) (Kang et al., 2012;
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FIGURE 2 | The effects of experimental conditions on CLIA performance. (A) The effect of biotin-labeled capture antibody. (B) The effect of dilution times of
AE-labeled detection antibody.
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FIGURE 3 | The performance of CLIA for total Tau. (A) A quantification of total Tau using developed CLIA. The inset shows a dynamic linear range of Tau
concentrations from 7.80 to 250 pg/mL. The repeatability was determined at three standard Tau concentrations: (B) 10 pg/mL; (C) 50 pg/mL; (D) 100 pg/mL.
(E) Overall landscape of the three concentrations. The error bars expose the standard deviation.

Demeritte et al., 2015; Bayart et al., 2019). We deeply realize that
although the LOD and linear range of the CLIA method
is not as good as other detection techniques, there are
certain advantages in the time-consuming and simplified
operation process.

Plasma Total Tau Distribution in
Alzheimer’s Disease/Amnestic Mild
Cognitive Impairment Patients
We assessed the level of total Tau in plasma among 200
participants in discovery cohort (non-MCI = 62, aMCI = 65,
AD = 73). The Tau contents in plasma of healthy controls

(non-MCI) were in the range of 16.55–25.11 pg/mL (95%
confidence interval). In contrast, Tau content in plasma of
aMCI patients varied from 28.51 to 40.28 pg/mL, and AD
patients varied from 47.87 to 66.59 pg/mL (Figure 4A).
Participants in AD group had significantly higher total
Tau levels than those in aMCI and non-MCI groups, and
the increased Tau levels were ordered by clinical group
AD > aMCI > non-MCI. To test the ability of Tau as a
biomarker to discriminate different participants, we evaluated
ROC curves, which assessed the diagnostic performance of a
classifier by varying its discrimination threshold. In detail, all
these results indicate that total Tau in plasma has a higher
ability to distinguish AD patients from non-MCI controls
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FIGURE 4 | Distribution of total Tau in plasma among non-MCI, aMCI, and AD populations in discovery cohort (A) and validation cohort (C). The ROC analyses of
total Tau in AD patients, aMCI patients, and non-MCI participants in the discovery cohort (B) and validation cohort (D). In the discovery cohort, n = 73 (AD), 65
(aMCI), and 62 (non-MCI). In the validation cohort, n = 95 (AD), 85 (aMCI), and 50 (non-MCI).

(AUC = 0.7993, P < 0.0001), while between aMCI and non-
MCI controls, or between AD and aMCI, the performance is
moderate (aMCI vs. non-MCI: 0.6909, P = 0.0002; AD vs.
aMCI: 0.6698, P = 0.0006) (Figure 4B). These data indicate
that total Tau in plasma performs as promising candidates
for AD and aMCI diagnosis. These results were also observed
in an independent validation cohort composed of 50 non-
MCI, 85 aMCI, and 95 AD participants (Figures 4C,D).
Furthermore, several limitations remain in translation to
clinical application, its performance is not yet satisfactory for
clinical applications.

Construction and Validation of the
Multipredictor Nomogram
As revealed by the Graphical Abstract, prospectively, we
included 430 participants in discovery cohort (non-MCI = 62,

aMCI = 65, AD = 73) and validation cohort (non-MCI = 50,
aMCI = 85, AD = 95). Complete demographics, clinical and
biochemical data of discovery, and validation cohorts are shown
in Supplementary Tables 3, 4. In the discovery cohort, the
intersecting features among the Elastic net, RF, XGBoost, and
Boruta analyses were considered the most critical features
and were visualized by a Venn diagram between AD and
non-MCI participants (Supplementary Figure 1). Even though
the correlations remained insignificant in the multivariate
logistic regression that included Gender and Age as additional
confounders, which was considered to eliminate participants’
structure bias caused by Age and Gender between subgroups
(Age, Gender, EMPG, Glu, Tau, ALB, HCY, and VB12). The forest
plot shows multiple logistic regression results. As demonstrated
in Figure 5A, EMPG [odds ratio (OR) = 1.20, 95% confidence
interval (CI): 1.07–1.39; P = 0.006], Tau (OR = 1.07, 95%
CI: 1.04–1.11, P < 0.001), and HCY (OR = 1.26, 95% CI:
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FIGURE 5 | Development of a multipredictor nomogram for AD diagnosis. (A) The forest plot of OR of selected features in discovery and validation cohorts.
(B) Predictive nomogram integrates multiple selected features.
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FIGURE 6 | Statistical performance and clinical application of the nomogram. (A) Novel nomogram outperforms total Tau in plasma and Clinical model for
discriminating AD patients and non-MCI participants in discovery cohort [(A) 0.960 vs. 0.799 and 0.908, P < 0.05] and validation cohort [(B) 0.938 vs. 0.772 and
0.912, P < 0.05]. Cross-validated calibration curves of the three models in discovery cohort (C) and validation cohort (D). Decision curve analysis demonstrating the
net benefit associated with using the novel nomogram in discovery cohort (E) and validation cohort compared to total and Clinical model (F). Clinical impact curves
of the nomogram model in discovery cohort (G) and validation cohort (H). The red curve (number of high-risk participants) indicates the number of people who are
identified as AD (high risk) by the nomogram at each threshold probability; the blue curve (number of high-risk with event) is the number of true diagnoses at each
threshold probability.
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TABLE 1 | Evaluating the incremental predictive value and predictive performance of various models with NRI, IDI, and C-index between AD and non-MCI.

AD vs. non-MCI

Variable NRI (95% CI) P value IDI (95% CI) P value C-index (95% CI)

Discovery cohort

Tau Reference Reference 79.9 (72.5–87.3)

Clinics 0.229 (0.102–0.436) P = 0.003 0.232 (0.115–0.349) P < 0.001 90.8 (85.6–96.0)

Nomogram 0.486 (0.313–0.659) P < 0.001 0.415 (0.333–0.496) P < 0.001 96.0 (92.8–99.1)

Validation cohort

Tau Reference Reference 77.2 (69.7–84.7)

Clinics 0.203 (0.096–0.400) P = 0.004 0.326 (0.224–0.428) P < 0.001 91.2 (88.1–96.3)

Nomogram 0.294 (0.255–0.362) P < 0.001 0.378 (0.293–0.463) P < 0.001 93.8 (90.3–97.3)

NRI, net reclassification index; IDI, integrated discrimination improvement.

1.11–1.47, P = 0.001) were identified as significantly independent
risk factors of AD. ALB level is considered a protective factor
(OR = 0.65, 95% CI: 0.45–0.89, P < 0.001). Age (P = 0.697),
Gender (P = 0.092), Glu (P = 0.209), and VB12 (P = 0.125) did
not reach statistical significance in multiple logistic regression
in the discovery cohort. These conclusions are also available in
the validation cohort. In addition, ROC analyses revealed other
clinical covariates used to construct the nomogram model, and
their performance in differentiating between non-MCI, aMCI,
and AD participants was inadequate compared to total Tau
(discovery cohort: Supplementary Figure 2; validation cohort:
Supplementary Figure 3). The final nomogram model was
established using robust variables identified by multiple machine
learning algorithms and multivariable logistic regression fitted
to the data (Figure 5B). It manifested that Tau level was
the dominant factor in the nomogram. The latter was closely
followed by EMPG, while other variables had a moderate or
low contribution in recognizing AD patients. A corresponding
score for each variable at a specific value could be read
on the point scale based on a weighting factor and then
used to calculate a total score. Overall, the higher the total
score of prediction, the more likely it predict AD occurrence.
The multipredictor nomogram showed a higher discrimination
ability for predicting AD compared with Tau and Clinical
model (Age, Gender, EMPG, Glu, ALB, HCY, and VB12) in
Figures 6A,B [discovery cohort: AUC, 0.960 (95% CI, 0.928–
0.991) vs. 0.799 (95% CI, 0.725–0.873) and 90.8 (95% CI, 0.856–
0.960); validation cohort: AUC, 0.938 (95% CI, 0.903–0.973)
vs. 0.772 (95% CI, 0.697–0.847), and 91.2 (95% CI, 0.881–
0.963), respectively; P < 0.001]. Brier Score is another score
function that measures the accuracy of probabilistic prediction,
and a higher score indicates higher inaccuracy. As for the
nomogram, there was good alignment between observed and
predicted probability in calibration plots, accompanied by a
lower Brier score than total Tau and Clinical model [discovery
cohort: 7.3 (95% CI, 4.2–10.5) vs. 17.9 (95% CI, 14.7–21.1)
and 11.8 (95% CI, 8.4–15.2); validation cohort: 9.8 (95% CI,
6.9–12.8) vs. 18.1 (95% CI, 15.2–21.1) and 10.9 (95% CI, 7.9–
14.0)] (Figures 6C,D). The nomogram had an incremental
effect on predictive value than Tau and Clinical model for
recognizing AD patients [NRI: 0.486 (95% CI, 0.313–0.659);
IDI: 0.415 (95% CI, 0.333–0.496) in the discovery cohort and

NRI: 0.294 (95% CI, 0.255–0.362); IDI: 0.378 (95% CI, 0.293–
0.463) in the validation cohort, respectively; P < 0.001]
(Table 1). The decision curves analyses further indicated that
the nomogram model was superior to total Tau and clinical
model in predicting AD, provided a positive net benefit and
was more beneficial than either treat-all or treat-none strategy
within the full range of threshold probability (Figures 6E,F).
Besides, clinical impact curve analysis was introduced to further
evaluate the clinical applicability of this nomogram model
(Figures 6G,H). The high-risk population identified by the
Nomogram model is consistent with the actual situation,
when the threshold probability is greater than 30%. All these
results encouraged the nomogram model as a portable tool
for AD diagnosis. Given the extremely poor discriminative
performance of total Tau in plasma, it is almost impossible
to distinguish between aMCI and AD participants. We tried
to build another nomogram model to differentiate the AD
participants from aMCI. Nomogram were established based
on multivariate analysis results in the discovery cohort. Final
feature selection was performed by multiple machine learning
algorithms (Age, Gender, EMPG, Tau, ALB, HCY, and VB12)
(Supplementary Figure 4). Figures 7A,B illustrates the forest
plot for multivariable analyses and nomogram for identifying
aMCI and AD participants. As demonstrated in Figures 8A,B,
the results of discrimination curves (ROC) demonstrated that
C-index of the nomogram model was higher than that of
total Tau and Clinical model [discovery cohort: 0.813 (95%
CI, 0.742–0.885) vs. 0.670 (95% CI, 0.579–0.761) and 0.722
(95% CI, 0.638–0.807); validation cohort: 0.754 (95% CI, 0.683–
0.825) vs. 0.652 (95% CI, 0.573–0.732) and 0.706 (95% CI,
0.630–0.782)]. Table 2 shows that the nomogram model had
improved NRI and IDI index between AD and aMCI in discovery
and validation cohorts. The calibration curves and Brier score
revealed good agreement between the estimated outcomes and
the actual probability (Figures 8C,D). DCA and clinical impact
curves also indicated that the Nomogram model was a favorable
clinical tool for differentiating aMCI and AD and outperformed
the total Tau and Clinical model within a wide range of
threshold probabilities. The proposed model conferred more net
benefits compared with both the treat-all-patients scheme and
the treat-none scheme in the discovery and validation cohorts
(Figures 8E–H).
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FIGURE 7 | The nomogram for differentiating aMCI and AD. (A) Forest plot of the predictive value of the selected features for multivariable analyses. (B) A predictive
nomogram based on clinicopathological features and total Tau.
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FIGURE 8 | Verification of the predictive performance and clinical applicability of the nomogram for differentiating aMCI and AD. A nomogram outperforms total Tau
and Clinical model for predicting the probability of AD in discovery cohort [(A) 0.813 vs. 0.670 and 0.722, P < 0.05] and validation cohort [(B) 0.754 vs. 0.652 and
0.706, P < 0.05]. Calibration curves of three models in discovery cohort (C) and validation cohort (D). Decision curves analyses of three models in discovery cohort
(E) and validation cohort (F). Clinical impact curves of nomogram model in discovery cohort (G) and validation cohort (H).
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TABLE 2 | Evaluating the incremental predictive value and predictive performance of various models with NRI, IDI, and C-index between AD and aMCI.

AD vs. aMCI

Variable NRI (95% CI) P value IDI (95% CI) P value C-index (95% CI)

x
Discovery cohort

Tau Reference Reference 67.0 (57.9–76.1)

Clinics 0.034 (−0.197 to 0.266) P = 0.071 0.081 (−0.005 to 0.167) P = 0.065 72.2 (63.8–80.7)

Nomogram 0.455 (0.243–0.667) P < 0.001 0.119 (0.105–0.255) P < 0.001 81.3 (74.2–88.5)

Validation cohort

Tau Reference Reference 65.2 (57.3–73.2)

Clinics 0.110 (−0.089 to 0.310) P = 0.280 0.062 (−0.002 to 0.123) P = 0.059 70.6 (63.0–78.2)

Nomogram 0.492 (0.208–0.775) P = 0.001 0.122 (0.074–0.169) P < 0.001 75.4 (68.3–82.5)

NRI, net reclassification index; IDI, integrated discrimination improvement.

DISCUSSION

A research framework for AD has recently been proposed
by National Institute on Aging-Alzheimer’s Association (NIA-
AA), emphasizing the importance of amyloid-β, Tau, and
neuroinflammation in the pathological definition of AD (Jack
et al., 2018). Although Aβ- or Tau-based PETs have been
developed and promoted, they have not been widely employed
in clinical diagnosis, posing a barrier to research framework
implementation. Therefore, there is an urgent need to discover
convenient biomarkers with early diagnostic significance. Total
Tau in CSF has long been acknowledged as a biomarker
for AD diagnosis and progression. However, the clinical
application of Tau has been hampered by invasiveness and
multiple complications of lumbar puncture. Numerous studies
have demonstrated that Tau concentration is highly correlated
between cerebrospinal fluid and plasma (Jia et al., 2019; Ding
et al., 2021). Therefore, accurate quantification of total Tau in
plasma would greatly assist in understanding and early diagnosis
of this neurodegenerative disease. However, Tau concentration
in plasma is usually below the limits of conventional ELISA
performance (Jongbloed et al., 2013). Increased research has
developed ultra-micro quantitative analysis based on some
novel technologies such as single-molecule array (Simoa),
immunomagnetic reduction (IMR), etc. (Rissin et al., 2010;
Rubenstein et al., 2014). Promising results exist for plasma
total Tau (T-tau) and phosphorylated Tau (P-tau) measured
using a sensitive immunoassay with high-precision detection
(Ding et al., 2021; Jiao et al., 2021; Jordan et al., 2021). While
these preliminary results are encouraging, their dissemination is
constrained by the need for specialized testing equipment and
complicated operating procedures.

This study developed a novel approach based on
immunochemistry (CLIA) to quantify total Tau in human
plasma. CLIA immunoassay was conducted and relied on
specific antibodies, magnetic nanoparticles with high antibody
loading capacity, BAS cascading amplification systems, and
acridyl esters with excellent luminescence efficiency. Under
optimal experimental conditions, the quantitative analysis
demonstrated satisfying analytical performance, including
considerable sensitivity (5.16 pg/mL) and an appropriate linear

range (7.80–250 pg/mL). The results demonstrated that our
proposed CLIA could be applied for sensitive quantification
of total Tau in actual plasma samples. Multiple ROC curves
indicated that plasma Tau could more accurately identify
participants in different groups (aMCI vs. non-MCI: 0.6909;
AD vs. non-MCI: 0.7993; AD vs. aMCI: 0.6698). Therefore, it
is expected to be considered a fast, simple, and convenient tool
that can provide highly accurate results and achieve sensitive
concentration analysis for total Tau in plasma. What needs to
be acknowledged is that single factors often face significant
challenges in predicting specific clinical outcomes.

The development of blood-based biomarkers for Alzheimer’s
disease pathology as tools for screening the general population
is essential but persists controversies. Some researchers highlight
that total Tau in plasma demonstrated similar predictive validity
compared with total Tau in CSF for determining risk for incipient
dementia (Pase et al., 2019). Another study found that higher
levels of plasma total tau were associated with an increased risk
of MCI and with global- and domain-specific cognitive decline
on cognitive testing in a manner independent from amyloid
PET imaging (Mielke et al., 2017). A total of 42 studies on
tau proteins in blood were eligible in a systematic review and
meta-analysis, which revealed that different measure methods
(ELISA, IMR, and SIMOA) showed equally diagnostic values
from controls to aMCI patients to AD patients (Qu et al.,
2021). However, some researchers hold different opinions. For
example, T-tau has not discriminated between healthy controls
and MCI in multiple studies, where elevated levels were only
observed in AD dementia, with considerable overlap between
groups (Zetterberg et al., 2013; Mattsson et al., 2016; Mielke et al.,
2018). The predictive utility also appears limited, as plasma t-tau
has not significantly predicted conversion from MCI to dementia
(Zetterberg et al., 2013; Mielke et al., 2017). Given the ambiguous
findings for plasma measurements of T-tau, further investigation
is crucial to validate these measurements as in vivo biomarkers
for AD. Overall, our study adds to the current literature in
suggesting that plasma tau could represent a valuable biomarker
to include in panels for AD clinical studies in addition to blood
biomarkers. More research is needed to better understand the
molecular pathways responsible for the accumulation, clearance,
and catabolism of Tau in plasma, the relationship of Tau between
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plasma and CSF, and their association with cognitive dysfunction
and blood-brain barrier permeability measures.

In this study, EMPG and HCY have also been considered
as risk factors for AD patients through multivariate logistic
regression, consistent with previous studies (Lin et al., 2014; Chen
et al., 2020; Lu et al., 2020). However, as diagnostic biomarkers
for AD, they have not fully satisfied the clinical prognostic
needs. Given the complexity of pathological progression, it also
seems unlikely to have an ideal diagnostic biomarker that can
independently diagnose AD. However, since these biomarkers
represent different aspects of AD, a combination of them might
provide higher performance than each of them alone. To solve
these problems, we have successfully constructed and verified a
combined model including Tau and clinical variables, imparting
a better performance in diagnosing AD patients. In this study, we
found that a well-fitted multivariate model could independently
recognize AD from aMCI participants, and combined predictors
enabled the selection of patients with a higher risk of Alzheimer’s
disease. Besides, we have developed a visual nomogram that can
easily use this predictive model in clinical practice. The proposed
nomogram exhibited better performance than those based on
only a single predictor variable. Specifically, the nomogram
model has a C-index of 0.960 in distinguishing AD patients and
elderly non-MCI people, and a C-index of 0.813 in recognizing
the AD from aMCI participants.

Although the results were promising, some limitations
remained in the present study. Firstly, the ultrasensitive assay
of total Tau in plasma has not been extensively tested, leading
to high heterogeneity across different centers, resulting in these
divergent results. Secondly, all patients are from the same medical
center, leading to a potentially overly optimistic model. More
convincing data from multiple medical centers should allow
further evaluation of diagnostic models before generalizing the
results to other medical centers. Finally, long-term conversion
of aMCI cannot yet be clearly defined due to the lack of
continuous follow-up of radiological images or neurophysiology
assessment. Moreover, it is widely recognized that treatment
decisions would greatly facilitate intervention decisions, delaying
aMCI conversion or AD progression.

CONCLUSION

In conclusion, the presented results validated the possibility
of total Tau in plasma as a candidate for AD diagnosis
based on an optimized CLIA procedure. We also provide
a well-fitted multipredictor nomogram to assist clinical
diagnosis and prediction.
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